Skip to main content

Controlled normothermia during ischemia is important for the induction of neuronal cell death after global ischemia in mouse

  • Conference paper
Brain Edema XIII

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 96))

Summary

A stable model of neuronal damage after ischemia is needed in mice to enable progression of transgenic strategies. We performed transient global ischemia induced by common carotid artery occlusions with and without maintaining normal rectal temperature (Trec) in order to determine the importance of body temperature control during ischemia. We measured brain temperature (Tb) during ischemia/reperfusion. Mice with normothermia (Trec within ±1°C) had increased mortality and neuronal cell death in the CA1 region of hippocampus, which did not occur in hypothermic animals. If the Trec was kept within ±1°C, the Tb decreased during ischemia. After reperfusion, Tb in the normothermia group developed hyperthermia, which reached >40°C and was >2°C higher than Trec. We suggest that tightly controlled normothermia and prevention of hypothermia (Trec) during ischemia are important factors in the development of a stable neuronal damage model in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham H, Somogyvari-Vigh A, Maderdrut JL, Vigh S, Arimura A (2003) Rapidly activated microglial cells in the preoptic area may play a role in the generation of hyperthermia following occlusion of the middle cerebral artery in the rat. Exp Brain Res 153: 84–91

    Article  PubMed  Google Scholar 

  2. Adachi M, Sohma O, Tsuneishi S, Takada S, Nakamura H (2001) Combination effect of systemic hypothermia and caspase inhibitor administration against hypoxic-ischemic brain damage in neonatal rats. Pediatr Res 50: 590–595

    PubMed  CAS  Google Scholar 

  3. Andrews PJ, Harris B, Murray GD (2005) Randomized controlled trial of effects of the airflow through the upper respiratory tract of intubated brain-injured patients on brain temperature and selective brain cooling. Br J Anaesth 94: 330–335

    Article  PubMed  CAS  Google Scholar 

  4. Aoki M, Tamatani M, Taniguchi M, Yamaguchi A, Bando Y, Kasai K, Miyoshi Y, Nakamura Y, Vitek MP, Tohyama M, Tanaka H, Sugimoto H (2001) Hypothermic treatment restores glucose regulated protein 78 (GRP78) expression in ischemic brain. Brain Res Mol Brain Res 95: 117–128

    Article  PubMed  CAS  Google Scholar 

  5. Arai H, Uto A, Ogawa Y, Sato K (1993) Effect of low temperature on glutamate-induced intracellular calcium accumulation and cell death in cultured hippocampal neurons. Neurosci Lett 163: 132–134

    Article  PubMed  CAS  Google Scholar 

  6. Binienda Z, Virmani A, Przybyla-Zawislak B, Schmued L (2004) Neuroprotective effect of L-carnitine in the 3-nitropropionic acid (3-NPA)-evoked neurotoxicity in rats. Neurosci Lett 367: 264–267

    Article  PubMed  CAS  Google Scholar 

  7. Cartmell T, Luheshi GN, Rothwell NJ (1999) Brain sites of action of endogenous interleukin-1 in the febrile response to localized inflammation in the rat. J Physiol 518: 585–594

    Article  PubMed  CAS  Google Scholar 

  8. Chiueh CC (2001) Iron overload, oxidative stress, and axonal dystrophy in brain disorders. Pediatr Neurol 25: 138–147

    Article  PubMed  CAS  Google Scholar 

  9. Dietrich WD, Busto R, Valdes I, Loor Y (1990) Effects of normothermic versus mild hyperthermic forebrain ischemia in rats. Stroke 21: 1318–1325

    PubMed  CAS  Google Scholar 

  10. Dohi K, Jimbo H, Abe T, Aruga T (2005) A novel and simple selective brain cooling method by nasopharyngeal cooling (positive selective brain cooling method — a technical note). Acta Neurochir Suppl [submitted]

    Google Scholar 

  11. Dohi K, Jimbo H, Ikeda Y, Fujita S, Ohtaki H, Shioda S, Abe T, Aruga T (2005) Pharmacological brain cooling using indomethacin in acute hemorrhagic stroke — anti-inflammatory cytokines and anti-oxidative effects. Acta Neurochir [Suppl] [submitted]

    Google Scholar 

  12. Eberspacher E, Werner C, Engelhard K, Pape M, Laacke L, Winner D, Hollweck R, Hutzler P, Kochs E (2005) Long-term effects of hypothermia on neuronal cell death and the concentration of apoptotic proteins after incomplete cerebral ischemia and reperfusion in rats. Acta Anaesthesiol Scand 49: 477–487

    Article  PubMed  CAS  Google Scholar 

  13. Eilers H, Bickler PE (1996) Hypothermia and isoflurane similarly inhibit glutamate release evoked by chemical anoxia in rat cortical brain slices. Anesthesiology 85: 600–607

    Article  PubMed  CAS  Google Scholar 

  14. Fritz HG, Bauer R (2004) Traumatic injury in the developing brain — effects of hypothermia. Exp Toxicol Pathol 56: 91–102

    Article  PubMed  Google Scholar 

  15. Hicks SD, Parmele KT, DeFranco DB, Klann E, Callaway CW (2000) Hypothermia differentially increases extracellular signalregulated kinase and stress-activated protein kinase/c-Jun terminal kinase activation in the hippocampus during reperfusion after asphyxial cardiac arrest. Neuroscience 98: 677–685

    Article  PubMed  CAS  Google Scholar 

  16. Hoffmann C (2000) COX-2 in brain and spinal cord implications for therapeutic use. Curr Med Chem 7: 1113–1120

    PubMed  CAS  Google Scholar 

  17. Jenkins LW, DeWitt DS, Johnston WE, Davis KL, Prough DS (2001) Intraischemic mild hypothermia increases hippocampal CA1 blood flow during forebrain ischemia. Brain Res 890: 1–10

    Article  PubMed  CAS  Google Scholar 

  18. Kawanishi M (2003) Effect of hypothermia on brain edema formation following intracerebral hemorrhage in rats. Acta Neurochir Suppl 86: 453–456

    CAS  Google Scholar 

  19. Kil HY, Zhang J, Piantadosi CA (1996) Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats. J Cereb Blood Flow Metab 16: 100–106

    Article  PubMed  CAS  Google Scholar 

  20. Mariak Z, White MD, Lewko J, Lyson T, Piekarski P (1999) Direct cooling of the human brain by heat loss from the upper respiratory tract. J Appl Physiol 87: 1609–1613

    PubMed  CAS  Google Scholar 

  21. Marion DW (2004) Controlled normothermia in neurologic intensive care. Crit Care Med 32: S43–S45

    Article  PubMed  Google Scholar 

  22. Matsunaga M, Ohtaki H, Takaki A, Iwai Y, Yin L, Mizuguchi H, Miyake T, Usumi K, Shioda S (2003) Nucleoprotamine diet derived from salmon soft roe protects mouse hippocampal neurons from delayed cell death after transient forebrain ischemia. Neurosci Res 47: 269–276

    Article  PubMed  CAS  Google Scholar 

  23. Mizushima H, Zhou CJ, Dohi K, Horai R, Asano M, Iwakura Y, Hirabayashi T, Arata S, Nakajo S, Takaki A, Ohtaki H, Shioda S (2002) Reduced postischemic apoptosis in the hippocampus of mice deficient in interleukin-1. J Comp Neurol 448: 203–216

    Article  PubMed  CAS  Google Scholar 

  24. Ohtaki H, Funahashi H, Dohi K, Oguro T, Horai R, Asano M, Iwakura Y, Yin L, Matsunaga M, Goto N, Shioda S (2003) Suppression of oxidative neuronal damage after transient middle cerebral artery occlusion in mice lacking interleukin-1. Neurosci Res 45: 313–324

    Article  PubMed  CAS  Google Scholar 

  25. Ohtaki H, Yin Li, Nakamachi T, Dohi K, Kudo Y, Makino R, Shioda S (2004) Expression of tumor necrosis factor a in nerve fibers and oligodendrocytes after transient focal ischemia in mice. Neurosci Lett 368: 162–166

    Article  PubMed  CAS  Google Scholar 

  26. Ohtaki H, Dohi K, Nakamachi T, Yofu S, Endo S, Kudo Y, Shioda S (2005) Evaluation of brain ischemia in mice. Acta Histochem Cytochem 38: 99–106

    Article  Google Scholar 

  27. Phanithi PB, Yoshida Y, Santana A, Su M, Kawamura S, Yasui N (2000) Mild hypothermia mitigates post-ischemic neuronal death following focal cerebral ischemia in rat brain: immunohistochemical study of Fas, caspase-3 and TUNEL. Neuropathology 20: 273–282

    Article  PubMed  CAS  Google Scholar 

  28. Reglodi D, Somogyvari-Vigh A, Maderdrut JL, Vigh S, Arimura A (2000) Postischemic spontaneous hyperthermia and its effects in middle cerebral artery occlusion in the rat. Exp Neurol 163: 399–407

    Article  PubMed  CAS  Google Scholar 

  29. Roth J, De Souza GE (2001) Fever induction pathways: evidence from responses to systemic or local cytokine formation. Braz J Med Biol Res 34: 301–314

    Article  PubMed  CAS  Google Scholar 

  30. Satinoff E, Peloso E, Plata-Salamn CR (1999) Prostaglandin E2-induced fever in young and old Long-Evans rats. Physiol Behav 67: 149–152

    Article  PubMed  CAS  Google Scholar 

  31. Sheng H, Laskowitz DT, Pearlstein RD, Warner DS (1999) Characterization of a recovery global cerebral ischemia model in the mouse. J Neurosci Methods 88: 103–109

    Article  PubMed  CAS  Google Scholar 

  32. Tsuchiya D, Hong S, Suh SW, Kayama T, Panter SS, Weinstein PR (2002) Mild hypothermia reduces zinc translocation, neuronal cell death, and mortality after transient global ischemia in mice. J Cereb Blood Flow Metab 22: 1231–1238

    Article  PubMed  CAS  Google Scholar 

  33. Uemura K, Hoshino S, Uchida K, Tsuruta R, Maekawa T, Yoshida K (2003) Hypothermia attenuates delayed cortical cell death and ROS generation following CO inhalation. Toxicol Lett 145: 101–106

    Article  PubMed  CAS  Google Scholar 

  34. Xu L, Yenari MA, Steinberg GK, Giffard RG (2002) Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade. J Cereb Blood Flow Metab 22: 21–28

    Article  PubMed  Google Scholar 

  35. Yager JY, Armstrong EA, Jaharus C, Saucier DM, Wirrell EC (2004) Preventing hyperthermia decreases brain damage following neonatal hypoxic-ischemic seizures. Brain Res 1011: 48–57

    Article  PubMed  CAS  Google Scholar 

  36. Yang G, Kitagawa K, Matsushita K, Mabuchi T, Yagita Y, Yanagihara T, Matsumoto M (1997) C57BL/6 strain is most susceptible to cerebral ischemia following bilateral common carotid occlusion among seven mouse strains: selective neuronal death in the murine transient forebrain ischemia. Brain Res 752: 209–218

    Article  PubMed  CAS  Google Scholar 

  37. Yin L, Ohtaki H, Nakamachi T, Kudo Y, Makino R, Shioda S (2004) Delayed expressed TNFR1 co-localize with ICAM-1 in astrocyte in mice brain after transient focal ischemia. Neurosci Lett 370: 30–35

    Article  PubMed  CAS  Google Scholar 

  38. Zhu C, Wang X, Cheng X, Qiu L, Xu F, Simbruner G, Blomgren K (2004) Post-ischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxiaischemia. Brain Res 996: 67–75

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this paper

Cite this paper

Ohtaki, H. et al. (2006). Controlled normothermia during ischemia is important for the induction of neuronal cell death after global ischemia in mouse. In: Hoff, J.T., Keep, R.F., Xi, G., Hua, Y. (eds) Brain Edema XIII. Acta Neurochirurgica Supplementum, vol 96. Springer, Vienna. https://doi.org/10.1007/3-211-30714-1_53

Download citation

  • DOI: https://doi.org/10.1007/3-211-30714-1_53

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-30712-0

  • Online ISBN: 978-3-211-30714-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics