Skip to main content

CT of the Pediatric Abdomen

  • Chapter
  • First Online:
Multislice CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 3223 Accesses

Abstract

Pediatric abdominal CT has become much rarer during the past decade due to radiation issues. However, it remains a powerful imaging tool indicated in some specific indications such as trauma or as a problem-solving tool. Dedicated pediatric CT protocols are used to reduce radiation burden, and usually a single-phase acquisition is diagnostically sufficient. These radiation issues are discussed in this chapter, technical aspects and tips on how to optimize the CT protocol for pediatric needs are addressed, and the typical indications are listed and some relevant findings demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • AAMP (American Association of Physicists in Medicine) Task Force. Size-specific dose estimates (ssde) in pediatric and adult body CT examinations. http://www.aapm.org/pubs/reports/. Last accessed 11 Feb 2017

  • Amerstorfer EE, Haberlik A, Riccabona M (2015) Imaging assessment of renal injuries in children and adolescents: CT or ultrasound? Eur J Pediatr Surg 50:448–445

    Google Scholar 

  • Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    CAS  PubMed  Google Scholar 

  • Brenner DJ, Elliston C, Hall EJ, Berdon WE (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296

    CAS  PubMed  Google Scholar 

  • Brody AS, Frush DP, Huda W, Brent RL, American Academy of Pediatrics Section on Radiology (2007) Radiation risk to children from computed tomography. Pediatrics 120:677–682

    PubMed  Google Scholar 

  • Chang HL, Jin Mo G, Hyun JY, Sung-Joon Y, Chang MP, Eun JC, Jung-Gi I (2008) Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics 28:1451–1459

    Google Scholar 

  • Chodick G, Ronckers CM, Shalev V, Ron E (2007) Excess lifetime cancer mortality risk attributable to radiation exposure from computed tomography examinations in children. Israel Med Assoc J 9:584–587

    Google Scholar 

  • da Costa e Silva EJ, da Silva GA (2007) Eliminating unenhanced CT when evaluating abdominal neoplasms in children. AJR Am J Roentgenol 189:1211–1214

    PubMed  Google Scholar 

  • Damasio B, Darge K, Riccabona M (2013) Multi-detector CT in the paediatric urinary tract. EJR Eur J Radiol 82:1118–1125

    CAS  Google Scholar 

  • Dillman JR, Hernandez RJ (2009) Role of CT in the evaluation of congenital cardiovascular disease in children. Am J Roentgenol 192:1219–1231

    Google Scholar 

  • Frush DP, Donnelly LF, Rosen NS (2003) Computed tomography and radiation risks: what pediatric health care providers should know. Pediatrics 112:951–957

    PubMed  Google Scholar 

  • Garcia Peña BM, Cook EF, Mandl KD (2004) Selective imaging strategies for the diagnosis of appendicitis in children. Pediatrics 113:24–28

    PubMed  Google Scholar 

  • Goske MJ, Applegate KE, Boylan J et al (2008) The ‘Image Gently’ campaign: increasing CT radiation dose awareness through a national education and awareness program. Pediatr Radiol 38:265–269

    PubMed  Google Scholar 

  • Granata C, Magnano G (2013) CT in pediatric oncology. EJR Eur J Radiol 82:1098–1107

    Google Scholar 

  • Greess H, Lutze J, Nömayr A, Wolf H, Hothorn T, Kalender WA, Bautz W (2004) Dose reduction in subsecond multislice spiral CT examination of children by online tube current modulation. Eur Radiol 14:995–999

    CAS  PubMed  Google Scholar 

  • Hellinger JC, Pena A, Poon M, Chan FP, Epelman M (2010) Pediatric computed tomographic angiography: imaging the cardiovascular system gently. Radiol Clin N Am 48:439–467

    PubMed  Google Scholar 

  • Herzog C, Mulvihill DM, Nguyen SA et al (2008) Pediatric cardiovascular CT angiography: radiation dose reduction using automatic tube current modulation. AJR Am J Roentgenol 190:1232–1240

    PubMed  Google Scholar 

  • Huda W, Vance A (2007) Patient radiation doses from adult and pediatric CT. AJR Am J Roentgenol 188:540–546

    PubMed  Google Scholar 

  • Image Gently—The Alliance for Radiation Safety in Pediatric Imaging. Development of Pediatric CT Protocols 2014. http://www.imagegently.org/Portals/6/Procedures/IG. CT Protocols, last accessed 13 Jan 2017

  • Khawaja RD, Singh S, Otrakji A, Padole A, Lim R, Nimkin K, Westra S, Kalra MK, Gee MS (2015) Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms. Pediatr Radiol 45:1046–1055

    PubMed  Google Scholar 

  • Kleinerman RA (2006) Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol 36(Suppl 2):S121–S125

    Google Scholar 

  • MacDougal RD, Kleinman PL, Callahan MJ (2016) Size based protocol optimization using automated tube current modulation and automated KV-selection in computed tomography. J Appl Clin Med Phys 17:5756

    Google Scholar 

  • Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC (2013) Cancer risk in 680,000 people exposed to CTs in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360

    PubMed  PubMed Central  Google Scholar 

  • Nagy E, Marterer R, Tschauner S, Lindbichler F, Sorantin E (2016) Adaptierung des Schwellenwertes für das Bolus-Tracking bei der CT Angiographie unter Berücksichtigung einer verringerten Röhrenspannung. Radiologe 56:754. (abstract)

    Google Scholar 

  • National Cancer Institute (USA). Radiation risks and pediatric computed tomography (ct): a guide for health care providers. http://www.cancer.gov/cancertopics/causes/radiation-risks-pediatric-CT. Last accessed 12 Feb 2017

  • Nievelstein RAJ, van Dam IM, van der Molen AJ (2010) Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40:1324–1344

    PubMed  PubMed Central  Google Scholar 

  • Paterson A, Frush DP, Donnelly LF (2001) Helical CT of the body: are settings adjusted for pediatric patients? AJR Am J Roentgenol 176:297–301

    CAS  PubMed  Google Scholar 

  • Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Craft AW, Parker L, Berrington de González A (2012) Radiation exposure from CTs in childhood and subsequent risk of leukaemia & brain tumours: retrospective cohort study. Lancet 380:499–505

    PubMed  PubMed Central  Google Scholar 

  • Pilhatsch A, Riccabona M (2011) Role and potential of modern ultrasound in pediatric abdominal imaging. Imaging Med 3:393–410. (18)

    Google Scholar 

  • Rajaraman P, Simpson J, Neta G, Berrington de Gonzalez A, Ansell P, Linet MS, Ron E, Roman E (2011) Early life exposure to diagnostic radiation and ultrasound scans and risk of childhood cancer: case–control study. BMJ 342:d472

    PubMed  PubMed Central  Google Scholar 

  • Riccabona M (2013) CT in children: why and what to consider for CT in children (editorial). EJR Eur J Radiol 82:1041–1042

    Google Scholar 

  • Riccabona M (2014a) Diagnostic Ultrasonography in neonates, infants and children—why, when and how. EJR Eur J Radiol 83:1485–1486

    Google Scholar 

  • Riccabona M (2014b) Basics, principles, techniques and modern methods in paediatric ultrasonography. EJR Eur J Radiol 83:1487–1494

    Google Scholar 

  • Riccabona M, Avni FE, Blickman JG, Dacher JN, Darge K, Lobo ML, Willi U (Members of the ESUR paediatric paediatric recommendation work group and ESPR paediatric uroradiology work group). Imaging recommendations in paediatric uroradiology, part II: urolithiasis and haematuria in children, paediatric obstructive uropathy, and postnatal work-up of foetally diagnosed high grade hydronephrosis. Minutes of a mini-symposium at the ESPR annual meeting, Edinburg, June. Pediatr Radiol 2009; 39: 891–898

    PubMed  Google Scholar 

  • Riccabona M, Avni FE, Dacher JN, Damasio B, Darge K, Lobo ML, Ording-Müller LS, Papadopolos F, Willi U (2010) ESPR uroradiology task force and ESUR paediatric working group: imaging and procedural recommendations in paediatric uroradiology, part III. Minutes of the ESPR uroradiology task force mini-symposium on intravenous urography, uro-CT and MR-urography in childhood. Pediatr Radiol 40:1315–1320

    PubMed  Google Scholar 

  • Rogers LF (2001) Taking care of children: check out the parameters used for helical CT. AJR Am J Roentgenol 176:287–287

    CAS  PubMed  Google Scholar 

  • Shah NB, Platt SL (2008) Alara: is there a cause for alarm? Reducing radiation risks from computed tomography scanning in children. Curr Opin Pediatr 20:243–247

    PubMed  Google Scholar 

  • Shah R, Gupta AK, Rehani MM, Pandey AK, Mukhopadhyay S (2005) Effect of reduction in tube current on reader confidence in paediatric computed tomography. Clin Radiol 60:224–231

    CAS  PubMed  Google Scholar 

  • Singh S, Kalra MK, Shenoy-Bhangle AS, Saini A, Gervais DA, Westra SJ, Thrall JH (2012) Strahlendosisreduktion mit hybrider iterativer Rekonstruktion für pädiatrische CT. (radiation dose reduction with hybrid iterative reconstruction for pediatric CT). Radiologe 263:537–546

    Google Scholar 

  • Siripornpitak S, Pornkul R, Khowsathit P, Layangool T, Promphan W, Pongpanich B (2013) Cardiac CT Angiography in children with congenital heart disease. EJR Eur J Radiol 82:1067–1082

    Google Scholar 

  • Slovis TL (2002) The ALARA (as low as reasonably achievable) concept in pediatric CT intelligent dose reduction. Multidisciplinary conference organized by the Society of Pediatric Radiology. ALARA conference proceedings. Pediatr Radiol 32:217–317

    PubMed  Google Scholar 

  • Sorantin E (2008) Soft-copy display and reading: what the radiologist should know in the digital era. Pediatr Radiol 38:1276–1284

    PubMed  Google Scholar 

  • Sorantin E, Wießpeiner U (2010) Dose savings in Computed Tomography due to a new dedicated Kernel image reconstruction—influence on image quality. Pediatr Radiol 40(Suppl):S1100. (abstract)

    Google Scholar 

  • Sorantin E, Zsivcsec B, Zebedin D, Fotter R (2002) Optimierung von i.V. Kontrastmittel-applikatonen für pädiatrische spiral-CT Untersuchungen [optimisation of i.V.Contrast application for pediatric spiral-CT]. Radiologe 45:683–684

    Google Scholar 

  • Sorantin E, Hasenburger G, Weissensteiner S, Riccabona M (2013a) CT in Children—Dose protection and general considerations when planning a CT in a Child. EJR Eur J Radiol 82:1043–1049

    CAS  Google Scholar 

  • Sorantin E, Riccabona M, Stücklschweiger G, Guss H, Fotter R (2013b) First experience with volumetric (320 row) pediatric CT. EJR Eur J Radiol 82:1091–1097

    CAS  Google Scholar 

  • Sorantin E, Weissensteiner S, Oppelt B, Bompoit A, Fister N (2015) Paediatric CT: contrast agent application & modern development. Pediatr Radiol 45(Suppl 2):S247–S368

    Google Scholar 

  • Stöver B, Rogalla P (2008) CT-Untersuchungen bei Kindern [CT examinations in children]. Radiologe 48:243–248

    PubMed  Google Scholar 

  • Strauss KJ (2014) Developing patient-specific dose protocols for a CT scanner and exam using diagnostic reference levels. Pediatr Radiol 44(Suppl 3):S479–S488

    Google Scholar 

  • Strauss KJ, Goske MJ (2011) Estimated pediatric radiation dose during CT. Pediatr Radiol 41(Suppl 2):S472–S482

    Google Scholar 

  • Strauss KJ, Goske MJ, Kaste SC, Bulas D, Frush DP, Butler P, Morrison G, Callahan MJ, Applegate KE (2010) Image gently: ten steps you can take to optimize image quality and lower CT dose for pediatric patients. AJR Am J Roentgenol 194:868–873

    PubMed  Google Scholar 

  • Thomas KE, Wang B (2008) Age-specific effective doses for pediatric MSCT examinations at a large children’s hospital using DLP conversion coefficients: a simple estimation method. Pediatr Radiol 38:645–656

    PubMed  Google Scholar 

  • Vock P (2005) CT dose reduction in children. Eur Radiol 15:2330–2340

    PubMed  Google Scholar 

  • Zhu X, McCullough WP, Mecca P, Servaes S, Darge K (2016) Dual energy compared to single energy CT n pediatric imaging: a phantom study for DECT clinical guidance. Pediatr Radiol 46:1671–1679

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Riccabona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Riccabona, M., Pilhatsch, A. (2017). CT of the Pediatric Abdomen. In: Nikolaou, K., Bamberg, F., Laghi, A., Rubin, G.D. (eds) Multislice CT. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_126

Download citation

  • DOI: https://doi.org/10.1007/174_2017_126

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42585-6

  • Online ISBN: 978-3-319-42586-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics