Skip to main content

Neuroscientific Applications of High-Field MRI in Humans

  • Chapter
  • First Online:
High-Field MR Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The chief advantages of using high-field MRI for neuroscientific research are the improvements in spatial resolution and contrast that become available. Neuroscientists are interested in the spatial organisation of brain grey matter, in cortex and deep brain structures, and in the connectivity of white matter neuronal fibres. At lower field, it is very hard to distinguish cortical areas purely by their anatomical differences, or to discriminate subcomponents of basal ganglia and thalamus. This has led to a widely accepted method of functional image analysis involving warping of individual brains to a standardised template, together with significant image smoothing, which eliminates the possibility of detailed MRI-based mapping of human brain, and severely handicaps the exploration of individual differences and monitoring of brain changes over time. Even at a field of 3 T, the spatial resolution of MR tractography is limited to about 1.5 mm isotropic, hindering discrimination of crossing fibres. However, at fields of 7 T and above, the available high isotropic resolution of 0.4 mm and the varying myelin content of grey matter allow several cortical areas to be quite easily distinguished, and the varying iron content of deeper brain structures reveals their internal features. Higher spatial isotropic resolution in tractography can also be achieved, of 1 mm or better. Because blood oxygenation-dependent contrast (BOLD) also improves at high field, functional maps with submillimetre resolution can be acquired, showing columnar structures such as ocular dominance and orientation columns. These results will enable a much more precise correlation of brain functions with the neural tissue that supports them, and is likely to bring about major conceptual changes in systems neuroscience, especially in analysis methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abduljalil AM, Kangarlu A, Zhang X, Burgess RE, Robitaille PM (1999) Acquisition of human multislice MR images at 8 Tesla. J Comput Assist Tomogr 23(3):335–340

    Article  PubMed  CAS  Google Scholar 

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6 pt 1):805–821

    Article  PubMed  CAS  Google Scholar 

  • Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103(3):247–254

    Article  PubMed  CAS  Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44(4):625–632

    Article  PubMed  CAS  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  PubMed  CAS  Google Scholar 

  • Bock NA, Kocharyan A, Liu JV, Silva AC (2009) Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging. J Neurosci Methods 185(1):15–22

    Article  PubMed  Google Scholar 

  • Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM (1995) The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 34(1):4–10

    Article  PubMed  CAS  Google Scholar 

  • Bridge H, Clare S, Jenkinson M, Jezzard P, Parker AJ, Matthews PM (2005) Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. J Vis 5(2):93–102

    Article  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Johann Ambrosius Barth Verlag, Leipzig

    Google Scholar 

  • Canals S, Beyerlein M, Merkle H, Logothetis NK (2009) Functional MRI evidence for LTP-induced neural network reorganization. Curr Biol 19(5):398–403

    Article  PubMed  CAS  Google Scholar 

  • Cheng K, Waggoner RA, Tanaka K (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32(2):359–374

    Article  PubMed  CAS  Google Scholar 

  • Deichmann R, Josephs O, Hutton C, Corfield DR, Turner R (2002) Compensation of susceptibility-induced BOLD sensitivity losses in echo-planar fMRI imaging. Neuroimage 15(1):120–135

    Article  PubMed  CAS  Google Scholar 

  • De Vita E, Thomas DL, Roberts S, Parkes HG, Turner R, Kinchesh P, Shmueli K, Yousry TA, Ordidge RJ (2003) High resolution MRI of the brain at 4.7 Tesla using fast spin echo imaging. Br J Radiol 76(909):631–637

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335

    Article  PubMed  Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Thieme, Leipzig

    Google Scholar 

  • Frahm J, Merboldt KD, Hänicke W (1993) Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 29(1):139–144

    Article  PubMed  CAS  Google Scholar 

  • Fukuda M, Moon CH, Wang P, Kim SG (2006) Mapping iso-orientation columns by contrast agent-enhanced functional magnetic resonance imaging: reproducibility, specificity, and evaluation by optical imaging of intrinsic signal. J Neurosci 26(46):11821–11832

    Article  PubMed  CAS  Google Scholar 

  • Goense JB, Logothetis NK (2006) Laminar specificity in monkey V1 using high-resolution SE-fMRI. Magn Reson Imaging 24(4):381–392

    Article  PubMed  Google Scholar 

  • Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18(9):631–640

    Article  PubMed  CAS  Google Scholar 

  • Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441(3):197–222

    Article  PubMed  CAS  Google Scholar 

  • Heidemann RM, Fasano F, Vogler M, Leuze C, Pfeuffer J, Turner R (2008) Improving image quality by combining outer volume suppression and parallel imaging: zoomed EPI with GRAPPA at 7T. Proc Int Soc Magn Reson Med 16:1284

    Google Scholar 

  • Hinds O, Polimeni JR, Rajendran N, Balasubramanian M, Amunts K, Zilles K, Schwartz EL, Fischl B, Triantafyllou C (2009) Locating the functional and anatomical boundaries of human primary visual cortex. Neuroimage 46(4):915–922

    Article  PubMed  Google Scholar 

  • Hoffmann MB, Stadler J, Kanowski M, Speck O (2009) Retinotopic mapping of the human visual cortex at a magnetic field strength of 7T. Clin Neurophysiol 120(1):108–116

    Article  PubMed  Google Scholar 

  • Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 106(6):2035–2040

    Article  PubMed  CAS  Google Scholar 

  • Hyde JS, Biswal BB, Jesmanowicz A (2001) High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med 46(1):114–125

    Article  PubMed  CAS  Google Scholar 

  • Jin T, Kim SG (2008) Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation. Neuroimage 43(1):1–9

    Article  PubMed  Google Scholar 

  • Kim SG, Rostrup E, Larsson HB, Ogawa S, Paulson OB (1999) Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magn Reson Med 41(6):1152–1161

    Article  PubMed  CAS  Google Scholar 

  • Koenig SH (1991) Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain. Magn Reson Med 20(2):285–291

    Article  PubMed  CAS  Google Scholar 

  • Krüger G, Glover GH (2001) Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46(4):631–637

    Article  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679

    Article  PubMed  CAS  Google Scholar 

  • Leite FP, Tsao D, Vanduffel W, Fize D, Sasaki Y, Wald LL, Dale AM, Kwong KK, Orban GA, Rosen BR, Tootell RB, Mandeville JB (2002) Repeated fMRI using iron oxide contrast agent in awake, behaving macaques at 3 Tesla. Neuroimage 16(2):283–294

    Article  PubMed  Google Scholar 

  • Logothetis NK, Guggenberger H, Peled S, Pauls J (1999) Functional imaging of the monkey brain. Nat Neurosci 2:555–562

    Article  PubMed  CAS  Google Scholar 

  • Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407

    PubMed  CAS  Google Scholar 

  • Li TQ, Yao B, van Gelderen P, Merkle H, Dodd S, Talagala L, Koretsky AP, Duyn J (2009) Characterization of T(2)* heterogeneity in human brain white matter. Magn Reson Med 62(6):1652–1657

    Article  PubMed  Google Scholar 

  • Lin CP, Tseng WY, Cheng HC, Chen JH (2001) Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage 14(5):1035–1047

    Article  PubMed  CAS  Google Scholar 

  • Lin FH, Belliveau JW, Dale AM, Hämäläinen MS (2006) Distributed current estimates using cortical orientation constraints. Hum Brain Mapp 27(1):1–13

    Article  PubMed  Google Scholar 

  • Mangia S, Tkác I, Gruetter R, Van de Moortele PF, Maraviglia B, Uğurbil K (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27(5):1055–1063

    PubMed  CAS  Google Scholar 

  • Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C 19:L55

    Article  Google Scholar 

  • Menon RS, Ogawa S, Strupp JP, Uğurbil K (1997) Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J Neurophysiol 77(5):2780–2787

    PubMed  CAS  Google Scholar 

  • Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, Tsuruda J, Norman D (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176(2):439–445

    PubMed  CAS  Google Scholar 

  • O’Brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6(4):537–544

    PubMed  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13):5951–5955

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  • Oshio K, Feinberg DA (1991) GRASE (Gradient- and spin-echo) imaging: a novel fast MRI technique. Magn Reson Med 20(2):344–349

    Article  PubMed  CAS  Google Scholar 

  • Otazo R, Mueller B, Ugurbil K, Wald L, Posse S (2006) Magn Reson Med 56:1200–1210

    Article  CAS  Google Scholar 

  • Pfeuffer J, van de Moortele PF, Yacoub E, Shmuel A, Adriany G, Andersen P, Merkle H, Garwood M, Ugurbil K, Hu X (2002) Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution. Neuroimage 17(1):272–286

    Article  PubMed  Google Scholar 

  • Ramanna S, Feinberg DA (2008) Single-shot 3D GRASE with cylindrical k-space trajectories. Magn Reson Med 60(4):976–980

    Article  PubMed  CAS  Google Scholar 

  • Sigalovsky IS, Fischl B, Melcher JR (2006) Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences. NeuroImage 32:1524–1537

    Article  PubMed  Google Scholar 

  • Simmons JM, Saad ZS, Lizak MJ, Ortiz M, Koretsky AP, Richmond BJ (2008) Mapping prefrontal circuits in vivo with manganese-enhanced magnetic resonance imaging in monkeys. J Neurosci 28(30):7637–7647

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1993) Referentially oriented cerebral MRI anatomy: an atlas of stereotaxic anatomical correlations for gray and white matter. Thieme Medical Publishers, New York

    Google Scholar 

  • Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26(1):243–250

    Article  PubMed  CAS  Google Scholar 

  • Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J (1990a) Echo-planar imaging of intravoxel incoherent motion. Radiology 177(2):407–414

    PubMed  CAS  Google Scholar 

  • Turner R, von Kienlin M, Moonen CT, van Zijl PC (1990b) Single-shot localized echo-planar imaging (STEAM-EPI) at 4.7 tesla. Magn Reson Med 14(2):401–408

    Article  PubMed  CAS  Google Scholar 

  • Turner R, Le Bihan D, Moonen CTW, Despres D, Frank J (1991) Echo-planar time course MRI of cat brain deoxygenation changes. Magn Reson Med 22:159–166

    Article  PubMed  CAS  Google Scholar 

  • Turner R, Jezzard P, Wen H, Kwong KK, Le Bihan D, Zeffiro T, Balaban RS (1993) Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI. Magn Reson Med 29(2):277–279

    Article  PubMed  CAS  Google Scholar 

  • Turner R, Oros-Peusquens AM, Romanzetti S, Zilles K, Shah NJ (2008) Optimised in vivo visualisation of cortical structures in the human brain at 3 T using IR-TSE. Magn Reson Imaging 26(7):935–942

    Article  PubMed  Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–461

    Google Scholar 

  • Walters NB, Eickhoff SB, Schleicher A, Zilles K, Amunts K, Egan GF, Watson JD (2007) Observer-independent analysis of high-resolution MR images of the human cerebral cortex: in vivo delineation of cortical areas. Hum Brain Mapp 28(1):1–8

    Article  PubMed  Google Scholar 

  • Weigel M, Hennig J (2006) Contrast behavior and relaxation effects of conventional and hyperecho-turbo spin echo sequences at 1.5 and 3 T. Magn Reson Med 55(4):826–835

    Article  PubMed  Google Scholar 

  • Weiskopf N, Hutton C, Josephs O, Turner R, Deichmann R (2007) Optimized EPI for fMRI studies of the orbitofrontal cortex: compensation of susceptibility-induced gradients in the readout direction. MAGMA 20(1):39–49

    Article  PubMed  Google Scholar 

  • Yacoub E, Shmuel A, Logothetis N, Uğurbil K (2007) Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. Neuroimage 37(4):1161–1177

    Article  PubMed  Google Scholar 

  • Yacoub E, Harel N, Ugurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci USA 105(30):10607–10612

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Wang P, Hendrich K, Ugurbil K, Kim SG (2006) Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation. Neuroimage 30(4):1149–1160

    Article  PubMed  Google Scholar 

  • Zhu XH, Zhang N, Zhang Y, Uğurbil K, Chen W (2008) New insights into central roles of cerebral oxygen metabolism in the resting and stimulus-evoked brain. J Cereb Blood Flow Metab. Sep 10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turner, R. (2012). Neuroscientific Applications of High-Field MRI in Humans. In: Hennig, J., Speck, O. (eds) High-Field MR Imaging. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2010_103

Download citation

  • DOI: https://doi.org/10.1007/174_2010_103

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85087-8

  • Online ISBN: 978-3-540-85090-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics