Skip to main content

Assessment of Locally Recurrent Disease, Response to Chemo- and Radiotherapy, and Special Considerations

  • Chapter
  • First Online:
Imaging of Primary Tumors of the Osseous Spine

Abstract

This chapter gives a short overview of the expected imaging appearance of postoperative findings, postoperative recurrence, and potential postoperative complications that may occur after treatment of tumors of the osseous spine. Furthermore, assessment of response to chemo- and radiotherapy is discussed. Magnetic resonance imaging (MRI), including morphological sequences, dynamic contrast-enhanced imaging, and diffusion-weighted imaging, is the preferred technique to differentiate expected postoperative changes such as edema and fibrosis from local recurrence. Complementary computed tomography (CT) may add information by demonstrating osteolysis, detection of chondroid calcifications in recurrent cartilage tumors of chordoma, and calcified osteoid matrix in recurrent osteosarcoma. Positron emission tomography (PET)/CT and WBMRI have a complementary role in the posttreatment evaluation of lymphoma. PET/CT also has a role in the evaluation of posttreatment response of plasmacytoma.

Complications such as damage to neural structures, flap reconstruction failure, CSF leak with formation of pseudomeningocele, vascular injury, wound-related complications such as tissue necrosis, wound dehiscence, hematomas, seromas, infections, and development of extensive fibrosis are also best evaluated on MRI. CT is, however, the mainstay for hardware and bone graft failure.

Mimickers of poor response to chemotherapy include early granulation tissue, bone marrow changes due to chemotherapy or irradiation, radiation necrosis, and insufficiency fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghighi M, Boe J, Rosenberg J et al (2016) Three-dimensional radiologic assessment of chemotherapy response in Ewing sarcoma can be used to predict clinical outcome. Radiology 280:905–915

    PubMed  Google Scholar 

  • Albano D, Messina C, Gitto S et al (2019) Differential diagnosis of spine tumors—my favorite mistake. Semin Musculoskelet Radiol 23:26–35

    PubMed  Google Scholar 

  • Albano D, Micci G, Patti C et al (2021) Whole-body magnetic resonance imaging: current role in patients with lymphoma. Diagnostics 11:1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alothman M, Althobaity W, Asiri Y et al (2020) Giant cell tumor of bone following denosumab treatment: assessment of tumor response using various imaging modalities. Insights Imaging 11(1):41

    PubMed  PubMed Central  Google Scholar 

  • Ariyarante S, Jenko N, Iyengar KP et al (2023) Primary osseous malignancies of the spine. Diagnostics 13(12):2006

    Google Scholar 

  • Asmar K, Saade C, Salman R et al (2020) The value of diffusion weighted imaging and apparent diffusion coefficient in primary osteogenic and Ewing sarcomas for the monitoring of response to treatment: initial experience. Eur J Radiol 124:108855

    PubMed  Google Scholar 

  • Baidya Kayal E, Kandasamy D, Khare K et al (2019) Intravoxel incoherent motion (IVIM) for response assessment in patients with osteosarcoma undergoing neoadjuvant chemotherapy. Eur J Radiol 119:108635

    PubMed  Google Scholar 

  • Bancroft LW (2011) Postoperative tumor imaging. Semin Musculoskelet Radiol 2011(15):425–438

    Google Scholar 

  • Barrington SF, O’Doherty MJ (2003) Limitations of Pet for imaging lymphoma. Eur J Nucl Med Mol Imaging Suppl 1:S117–127

    Google Scholar 

  • Barz M, Aftahy K, Janssen I et al (2021) Spinal manifestation of primary malignant (PLB) and secondary bone lymphoma (SLB). Curr Oncol 28(5):3891–3899

    PubMed  PubMed Central  Google Scholar 

  • Bauckneht M, Capitanio S, Donegani MI et al (2019) Role of baseline and post-therapy 18F-FDG PET in the prognostic stratification of metastatic castration-resistant prostate cancer (mCRPC) patients treated with radium-223. Cancers 12:31

    PubMed  PubMed Central  Google Scholar 

  • Baur A, Huber A, Arbogast S et al (2001) Diffusion-weighted imaging of tumor recurrencies and posttherapeutical soft-tissue changes in humans. Eur Radiol 11:828–833

    CAS  PubMed  Google Scholar 

  • Baur-Melnyk A, Reiser MF (2009) Multiple myeloma. Semin Musculoskelet Radiol 13:111–119

    PubMed  Google Scholar 

  • Beaman FD, Bancroft LW, Peterson JJ et al (2006) Imaging characteristics of bone graft materials. Radiographics 26(2):373–388

    PubMed  Google Scholar 

  • Bhojwani N, Szpakowski P, Partovi S et al (2015) Diffusion-weighted imaging in musculoskeletal radiology—clinical applications and future directions. Quant Imaging Med Surg 5:740–753

    PubMed  PubMed Central  Google Scholar 

  • Bloem JL, Vriens D, Krol ADG et al (2020) Therapy-related imaging findings in patients with sarcoma. Semin Musculoskelet Radiol 24:676–691

    PubMed  Google Scholar 

  • Bluemke DA, Fishman EK, Scott WW Jr (1994) Skeletal complications of radiation therapy. Radiographics 14:111–121

    CAS  PubMed  Google Scholar 

  • Bostel T, Nicolay NH, Welzel T et al (2018) Sacral insufficiency fractures after high-dose carbon-ion based radiotherapy of sacral chordomas. Radiat Oncol 13:154

    PubMed  PubMed Central  Google Scholar 

  • Boutin RD, White LM, Laor T et al (2015) MRI findings of serous atrophy of bone marrow and associated complications. Eur Radiol 25:2771–2778

    PubMed  Google Scholar 

  • Brown KT, Rosental DI, Rosenberg A (1983) Case report 247. Post-radiation osteitis of the sacrum. Skeletal Radiol 10:269–272

    CAS  PubMed  Google Scholar 

  • Campanacci L, Sambri A, Medellin MR et al (2019) A new computerized tomography classification to evaluate response to denosumab in giant cell tumors in the extremities (2019) Acta Orthop Traumatol Turc 53:376–380

    Google Scholar 

  • Capps GW, Fulcher AS, Szucs RA, Turner MA (1997) Imaging features of radiation-induced changes in the abdomen. Radiographics 17:1455–1473

    CAS  PubMed  Google Scholar 

  • Chan BY, Gill KG, Rebsamen SL, Nguyen JC (2016) MR imaging of pediatric bone marrow. Radiographics 36:1911–1930

    PubMed  Google Scholar 

  • Chaturvedi A (2021) Pediatric skeletal diffusion-weighted magnetic resonance imaging: Part 2: Current and emerging applications. Pediatr Radiol 51:1575–1588

    PubMed  Google Scholar 

  • Chen J, Li C, Tian Y et al (2019) Comparison of whole-body DWI and (18)F-FDG PET/CT for detecting intramedullary and extramedullary lesions in multiple myeloma. AJR Am J Roentgenol 213:514–523

    PubMed  Google Scholar 

  • Choi H, Charnsangavej C, Faria SC et al (2007) Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 25:1753–1759

    PubMed  Google Scholar 

  • Chokshi FH, Low M, Gibbs WN (2018) Conventional and advanced imaging of spine oncologic disease, nonoperative post-treatment effects and unique spinal conditions. Neurosurgery 82:1–23

    PubMed  Google Scholar 

  • Dietrich O, Biffar A, Reiser MF, Baur-Melnyk A (2009) Diffusion-weighted imaging of bone marrow. Semin Musculoskelet Radiol 13:134–144

    Google Scholar 

  • Dyke JP, Panicek DM, Healey JH et al (2003) Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast enhanced MR imaging. Radiology 228:271–278

    PubMed  Google Scholar 

  • Eisenhauer EA, Therasseb P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    CAS  PubMed  Google Scholar 

  • Engellau J, Seeger L, Grimer R et al (2018) Assessment of denosumab treatment effects and imaging response in patients with giant cell tumor of bone. World J Surg Oncol 16:191

    PubMed  PubMed Central  Google Scholar 

  • Erlemann R, Sciuk J, Bosse A et al (1990) Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 75:791–796

    Google Scholar 

  • Fayad LM, Jacobs MA, Carrino JA, Bluemke DA (2012) Musculoskeletal tumors: how to use anatomic, functional and metabolic MR techniques. Radiology 265:340–356

    PubMed  PubMed Central  Google Scholar 

  • Fournier L, Ammari S, Thiam R, Cuénod CA (2014) Imaging criteria for assessing tumour response: RECIST, mRECIST, Cheson. Diagn Interv Imaging 95:689–703

    CAS  PubMed  Google Scholar 

  • Fox MG, Bancroft LW, Peterson JJ (2006) MRI appearance of myocutaneous flaps commonly used in orthopedic reconstructive surgery. Am J Roentgenol 187:800–806

    Google Scholar 

  • Franck P, Bernstein JL, Cohen LE et al (2018) Local muscle flaps minimize post-operative wound morbidity in patients with neoplastic disease of the spine. Clin Neurol Neurosurg 171:100–105

    PubMed  Google Scholar 

  • Frisch S, Timmermann B (2007) The evolving role of proton beam therapy for sarcomas. Clin Oncol 29:500–506

    Google Scholar 

  • Garner HW, Kransdorf MJ (2016) Musculoskeletal sarcoma: update on imaging of the post-treatment patient. Can Assoc Radiol J 67:12–120

    PubMed  Google Scholar 

  • Garner HW, Kransdorf MJ, Peterson JJ (2011) Posttherapy imaging of musculoskeletal neoplasms. Posttherapy imaging of musculoskeletal neoplasms. Radiol Clin North Am 49(6):1307–1323

    Google Scholar 

  • Griffiths HJ, Thompson RC, Nitke SJ et al (1997) Use of MRI in evaluating postoperative changes in patients with bone and soft tissue tumors. Orthopedics 20:215–220

    CAS  PubMed  Google Scholar 

  • Gu L, Madewell JE, Aslam R, Mujtba B (2019) The effects of granulocyte growth stimulating factor on MR images of bone marrow. Skeletal Radiol 48:209–218

    PubMed  Google Scholar 

  • Gupta S, Stinson ZS, Marco RA, Dormans JP (2018) Single stage en bloc resection of a recurrent metastatic osteosarcoma of the pediatric lumbar spine through multiple exposures—a novel approach. SICOT-J 4:32

    PubMed  PubMed Central  Google Scholar 

  • Hao Y, An R, Xue Y (2021) Prognostic value of tumoral and peritumoral magnetic resonance parameters in osteosarcoma patients for monitoring chemotherapy response. Eur Radiol 31:3518–3529

    PubMed  Google Scholar 

  • Hartman RP, Sundaram M, Okuno SH, Sim FH (2004) Effect of granulocyte-stimulating factors on marrow of adult patients with musculoskeletal malignancies. AJR Am J Roentgenol 183:645–653

    PubMed  Google Scholar 

  • Hawk MW, Kim KD (2000) Review of spinal pseudomeningoceles and cerebrospinal fluid fistulas. Neurosurg Focus 9(1):e5

    CAS  PubMed  Google Scholar 

  • Henderson ER, Xu X, Pogue BW et al (2020) Osteosarcoma mineralization changes on radiographs have moderate correlation to chemotherapy response using bone subtraction methodology. Ann Jt 5:38

    PubMed  Google Scholar 

  • Henry TD, McCarville ME, Hoffer FA (2006) Diagnostic imaging of pediatric bone and soft tissue sarcomas. In: Pappo A (ed) Pediatric bone and soft tissue sarcomas. Springer, Berlin, pp 35–69

    Google Scholar 

  • Herrera IH, Dela Presa RM, Gutierrez RG et al (2013) Evaluation of the post operative lumbar spine. Radiologia 55(1):12–23

    Google Scholar 

  • Hillengass J, Moulopoulos LA, Delorme S et al (2017) Whole-body computed tomography versus conventional skeletal survey in patients with multiple myeloma: a study of the International Myeloma Working Group. Blood Cancer J 7:e599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeben BA, Carrie C, Timmermann B et al (2019) Management of vertebral radiotherapy dose in paediatric patients with cancer: consensus recommendations from the SIOPE Radiotherapy Working Group. Lancet Oncol 20:e155–e166

    PubMed  Google Scholar 

  • Holscher HC, Bloem JL, Vanel D et al (1992) Osteosarcoma: chemotherapy-induced changes at MR imaging. Radiology 182:839–844

    CAS  PubMed  Google Scholar 

  • Hu Z, Wen S, Huo Z et al (2022) Current status and prospects of targeted therapy for osteosarcoma. Cells 11:3507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huvos AG, Rosen G, Marcove RC (1977) Primary osteogenic sarcoma: pathologic aspects in 20 patients after treatment with chemotherapy en bloc resection and prosthetic bone replacement. Arch Pathol Lab Med 101:14–18

    CAS  PubMed  Google Scholar 

  • Hwang S, Lefkowitz R, Landa J et al (2009) Local changes in bone marrow at MRI after treatment of extremity soft tissue sarcoma. Skeletal Radiol 38:11–19

    Google Scholar 

  • Inarejos Clemente EJ, Navarro OM, Navallas M et al (2022) Multiparametric MRI evaluation of bone sarcomas in children. Insights Imaging 13:33

    PubMed  PubMed Central  Google Scholar 

  • Jain NK, Dao K, Ortiz AO (2014) Radiologic evaluation and management of postoperative paraspinal fluid collections. Neuroimaging Clin N Am 24(2):375–389

    PubMed  Google Scholar 

  • Jin C, Xie M, Liang W, Qian Y (2020) Lumbar vertebral osteoradionecrosis: a rare case report with 10-year follow-up and brief literature review. BMC Musculoskelet Disord 21:7

    PubMed  PubMed Central  Google Scholar 

  • Johnson SA, Kumar A, Matasar MJ et al (2015) Imaging for staging and response assessment in lymphoma. Radiology 276:323–338

    PubMed  Google Scholar 

  • Kattapuram SV, Rosol MS, Rosenthal DI et al (1999) Magnetic resonance imaging features of allografts. Skeletal Radiol 28:383–389

    CAS  PubMed  Google Scholar 

  • Kayal EB, Alampally JT, Sharma R et al (2023) Chemotherapy response evaluation using diffusion weighted MRI in Ewing sarcoma: a single center experience. Acta Radiol 64:1508–1517

    PubMed  Google Scholar 

  • Kim Y, Lee SK, Kim JY, Kim JH (2023) Pitfalls of diffusion-weighted imaging: clinical utility of T2-shine-through and T2-black-out for musculoskeletal diseases. Diagnostics 13(9):1647

    PubMed  PubMed Central  Google Scholar 

  • Klish MD, Watson GA, Shrieve DC et al (2004) Radiation and intensity-modulated radiotherapy for metastatic spine tumors. Neurosurg Clin N Am 15(4):481–490

    PubMed  Google Scholar 

  • Koutoulidis V, Fontara S, Terpos E et al (2017) Quantitative diffusion-weighted imaging of the bone marrow: an adjunct tool for the diagnosis of a diffuse MR imaging pattern in patients with multiple myeloma. Radiology 282:484–493

    PubMed  Google Scholar 

  • Koutoulidis V, Terpos E, Papanikolaou N et al (2022) Comparison of MRI features of fat fraction and ADC for early treatment response assessment in participants with multiple myeloma. Radiology 304:137–144

    PubMed  Google Scholar 

  • Kubo T, Furuta T, Jahan MP et al (2016) Percent slope analysis of dynamic magnetic resonance imaging for assessment of chemotherapy response of osteosarcoma or Ewing sarcoma. Systematic review and metaanalysis. Skeletal Radiol 45:1235–1288

    PubMed  Google Scholar 

  • Kubo T, Furuta T, Johan MP et al (2017) Value of diffusion-weighted imaging for evaluating chemotherapy response in osteosarcoma: a meta-analysis. Mol Clin Oncol 7:88–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Latifoltojar A, Hall-Craggs M, Bainbrigde A et al (2017) Whole-body MRI quantitative biomarkers are associated significantly with treatment response in patients with newly diagnosed symptomatic multiple myeloma following bortezomib induction. Eur Radiol 27:5325–5336

    PubMed  PubMed Central  Google Scholar 

  • Laux CJ, Brzaczy G, Weber M et al (2015) Tumor response of osteosarcoma to neoadjuvant chemotherapy evaluated by magnetic resonance imaging as prognostic factor for outcome. Int Orthop 39:97–104

    PubMed  Google Scholar 

  • Lecouvet FE, Vekemans MC, Van Den Berghe T et al (2022) Imaging of treatment response and minimal residual disease in multiple myeloma: state of the art WB-MRI and PET/CT. Skeletal Radiol 51(1):59–80

    PubMed  Google Scholar 

  • Ledermann HP, Schweitzer ME, Morrison ME (2002) Nonenhancing tissue on MR imaging of pedal infection: characterization of necrotic tissue and associated limitations for diagnosis of osteomyelitis and abscess. AJR Am J Roentgenol 178(1):215–222

    PubMed  Google Scholar 

  • Lee J, Yoo YH, Lee S et al (2018) Gelatinous transformation of bone marrow mimicking malignant marrow-replacing lesion on magnetic resonance imaging in a patient without underlying devastating disease. iMRI 22:50–55

    Google Scholar 

  • Lee SH, Kwok KY, Wong SM et al (2022) Chordoma at the skull base, spine and sacrum: a pictorial essay. J Clin Imaging Sci 12:44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lejoly M, Van Den Berghe T, Creytens D et al (2024) Diagnosis and monitoring denosumab therapy of giant cell tumors of bone: radiologic-pathologic correlation. Skeletal Radiol 53(2):353–364

    PubMed  Google Scholar 

  • Li Z, Guo L, Zhang P et al (2023) A systematic review of perioperative complications in en bloc resection of spinal tumors. Global Spine J 13:812

    PubMed  Google Scholar 

  • Lim CY, Ong KO (2013) Imaging of musculoskeletal lymphoma. Cancer Imaging 14:448–457

    Google Scholar 

  • Lin E, Scognamiglio T, Zhao Y et al (2018) Prognostic implications of gadolinium enhancement of skull base chordomas. AJNR Am J Neuroradiol 39(8):1509–1514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Duan Z, Fang S, Wang S (2024) Imaging assessment of the efficacy of chemotherapy in primary malignant bone tumors: recent advances in qualitative and quantitative magnetic resonance imaging and radiomics. J Magn Reson Imaging 59(1):7–31

    PubMed  Google Scholar 

  • Matsumoto Y, Fukumitsu N, Ishikawa H, Nakai K, Sakurai H (2021) A critical review of radiation therapy: from particle beam therapy (proton, carbon and BNCT) to beyond. J Pers Med 11:825

    PubMed  PubMed Central  Google Scholar 

  • Mayerhoefer ME, Archibald SJ, Messiou C et al (2020) MRI and PET/MRI in hematologic malignancies. J Magn Reson Imaging 51:1325–1335

    Google Scholar 

  • Meixel AJ, Hauswald H, Delorme S, Jobke B (2018) From radiation osteitis to osteoradionecrosis: incidence and MR morphology of radiation-induced sacral pathologies following pelvic radiotherapy. Eur Radiol 28:3550–3559

    Google Scholar 

  • Mule S, Reizine E, Blanc-Durand P et al (2020) Whole-body functional MRI and PET/MRI in multiple myeloma. Cancers 12:3155

    CAS  PubMed  PubMed Central  Google Scholar 

  • National Institute for Health and Care Excellence NICE Myeloma (2016) Diagnosis and management. https://www.nice.org.uk/guidance/ng35/chapter/Recommendations

  • Noebauer-Huhmann IM, Chaudhary SR, Papakonstantinou O et al (2020) Soft tissue sarcoma follow-up imaging: strategies to distinguish post-treatment changes from recurrence. Semin Musculoskelet Radiol 24:627–644

    PubMed  Google Scholar 

  • O’Sallivan B, Davis AM, Turcotte R et al (2002) Preoperative versus postoperative radiotherapy in soft tissue sarcoma of the limbs: a randomized trial. Lancet 29(359):2235–2241

    Google Scholar 

  • Oguro S, Okuda S, Sugiura H et al (2018) Giant cell tumor of the bone: change in image features after denosumab administration. Magn Reson Med Sci 17:325–333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oka K, Yakushiji T, Sato H et al (2010) The value of diffusion-weighted imaging for monitoring the chemotherapeutic response of osteosarcoma: a comparison between average apparent diffusion coefficient and minimum apparent diffusion coefficient. Skeletal Radiol 39:141–146

    PubMed  Google Scholar 

  • Ollivier L, Leclere J, Vanel D et al (1991) Femoral infarction following intraarterial chemotherapy for osteosarcoma of the leg: a possible pitfall in magnetic resonance imaging. Skeletal Radiol 20:329–332

    CAS  PubMed  Google Scholar 

  • Ollivier L, Gerber S, Vanel D, Brisse H, Leclere J (2006) Improving the interpretation of bone marrow imaging in cancer patients. Cancer Imaging 6:194–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papakonstantinou O, Isaac A, Dalili D, Noebauer-Huhmann IM (2019) T2 hypointense tumors and tumor like lesions. Semin Musculoskelet Radiol 23:58–75

    PubMed  Google Scholar 

  • Parmeggiani A, Miceli M, Errani C, Facchini G (2021) State of the art and new concepts in giant cell tumor of the bone: imaging features and tumor characteristics. Cancers 13:6298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel SR (2000) Radiation-induced sarcoma. Curr Treat Options Oncol 1:258–261

    CAS  PubMed  Google Scholar 

  • Radcliff K, Morrison WB, Kepler C et al (2016) Distinguishing pseudomeningocele, epidural hematoma and postoperative infection on postoperative MRI. Clin Spine Surg 29:E471

    PubMed  Google Scholar 

  • Rahmouni A, Meigan M, Diine M et al (2003) MRI and PET of bone lymphoproliferative diseases. Cancer Imaging 3:122–125

    PubMed Central  Google Scholar 

  • Reinert CP, Krieg EM, Bosmuller H, Horger M (2020) Mid-term response assessment in multiple myeloma using a texture analysis approach on dual energy-CT-derived bone marrow images—a proof of principle study. Eur J Radiol 131:109214

    PubMed  Google Scholar 

  • Richardson ML, Zink-Brody GC, Patten RM et al (1996) MR characterization of post-irradiation soft tissue edema. Skeletal Radiol 25:537–543

    CAS  PubMed  Google Scholar 

  • Roberge D, Skamene T, Nahal A et al (2010) Radiological and pathological response following pre-operative radiotherapy for soft-tissue sarcoma. Radiother Oncol 97:404–440

    PubMed  Google Scholar 

  • Rodallec MH, Feydy A, Larousserie F et al (2008) Diagnostic imaging of solitary tumors of the spine: what to do and say. Radiographics 28:1019–1041

    PubMed  Google Scholar 

  • Saleh MM, Abdelrahman TM, Madney Y et al (2020) Multiparametric MRI with diffusion-weighted imaging in predicting response to chemotherapy in cases of osteosarcoma and Ewing’s sarcoma. Br J Radiol 93(1115):20200257

    PubMed  PubMed Central  Google Scholar 

  • Santos P, Peck KK, Arevalo-Perez J et al (2017) T1-weighted dynamic contrast-enhanced MR perfusion imaging characterizes tumor response to radiation therapy in chordoma. Am J Neuroradiol 38:2210–2216

    Google Scholar 

  • Sasaki T, Moritani T, Belay A et al (2018) Role of apparent diffusion coefficient as a predictor of tumor progression in patients with chordoma. Am J Neuroradiol 39:1316–1321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling AT, Ehresman J, Huq S et al (2020) Risk factors for wound related complications after surgery for primary and metastatic spine tumors: a systematic review and metaanalysis. World Neurosurg 141:467–478

    PubMed  Google Scholar 

  • Schultheiss TE (2008) The radiation dose-response of the human spinal cord. Int J Radiat Oncol Biol Phys 71:1455–1459

    PubMed  Google Scholar 

  • Schulze M, Weisel K, Grandjean C et al (2014) Increasing bone sclerosis during bortezomib therapy in multiple myeloma patients: results of a reduced-dose whole-body MDCT study. AJR Am J Roentgenol 202(1):170–179

    PubMed  Google Scholar 

  • Seam P, Juweid ME, Cheson BD (2007) The role of FDG-PET scans in patients with lymphoma. Blood 110:3507–35016

    CAS  PubMed  Google Scholar 

  • Shapeero LG, De Visschere PJ, Verstraete KL et al (2008) Post-treatment complications of soft tissue tumors. Eur J Radiol 69(2):209–221

    PubMed  Google Scholar 

  • Sheppard DG, Libshitz HI (2001) Post-radiation sarcomas: a review of the clinical and imaging features in 63 cases. Clin Radiol 56:22–29

    CAS  PubMed  Google Scholar 

  • Son HM, Yoo HJ, Hong SH et al (2022) Detection of soft tissue sarcoma recurrence: feasibility of ultrafast 3D Gradient-echo sequence in additional to contrast enhanced MRI to provide early-phase post contrast information. J Belg Soc Radiol 106(51):1–9

    Google Scholar 

  • Subhawong TK, Jacobs MA, Fayad LM (2014) Diffusion-weighted imaging for characterizing musculoskeletal lesions. Radiographics 34(5):1163–1177

    PubMed  Google Scholar 

  • Uhl M, Saueressig U, Koehler G et al (2006) Evaluation of tumor necrosis during chemotherapy with diffusion-weighted MR imaging: preliminary results in osteosarcomas. Pediatr Radiol 36:1306–1311

    Google Scholar 

  • Verstraete K (2009) Assessment of response to chemotherapy and radiotherapy. In: Davies AM, Sundaram M, James SLJ (eds) Imaging of bone tumors and tumor-like lesions. Techniques and applications. Springer, Berlin

    Google Scholar 

  • Vilanova JC, Baleato-Gonzalez S, Romero M et al (2016) Assessment of musculoskeletal malignancies with functional MR imaging. Magn Reson Imaging Clin N Am 24:239–259

    PubMed  Google Scholar 

  • Wahl RL, Jacene H, Kasamon Y et al (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50:122S–150S

    CAS  PubMed  Google Scholar 

  • Wang CS, Du LJ, Si MJ et al (2013) Noninvasive assessment of response to neoadjuvant chemotherapy in osteosarcoma of long bones with diffusion-weighted imaging: an initial in vivo study. PloS One 26:72679

    Google Scholar 

  • Wardelmann E, Haas RL, Bovee JVMG et al (2016) Evaluation of response after neoadjuvant treatment in soft tissue sarcomas; the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group (EORTC-STBSG) recommendations for pathological examination and reporting. Eur J Cancer 53:84–95

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Taoka T, Nakamine H (2009) Superior clinical impact of FDG-PET compared to MRI for the follow-up of a patient with sacral lymphoma. J Clin Exp Hematopathol 49:109–115

    Google Scholar 

  • Yamazaki T, McLoughlin GS, Patel S et al (2009) Feasibility and safety of en bloc resection for primary spine tumors: a systematic review by the spine oncology group. Spine (Phila Pa 1976) 34(22 Suppl):S31

    PubMed  Google Scholar 

  • Yeom KW, Lober RM, Mobley BC et al (2013) Diffusion-weighted MRI: distinction of skull base chordoma from chondrosarcoma. Am J Neuroradiol 34:1056–1061

    Google Scholar 

  • Young PM, Berquist TH, Bancroft LW, Peterson JJ (2007) Complications of spinal instrumentation. Radiographics 27(3):775–789

    Google Scholar 

  • Zeng YN, Zhang BT, Song T et al (2022) The clinical value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) semi-quantitative parameters in monitoring neoadjuvant chemotherapy response of osteosarcoma. Acta Radiol 63:1077–1085

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papakonstantinou, O., Chaudhary, S.R., Pusitz, S., Nöebauer-Huhmann, IM. (2024). Assessment of Locally Recurrent Disease, Response to Chemo- and Radiotherapy, and Special Considerations. In: Ladeb, M.F., Vanhoenacker, F. (eds) Imaging of Primary Tumors of the Osseous Spine. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2024_478

Download citation

  • DOI: https://doi.org/10.1007/174_2024_478

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56885-5

  • Online ISBN: 978-3-031-56886-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics