Skip to main content

Natural History and Monitoring of Fractures and Microfractures

  • Chapter
  • First Online:
Imaging of Orthopedic Sports Injuries

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Musculoskeletal injuries are common in elite athletes of highly competitive sports and among recreational or “weekend” athletes. Delay in diagnosis could lead to improper treatment and development of complications. Imaging with plain radiographs, CT, MR imaging, and scintigraphy provides valuable information which allows an early diagnosis. The requests for MR imaging in patients with sports-related injuries are increasing because of its superb contrast resolution. Ultrasonography is a reliable diagnostic modality for imaging sports-related injuries, with wide availability and relatively low cost, more efficient though for soft tissues rather than osseous structures. Each modality has advantages and limitations in imaging fractures and microfractures in athletes. Knowledge of their natural history will aid in understanding the significance of imaging in both diagnosis and treatment planning. Monitoring of the above injuries is meaningful only when imaging data will alter patient’s management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ánderson MW, Greenspan A (1996) Stress fractures. Radiology 199:1–12

    Article  PubMed  Google Scholar 

  • Anderson IF, Crichton KJ, Grattan-Smith T et al (1989) Osteochondral fractures of the dome of the talus. J Bone Joint Surg Am 71:1143–1152

    Article  CAS  PubMed  Google Scholar 

  • Anderson MW, Ugalde V, Batt M et al (1997) Shin splints: MR appearance in a preliminary study. Radiology 204:177–180

    Article  CAS  PubMed  Google Scholar 

  • Anderson MW, Kaplan PA, Dussault RG (2001) Adductor insertion avulsion syndrome (thigh splints): spectrum of MR imaging features. AJR Am J Roentgenol 177:673–675

    Article  CAS  PubMed  Google Scholar 

  • Arendt EA, Griffiths HJ (1997) The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med 16:291–306

    Article  CAS  PubMed  Google Scholar 

  • Ariyoshi M, Nagata K, Sato K et al (1997) Hemarthrosis of the knee and bone contusion. Kurume Med J 44:135–139

    Article  CAS  PubMed  Google Scholar 

  • Bergman AG, Fredericson M, Ho C et al (2004) Asymptomatic tibial stress reactions: MRI detection and clinical follow-up in distance runners. AJR Am J Roentgenol 183:635–638

    Article  PubMed  Google Scholar 

  • Berndt AL, Harty M (1959) Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg 41:988–1020

    Article  PubMed  Google Scholar 

  • Bohndorf K (1999) Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures). Skelet Radiol 28:545–560

    Article  CAS  Google Scholar 

  • Borges CS, Ruchel PH, Pignataro MB (2020) Scaphoid reconstruction. Orthop Clin N Sm 51:65–76

    Article  Google Scholar 

  • Brandser EA, El-Khoury GY, Kathol MH (1995) Adolescent hamstring avulsions that simulate tumors. Emerg Radiol 2:273–278

    Article  Google Scholar 

  • Bretlau T, Tuxoe J, Larsen L et al (2002) Bone bruise in the acutely injured knee. Knee Surg Sports Traumatol Arthrosc 10:96–101

    Article  PubMed  Google Scholar 

  • Burt CW, Overpeck MD (2001) Emergency visits for sports related injuries. Ann Emerg Med 37:301–308

    Article  CAS  PubMed  Google Scholar 

  • Calori GM, Albisetti W, Agus A, Iori S, Tagliabue L (2007) Risk factors contributing to fracture non-unions. Injury 38(2):S11–S18

    Article  PubMed  Google Scholar 

  • Cerezal L, Abascal F, Canga A et al (2000) Usefulness of gadolinium-enhanced MR imaging in the evaluation of the vascularity of scaphoid nonunions. AJR Am J Roentgenol 174:141–149

    Article  CAS  PubMed  Google Scholar 

  • Chapman S (1992) The radiological dating of injuries. Arch Dis Child 67:1063–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung KK, Dhawan RT, Wilson LF et al (2018) Pars interarticularis injury in elite athletes—the role of imaging in diagnosis and management. Eur J Radiol 108:28–42

    Article  PubMed  Google Scholar 

  • Chiavaras MM, Bains S, Choudur H et al (2013) The radiographic union score for hip (RUSH): the use of a checklist to evaluate hip fracture healing improves agreement between radiologists and orthopedic surgeons. Skelet Radiol 42:1079–1088

    Article  Google Scholar 

  • Coady C, Micheli L (1997) Stress fractures in the pediatric athlete. Clin Sports Med 16:225–238

    Article  CAS  PubMed  Google Scholar 

  • Crönlein M, Rauscher J, Neer AJ et al (2015) Visualization of stress fractures of the foot using PET-MRI: a feasibility study. Eur J Med Res 20:99–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Crues RL, Dumont J (1975) Fracture healing. Can J Surg 18:403–413

    Google Scholar 

  • Cunningham BP, Brazina S, Morshed S, Miclau TIII (2017) Fracture healing: a review of clinical, imaging and laboratory diagnostic options. Injury Suppl 1:S69–S75

    Article  Google Scholar 

  • Dailey HL, Schwarzenberg P, Daly CJ et al (2019) Virtual mechanical testing based on low-dose computed tomography scans for tibial fracture: a pilot study of prediction of time to union and comparison with subjective outcomes scoring. J Bone Joint Surg Am 101:1193–1202

    Article  PubMed  Google Scholar 

  • Dailiana ZH, Zachos V, Varitimidis S et al (2004) Scaphoid nonunions treated with vascularised bone grafts: MRI assessment. Eur J Radiol 50:217–224

    Article  CAS  PubMed  Google Scholar 

  • Davies NH, Niall D, King LJ et al (2004) Magnetic resonance imaging of bone bruising in the acutely injured knee—short-term outcome. Clin Radiol 59:439–445

    Article  CAS  PubMed  Google Scholar 

  • De Smet AA, Ilahi OA, Graf BK (1996) Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skelet Radiol 25:159–163

    Article  Google Scholar 

  • Deutsch AL, Coel MN, Mink JH (1997) Imaging of stress injuries to bone: radiography, scintigraphy, and MR imaging. Clin Sports Med 16:275–290

    Article  CAS  PubMed  Google Scholar 

  • Einhorn TA (1995) Enhancement of fracture-healing. J Bone Joint Surg Am 77:940–956

    Article  CAS  PubMed  Google Scholar 

  • El-Khoury GY, Daniel WW, Kathol MH (1997) Acute and chronic avulsive injuries. Radiol Clin N Am 35:747–766

    Article  CAS  PubMed  Google Scholar 

  • Fredericson M, Bergman G, Hoffman KL et al (1995) Tibial stress reaction in runners: correlation of clinical symptoms and scintigraphy with a new MRI grading system. Am J Sports Med 23:472–481

    Article  CAS  PubMed  Google Scholar 

  • Frost HM (1989a) Biology of fracture healing: an overview for clinicians. Part I. Clin Orthop Relat Res 248:293–293

    Google Scholar 

  • Frost HM (1989b) Biology of fracture healing: an overview for clinicians. Part II. Clin Orthop Relat Res 248:294–309

    Google Scholar 

  • Gaeta M, Minutoli F, Scribano E et al (2005) CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology 235:553–561

    Article  PubMed  Google Scholar 

  • Ghahremani S, Grigg R, Hall T et al (2014) Osteochondral lesions in pediatric and adolescent patients. Semin Musculoskelet Radiol 18:505–512

    Article  PubMed  Google Scholar 

  • Giaroli EL, Major NM, Higgins LD (2005) MRI of internal impingement of the shoulder. AJR Am J Roentgenol 185:925–929

    Article  PubMed  Google Scholar 

  • Gorbachova T, Melenevsky Y, Cohen M, Cerniglia BW (2018) Osteochondral lesions of the knee: differentiating the most common entities at MRI. Radiographics 38:1478–1495

    Article  PubMed  Google Scholar 

  • Groves AM, Cheow H, Balan K et al (2005) 16-MDCT in the detection of occult wrist fractures: a Comparison with skeletal scintigraphy. AJR Am J Roentgenol 184:1470–1474

    Article  PubMed  Google Scholar 

  • Harwood PJ, Newman JB, Michael ALR (2010) An update on fracture healing and non-union. Orthop Traumatol 24:9–23

    Google Scholar 

  • Heppenstall RB (1980) Fracture healing. In: Heppenstall RB (ed) Fracture treatment and healing. Saunders, Philadelphia, pp 35–64

    Google Scholar 

  • Horev G, Koreneich L, Ziv N et al (1990) The enigma of stress fractures in the pediatric age: clarification or confusion through the new imaging modalities. Pediatr Radiol 20:469–471

    Article  CAS  PubMed  Google Scholar 

  • Hwang B, Fredericson M, Chung CB et al (2005) MRI findings of femoral diaphyseal stress injuries in athletes. AJR Am J Roentgenol 185:166–173

    Article  PubMed  Google Scholar 

  • Islam O, Soboleski D, Symons S et al (2000) Development and duration of radiographic signs of bone healing in Children. AJR Am J Roentgenol 175:75–78

    Article  CAS  PubMed  Google Scholar 

  • Karantanas AH, Drakonaki E, Karachalios T et al (2008) Acute non-traumatic marrow edema syndrome in the knee: MRI findings at presentation, correlation with spinal DEXA and outcome. Eur J Radiol 67:22–33

    Article  PubMed  Google Scholar 

  • Kijowski R, Liu F, Caliva F, Pedoia V (2019) Deep learning for lesion detection, progression, and prediction of musculoskeletal disease. J Magn Reson Imaging 52:1607–1619

    Google Scholar 

  • Kiuru MJ, Niva M, Reponen A et al (2005) Bone stress injuries in asymptomatic elite recruits: a clinical and MRI study. Am J Sports Med 33:272–276

    Article  PubMed  Google Scholar 

  • Klammer G, Maquieira GJ, Spahn S et al (2015) Natural history of nonoperatively treated osteochondral lesions of the talus. Foot Ankle Int 36(1):24–31

    Article  PubMed  Google Scholar 

  • Klontzas ME, Vassalou EE, ZIbis AH et al (2015) MR imaging of transient osteoporosis of the hip: an update on 155 hip joints. Eur J Radiol 84:431–436

    Article  PubMed  Google Scholar 

  • Krestan CR, Noske H, Vasilevska V et al (2006) MDCT versus digital radiography in the evaluation of bone healing in orthopedic patients. AJR Am J Roentgenol 186:1754–1760

    Article  PubMed  Google Scholar 

  • Lawson GM, Hajducka C, McQueen MM (1995) Sports fractures of the distal radius-epidemiology and outcome. Injury 26:33–36

    Article  CAS  PubMed  Google Scholar 

  • Lazzarini KM, Troiano RN, Smith RC (1997) Can running cause the appearance of marrow edema on MR images of the foot and ankle? Radiology 202:540–542

    Article  CAS  PubMed  Google Scholar 

  • Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  CAS  Google Scholar 

  • Lindsey R, Daluiski A, Chipra S et al (2018) Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A 115:11591–11596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linklater J (2004) Ligamentous, chondral, and osteochondral ankle injuries in athletes. Semin Musculoskelet Radiol 8:81–98

    Article  PubMed  Google Scholar 

  • Livstone BJ, Parker L, Levin DC (2002) Trends in the utilization of MR angiography and body MR imaging in the US Medicare population: 1993–1998. Radiology 222:615–618

    Article  PubMed  Google Scholar 

  • Low G, Raby N (2005) Can follow-up radiography for acute scaphoid fracture still be considered a valid examination? Clin Radiol 60:1106–1110

    Article  CAS  PubMed  Google Scholar 

  • Mandalia V, Fogg AJ, Chari R et al (2005) Bone bruising of the knee. Clin Radiol 60:627–636

    Article  CAS  PubMed  Google Scholar 

  • Mandell JC, Khurana B, Smith SE (2017) Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis. Skeletal Radoil 46:1165–1186

    Article  Google Scholar 

  • Matheson GO, Clement DB, McKenzie DC et al (1987) Stress fractures in athletes; a study of 320 cases. Am J Sports Med 15:46–58

    Article  CAS  PubMed  Google Scholar 

  • Metzmaker JN, Pappas AM (1985) Avulsion fractures of the pelvis. Am J Sports Med 13:349–358

    Article  CAS  PubMed  Google Scholar 

  • Micheli LJ, Fehlandt AF Jr (1992) Overuse injuries to tendons and apophyses in children and adolescents. Clin Sports Med 11:713–726

    Article  CAS  PubMed  Google Scholar 

  • Morrison WB (2003) MRI of sports injuries of the ankle. Top Magn Reson Imaging 14:179–197

    Article  PubMed  Google Scholar 

  • Nakagawa S, Yoneda M, Hyashida K et al (2001) Greater tuberosity notch: an important indicator of articular-side partial rotator cuff tears in the shoulders of throwing athletes. Am J Sports Med 29:762–770

    Article  CAS  PubMed  Google Scholar 

  • Nakamae A, Engebretsen L, Bahr R et al (2006) Natural history of bone bruises after acute knee injury: clinical outcome and histopathological findings. Knee Surg Traumatol Arthrosc 14:1252–1258

    Article  Google Scholar 

  • Nicholson JA, Tsang STJ, MacGillivray TJ et al (2019) What is the role of ultrasound in fracture management? Diagnosis and therapeutic potential for fractures, delayed unions, and fracture-related infection. Bone Joint Res 8:304–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oeppen RS, Jaramillo D (2003) Sports injuries in the young athlete. Top Magn Reson Imaging 14:199–208

    Article  PubMed  Google Scholar 

  • Ohta-Fukushima M, Mutoh Y, Takasugi S et al (2002) Characteristics of stress fractures in young athletes under 20 years. J Sports Med Phys Fitness 42:198–206

    CAS  PubMed  Google Scholar 

  • Overdeck KH, Palmer WE (2004) Imaging of hip and groin injuries in athletes. Semin Musculoskelet Radiol 8:41–55

    Article  PubMed  Google Scholar 

  • Peterson HA (1984) Partial growth plate arrest and its treatment. J Pediatr Orthop 4:246–258

    Article  CAS  PubMed  Google Scholar 

  • Peterson L, Minas T, Brittberg M et al (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop 374:212–234

    Article  Google Scholar 

  • Petfield JL, Hayeck GT, Kopperdahl DL (2017) Virtual stress testing of fracture stability in soldiers with severely comminuted tibial fractures. J Orthop Res 35:805–811

    Article  PubMed  Google Scholar 

  • Pettine KA, Morrey B (1987) Osteochondral fractures of the talus. A long term follow-up. J Bone Joint Surg (Br) 69:89–92

    Article  CAS  Google Scholar 

  • Png MA, Mohan PC, Koh JSB et al (2019) Natural history of incomplete atypical femoral fractures in patients after a prolonged and variable course of bisphosphonate therapy—a long-term radiological follow-ip. Osteoporos Int 30:2417–2428

    Article  CAS  PubMed  Google Scholar 

  • Rennie WJ, Finlay DB (2003) Posttraumatic cystlike defects of the scaphoid: late sign of occult microfracture and useful indicator of delayed union. AJR Am J Roentgenol 180:655–658

    Article  CAS  PubMed  Google Scholar 

  • Rheinboldt M, Harper D, Stone M (2014) Atypical femoral fractures in association with bisphosphonate therapy: a case series. Emerg Radiol 21:557–562

    Article  PubMed  Google Scholar 

  • Rosen M, Jackson D, Berger P (1991) Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures. Arthroscopy 7:45–51

    Article  CAS  PubMed  Google Scholar 

  • Rosner JL, Zlatkin MB, Clifford P et al (2004) Imaging of athletic wrist and hand injuries. Semin Musculoskelet Radiol 8:57–79

    Article  PubMed  Google Scholar 

  • Rubin DA, Harner CD, Costello JM (2000) Treatable chondral injuries in the knee: frequency of associated focal subchondral edema. AJR Am J Roentgenol 174:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Ryu KM, Jin W, Ko YT et al (2000) Bone bruises: MR characteristics and histological correlation in the young pig. Clin Imaging 24:371–380

    Article  CAS  PubMed  Google Scholar 

  • Salter RB, Harris R (1963) Injuries involving the epiphyseal plate. J Bone Joint Surg 45A:587–622

    Article  Google Scholar 

  • Sanders TG, Medynski MA, Feller JF et al (2000) Bone contusion pattern of the knee at MR imaging: footprint of the mechanism of injury. Radiographics 20:S135–S151

    Article  PubMed  Google Scholar 

  • Sanders TG, Mentzer KD, Miller M et al (2001) Autogenous osteochondral “plug” transfer for the treatment of focal chondral defects: postoperative MR appearance with clinical correlation. Skelet Radiol 30:570–578

    Article  CAS  Google Scholar 

  • Shea MP, Manoli A II (1993) Osteochondral lesions of the talar dome. Foot Ankle 14:48–55

    Article  CAS  PubMed  Google Scholar 

  • Shiller J, DeFroda S, Blood T (2017) Lower extremity avulsion fractures in the pediatric and adolescent athete. J Am Acad Otrhop Surg 25:251–259

    Article  Google Scholar 

  • Sofka CM (2004) Ultrasound in sports medicine. Semin Musculoskelet Radiol 8:17–27

    Article  PubMed  Google Scholar 

  • Spitz D, Newberg A (2003) Imaging of stress fractures in the athlete. Magn Reson Imaging Clin N Am 11:323–339

    Article  Google Scholar 

  • Stanitski CL (1998a) Epiphyseal fractures about knee. Oper Techn Sports Med 6:234–242

    Article  Google Scholar 

  • Stanitski CL (1998b) Acute tibial tubercle avulsion fractures. Oper Techn Sports Med 6:243–246

    Article  Google Scholar 

  • Stone JW (1996) Osteochondral lesions of the talar dome. J Am Acad Orthop Surg 4:63–73

    Article  CAS  PubMed  Google Scholar 

  • Takahara M, Ogino T, Takagi M et al (2000) Natural progression of osteochondritis dissecans of the humeral capitellum: initial observations. Radiology 216:207–212

    Article  CAS  PubMed  Google Scholar 

  • Tehranzadeh J (1987) The spectrum of avulsion and avulsion-like injuries of the musculoskeletal system. Radiographics 7:945–974

    Article  CAS  PubMed  Google Scholar 

  • Torriani M, Kattapuram SV (2003) Musculoskeletal ultrasound: an alternative imaging modality for sports-related injuries. Top Magn Reson Imaging 14:103–111

    Article  PubMed  Google Scholar 

  • Tzioupis C, Giannoudis PV (2007) Prevalence of long-bone non-unions. Injury 38:S3–S9

    Article  PubMed  Google Scholar 

  • Vanhoenacker FM, Snoeckx A, Vandaele L et al (2005) Bone marrow changes in sports injuries. JBR-BTR 88:332–335

    CAS  PubMed  Google Scholar 

  • Vassalou EE, Spanakis K, Tsifountoudis IP, Karantanas AH (2019) MR imaging of the hip: an update on bone marrow edema. Semin Musculoskelet Radiol 23:276–288

    Article  PubMed  Google Scholar 

  • Whelan DB, Bhandari M, Stephen D et al (2010) Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma 68:629–632

    PubMed  Google Scholar 

  • Wright RW, Phaneuf MA, Limbird TJ et al (2000) Clinical outcome of isolated subcortical trabecular fractures (bone bruise) detected on magnetic resonance imaging in knees. Am J Sports Med 28:663–667

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Johnson C, Gentili A et al (1998) Stress injuries of bone: analysis of MR imaging staging criteria. Acad Radiol 5:34–40

    Article  CAS  PubMed  Google Scholar 

  • Zanetti M, Weishaupt D, Jost B et al (1999) MR imaging for traumatic tears of the rotator cuff: high prevalence of greater tuberosity fractures and subscapularis tendon tears. AJR Am J Roentgenol 172:463–467

    Article  CAS  PubMed  Google Scholar 

  • Zarins B, Cuillo JV (1983) Acute muscle and tendon injuries in athletes. Clin Sports Med 2:167–182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos H. Karantanas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karantanas, A.H. (2021). Natural History and Monitoring of Fractures and Microfractures. In: Vanhoenacker, F.M., Maas, M., Gielen, J.L. (eds) Imaging of Orthopedic Sports Injuries. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2020_271

Download citation

  • DOI: https://doi.org/10.1007/174_2020_271

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75361-0

  • Online ISBN: 978-3-030-75362-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics