Skip to main content

Mechanisms of Chemoresistance in High-Grade Gliomas

  • Chapter
  • First Online:
Interdisciplinary Cancer Research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agnihotri S, Gajadhar AS, Ternamian C, Gorlia T, Diefes KL, Mischel PS, Kelly J, McGown G, Thorncroft M, Carlson BL, Sarkaria JN, Margison GP, Aldape K, Hawkins C, Hegi M, Guha A (2012) Alkylpurine-DNA-N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients. J Clin Invest 122(1):253–266

    Google Scholar 

  • Agnihotri S, Burrell K, Buczkowicz P, Remke M, Golbourn B, Chornenkyy Y, Gajadhar A, Fernandez NA, Clarke ID, Barszczyk MS, Pajovic S, Ternamian C, Head R, Sabha N, Sobol RW, Taylor MD, Rutka JT, Jones C, Dirks PB, Zadeh G, Hawkins C (2014) ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents. Cancer Discov 4(10):1198–1213

    Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Google Scholar 

  • Arora A, Somasundaram K (2019) Glioblastoma vs temozolomide: can the red queen race be won? Cancer Biol Ther 20(8):1083–1090

    Google Scholar 

  • Bai P, Fan T, Wang X, Zhao L, Zhong R, Sun G (2023) Modulating MGMT expression through interfering with cell signaling pathways. Biochem Pharmacol:115726

    Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Google Scholar 

  • Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307

    Google Scholar 

  • Bazzoni R, Bentivegna A (2019) Role of notch signaling pathway in glioblastoma pathogenesis. Cancers (Basel) 11(3)

    Google Scholar 

  • Bezecny P (2014) Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience. Med Oncol 31(6):985

    Google Scholar 

  • Bhuvanalakshmi G, Gamit N, Patil M, Arfuso F, Sethi G, Dharmarajan A, Kumar AP, Warrier S (2018) Stemness, Pluripotentiality, and Wnt antagonism: sFRP4, a Wnt antagonist mediates pluripotency and Stemness in glioblastoma. Cancers (Basel) 11(1)

    Google Scholar 

  • Bi Y, Li H, Yi D, Bai Y, Zhong S, Liu Q, Chen Y, Zhao G (2018) β-Catenin contributes to cordycepin-induced MGMT inhibition and reduction of temozolomide resistance in glioma cells by increasing intracellular reactive oxygen species. Cancer Lett 435:66–79

    Google Scholar 

  • Blumenthal DT, Rankin C, Stelzer KJ, Spence AM, Sloan AE, Moore DF Jr, Padula GD, Schulman SB, Wade ML, Rushing EJ (2015) A phase III study of radiation therapy (RT) and O6-benzylguanine + BCNU versus RT and BCNU alone and methylation status in newly diagnosed glioblastoma and gliosarcoma: southwest oncology group (SWOG) study S0001. Int J Clin Oncol 20(4):650–658

    Google Scholar 

  • Brawanski KR, Sprung S, Freyschlag CF, Hoeftberger R, Ströbel T, Haybaeck J, Thomé C, Manzl C, Birkl-Toeglhofer AM (2023) Influence of MMR, MGMT promotor methylation and protein expression on overall and progression-free survival in primary glioblastoma patients treated with Temozolomide. Int J Mol Sci 24(7)

    Google Scholar 

  • Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O’Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477

    Google Scholar 

  • Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Google Scholar 

  • Carmo A, Carvalheiro H, Crespo I, Nunes I, Lopes MC (2011) Effect of temozolomide on the U-118 glioma cell line. Oncol Lett 2(6):1165–1170

    Google Scholar 

  • Carracedo A, Pandolfi PP (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27(41):5527–5541

    Google Scholar 

  • Cescon M, Rampazzo E, Bresolin S, Da Ros F, Manfreda L, Cani A, Della Puppa A, Braghetta P, Bonaldo P, Persano L (2023) Collagen VI sustains cell stemness and chemotherapy resistance in glioblastoma. Cell Mol Life Sci 80(8):233

    Google Scholar 

  • Chen J, Li Y, Yu T-S, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526

    Google Scholar 

  • Chen CM, Syu JP, Way TD, Huang LJ, Kuo SC, Lin CT, Lin CL (2015) BC3EE2,9B, a synthetic carbazole derivative, upregulates autophagy and synergistically sensitizes human GBM8901 glioblastoma cells to temozolomide. Int J Mol Med 36(5):1244–1252

    Google Scholar 

  • Chen XS, Li LY, Guan YD, Yang JM, Cheng Y (2016) Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacol Sin 37(8):1013–1019

    Google Scholar 

  • Comincini S, Allavena G, Palumbo S, Morini M, Durando F, Angeletti F, Pirtoli L, Miracco C (2013) microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther 14(7):574–586

    Google Scholar 

  • Costa PM, Cardoso AL, Nóbrega C, Pereira de Almeida LF, Bruce JN, Canoll P, Pedroso de Lima MC (2013) MicroRNA-21 silencing enhances the cytotoxic effect of the antiangiogenic drug sunitinib in glioblastoma. Hum Mol Genet 22(5):904–918

    Google Scholar 

  • Cui P, Wei F, Hou J, Su Y, Wang J, Wang S (2020) STAT3 inhibition induced temozolomide-resistant glioblastoma apoptosis via triggering mitochondrial STAT3 translocation and respiratory chain dysfunction. Cell Signal 71:109598

    Google Scholar 

  • Diao Y, Jin B, Huang L, Zhou W (2018) MiR-129-5p inhibits glioma cell progression in vitro and in vivo by targeting TGIF2. J Cell Mol Med 22(4):2357–2367

    Google Scholar 

  • Ding C, Yi X, Chen X, Wu Z, You H, Chen X, Zhang G, Sun Y, Bu X, Wu X, Lin Z, Gu J, Lin Y, Kang D (2021) Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res 40(1):164

    Google Scholar 

  • Eckerdt F, Platanias LC (2023) Emerging role of glioma stem cells in mechanisms of therapy resistance. Cancers (Basel) 15(13)

    Google Scholar 

  • Feldheim J, Kessler AF, Monoranu CM, Ernestus RI, Löhr M, Hagemann C (2019) Changes of O(6)-Methylguanine DNA methyltransferase (MGMT) promoter methylation in glioblastoma relapse-a meta-analysis type literature review. Cancers (Basel) 11(12)

    Google Scholar 

  • Filippi-Chiela EC, M. M. Bueno e Silva, Thomé MP, Lenz G (2015) Single-cell analysis challenges the connection between autophagy and senescence induced by DNA damage. Autophagy 11(7):1099–1113

    Google Scholar 

  • Fodde R, Brabletz T (2007) Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19(2):150–158

    Google Scholar 

  • Friedman HS, Kerby T, Calvert H (2000) Temozolomide and treatment of malignant glioma. Clin Cancer Res 6(7):2585–2597

    Google Scholar 

  • Gan T, Wang Y, Xie M, Wang Q, Zhao S, Wang P, Shi Q, Qian X, Miao F, Shen Z, Nie E (2022) MEX3A impairs DNA mismatch repair signaling and mediates acquired Temozolomide resistance in glioblastoma. Cancer Res 82(22):4234–4246

    Google Scholar 

  • Geng X, Zhang Y, Lin X, Zeng Z, Hu J, Hao L, Xu J, Wang X, Wang H, Li Q (2022) Exosomal circWDR62 promotes temozolomide resistance and malignant progression through regulation of the miR-370-3p/MGMT axis in glioma. Cell Death Dis 13(7):596

    Google Scholar 

  • Golden EB, Cho HY, Jahanian A, Hofman FM, Louie SG, Schönthal AH, Chen TC (2014) Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg Focus 37(6):E12

    Google Scholar 

  • Golding JP, Wardhaugh T, Patrick L, Turner M, Phillips JB, Bruce JI, Kimani SG (2013) Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy. Br J Cancer 109(4):976–982

    Google Scholar 

  • Goodman LS, Wintrobe MM et al (1946) Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Assoc 132:126–132

    Google Scholar 

  • Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281(32):22429–22433

    Google Scholar 

  • Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31

    Google Scholar 

  • Han B, Meng X, Wu P, Li Z, Li S, Zhang Y, Zha C, Ye Q, Jiang C, Cai J, Jiang T (2020) ATRX/EZH2 complex epigenetically regulates FADD/PARP1 axis, contributing to TMZ resistance in glioma. Theranostics 10(7):3351–3365

    Google Scholar 

  • Han C, Wang S, Wang H, Zhang J (2021) Exosomal circ-HIPK3 facilitates tumor progression and Temozolomide resistance by regulating miR-421/ZIC5 Axis in glioma. Cancer Biother Radiopharm 36(7):537–548

    Google Scholar 

  • He Y, Chen QW, Yu JX, Qin SY, Liu WL, Ma YH, Chen XS, Zhang AQ, Zhang XZ, Cheng YJ (2023) Yeast cell membrane-camouflaged PLGA nanoparticle platform for enhanced cancer therapy. J Control Release 359:347–358

    Google Scholar 

  • Heimberger AB, Suki D, Yang D, Shi W, Aldape K (2005) The natural history of EGFR and EGFRvIII in glioblastoma patients. J Transl Med 3:38

    Google Scholar 

  • Hirota K, Ooka M, Shimizu N, Yamada K, Tsuda M, Ibrahim MA, Yamada S, Sasanuma H, Masutani M, Takeda S (2022) XRCC1 counteracts poly(ADP ribose)polymerase (PARP) poisons, olaparib and talazoparib, and a clinical alkylating agent, temozolomide, by promoting the removal of trapped PARP1 from broken DNA. Genes Cells 27(5):331–344

    Google Scholar 

  • Hombach-Klonisch S, Mehrpour M, Shojaei S, Harlos C, Pitz M, Hamai A, Siemianowicz K, Likus W, Wiechec E, Toyota BD, Hoshyar R, Seyfoori A, Sepehri Z, Ande SR, Khadem F, Akbari M, Gorman AM, Samali A, Klonisch T, Ghavami S (2018) Glioblastoma and chemoresistance to alkylating agents: involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther 184:13–41

    Google Scholar 

  • Hothi P, Cobbs C (2023) The potential role of human endogenous retrovirus K in glioblastoma. J Clin Invest 133(13)

    Google Scholar 

  • Huang T, Kim CK, Alvarez AA, Pangeni RP, Wan X, Song X, Shi T, Yang Y, Sastry N, Horbinski CM, Lu S, Stupp R, Kessler JA, Nishikawa R, Nakano I, Sulman EP, Lu X, James CD, Yin XM, Hu B, Cheng SY (2017) MST4 phosphorylation of ATG4B regulates autophagic activity, tumorigenicity, and radioresistance in glioblastoma. Cancer Cell 32(6):840–855.e848

    Google Scholar 

  • Huang M, Zhang D, Wu JY, Xing K, Yeo E, Li C, Zhang L, Holland E, Yao L, Qin L, Binder ZA, O’Rourke DM, Brem S, Koumenis C, Gong Y, Fan Y (2020) Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma. Sci Transl Med 12(532)

    Google Scholar 

  • Hubensack M, Müller C, Höcherl P, Fellner S, Spruss T, Bernhardt G, Buschauer A (2008) Effect of the ABCB1 modulators elacridar and tariquidar on the distribution of paclitaxel in nude mice. J Cancer Res Clin Oncol 134(5):597–607

    Google Scholar 

  • Jahani-Asl A, Yin H, Soleimani VD, Haque T, Luchman HA, Chang NC, Sincennes MC, Puram SV, Scott AM, Lorimer IA, Perkins TJ, Ligon KL, Weiss S, Rudnicki MA, Bonni A (2016) Control of glioblastoma tumorigenesis by feed-forward cytokine signaling. Nat Neurosci 19(6):798–806

    Google Scholar 

  • Jiang X, Overholtzer M, Thompson CB (2015) Autophagy in cellular metabolism and cancer. J Clin Invest 125(1):47–54

    Google Scholar 

  • Jiapaer S, Furuta T, Tanaka S, Kitabayashi T, Nakada M (2018) Potential strategies overcoming the temozolomide resistance for glioblastoma. Neurol Med Chir 58(10):405

    Google Scholar 

  • Johannessen TC, Hasan-Olive MM, Zhu H, Denisova O, Grudic A, Latif MA, Saed H, Varughese JK, Røsland GV, Yang N, Sundstrøm T, Nordal A, Tronstad KJ, Wang J, Lund-Johansen M, Simonsen A, Janji B, Westermarck J, Bjerkvig R, Prestegarden L (2019) Thioridazine inhibits autophagy and sensitizes glioblastoma cells to temozolomide. Int J Cancer 144(7):1735–1745

    Google Scholar 

  • Josset E, Burckel H, Noël G, Bischoff P (2013) The mTOR inhibitor RAD001 potentiates autophagic cell death induced by temozolomide in a glioblastoma cell line. Anticancer Res 33(5):1845–1851

    Google Scholar 

  • Kahn M (2014) Can we safely target the WNT pathway? Nat Rev Drug Discov 13(7):513–532

    Google Scholar 

  • Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 6(8):1079–1099

    Google Scholar 

  • Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11(4):448–457

    Google Scholar 

  • Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N, Oh YT, Kim H, Rheey J, Nakano I, Lee C, Joo KM, Rich JN, Nam DH, Lee J (2013) Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23(6):839–852

    Google Scholar 

  • Kim S-H, Joshi K, Ezhilarasan R, Myers TR, Siu J, Gu C, Nakano-Okuno M, Taylor D, Minata M, Sulman EP (2015) EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner. Stem Cell Reports 4(2):226–238

    Google Scholar 

  • Krasilnikov M, Ivanov VN, Dong J, Ronai Z (2003) ERK and PI3K negatively regulate STAT-transcriptional activities in human melanoma cells: implications towards sensitization to apoptosis. Oncogene 22(26):4092–4101

    Google Scholar 

  • Kreth S, Limbeck E, Hinske LC, Schütz SV, Thon N, Hoefig K, Egensperger R, Kreth FW (2013) In human glioblastomas transcript elongation by alternative polyadenylation and miRNA targeting is a potent mechanism of MGMT silencing. Acta Neuropathol 125(5):671–681

    Google Scholar 

  • Krokan HE, BjørÃ¥s M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5(4):a012583

    Google Scholar 

  • Land SC, Tee AR (2007) Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 282(28):20534–20543

    Google Scholar 

  • Lee SY (2016) Temozolomide resistance in glioblastoma multiforme. Genes Diseases 3(3):198–210

    Google Scholar 

  • Lee YY, Yarmishyn AA, Wang ML, Chen HY, Chiou SH, Yang YP, Lin CF, Huang PI, Chen YW, Ma HI, Chen MT (2018) MicroRNA-142-3p is involved in regulation of MGMT expression in glioblastoma cells. Cancer Manag Res 10:775–785

    Google Scholar 

  • Li Y, Li W, Yang Y, Lu Y, He C, Hu G, Liu H, Chen J, He J, Yu H (2009) MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res 1286:13–18

    Google Scholar 

  • Li ZY, Li QZ, Chen L, Chen BD, Wang B, Zhang XJ, Li WP (2016) Histone deacetylase inhibitor RGFP109 overcomes Temozolomide resistance by blocking NF-κB-dependent transcription in glioblastoma cell lines. Neurochem Res 41(12):3192–3205

    Google Scholar 

  • Li H, Chen L, Li JJ, Zhou Q, Huang A, Liu WW, Wang K, Gao L, Qi ST, Lu YT (2018) miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J Hematol Oncol 11(1):70

    Google Scholar 

  • Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218

    Google Scholar 

  • Lim JH, Lee ES, You HJ, Lee JW, Park JW, Chun YS (2004) Ras-dependent induction of HIF-1alpha785 via the Raf/MEK/ERK pathway: a novel mechanism of Ras-mediated tumor promotion. Oncogene 23(58):9427–9431

    Google Scholar 

  • Lin CJ, Lee CC, Shih YL, Lin TY, Wang SH, Lin YF, Shih CM (2012) Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic Biol Med 52(2):377–391

    Google Scholar 

  • Liu L, Gerson SL (2006) Targeted modulation of MGMT: clinical implications. Clin Cancer Res 12(2):328–331

    Google Scholar 

  • Liu T, Li A, Xu Y, Xin Y (2019) Momelotinib sensitizes glioblastoma cells to temozolomide by enhancement of autophagy via JAK2/STAT3 inhibition. Oncol Rep 41(3):1883–1892

    Google Scholar 

  • Liu W, Zhao Y, Liu Z, Zhang G, Wu H, Zheng X, Tang X, Chen Z (2023) Therapeutic effects against high-grade glioblastoma mediated by engineered induced neural stem cells combined with GD2-specific CAR-NK. Cell Oncol (Dordr)

    Google Scholar 

  • Lo HW, Cao X, Zhu H, Ali-Osman F (2008) Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res 14(19):6042–6054

    Google Scholar 

  • LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA (2008) Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 11(1–2):32–50

    Google Scholar 

  • Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncology 23(8):1231–1251

    Google Scholar 

  • Lu Y, Zhou J, Xu C, Lin H, Xiao J, Wang Z, Yang B (2008) JAK/STAT and PI3K/AKT pathways form a mutual transactivation loop and afford resistance to oxidative stress-induced apoptosis in cardiomyocytes. Cell Physiol Biochem 21(4):305–314

    Google Scholar 

  • Luo JW, Wang X, Yang Y, Mao Q (2015) Role of micro-RNA (miRNA) in pathogenesis of glioblastoma. Eur Rev Med Pharmacol Sci 19(9):1630–1639

    Google Scholar 

  • Marzagalli M, Fontana F, Raimondi M, Limonta P (2021) Cancer stem cells-key players in tumor relapse. Cancers (Basel) 13(3)

    Google Scholar 

  • McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284

    Google Scholar 

  • McFaline-Figueroa JL, Braun CJ, Stanciu M, Nagel ZD, Mazzucato P, Sangaraju D, Cerniauskas E, Barford K, Vargas A, Chen Y (2015) Minor changes in expression of the mismatch repair protein MSH2 exert a major impact on glioblastoma response to Temozolomide minor decreases in MSH2 mediate Chemoresistance. Cancer Res 75(15):3127–3138

    Google Scholar 

  • Molnár J, Engi H, Hohmann J, Molnár P, Deli J, Wesolowska O, Michalak K, Wang Q (2010) Reversal of multidrug resistance by natural substances from plants. Curr Top Med Chem 10(17):1757–1768

    Google Scholar 

  • Montano N, Cenci T, Martini M, D’Alessandris QG, Pelacchi F, Ricci-Vitiani L, Maira G, De Maria R, Larocca LM, Pallini R (2011) Expression of EGFRvIII in glioblastoma: prognostic significance revisited. Neoplasia 13(12):1113–1121

    Google Scholar 

  • Nakada M, Furuta T, Hayashi Y, Minamoto T, Hamada J (2012) The strategy for enhancing temozolomide against malignant glioma. Front Oncol 2:98

    Google Scholar 

  • Novakova J, Slaby O, Vyzula R, Michalek J (2009) MicroRNA involvement in glioblastoma pathogenesis. Biochem Biophys Res Commun 386(1):1–5

    Google Scholar 

  • Pérez-Plasencia C, López-Urrutia E, García-Castillo V, Trujano-Camacho S, López-Camarillo C, Campos-Parra AD (2020) Interplay between autophagy and Wnt/β-catenin signaling in cancer: therapeutic potential through drug repositioning. Front Oncol 10:1037

    Google Scholar 

  • Polivka J Jr, Janku F (2014) Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 142(2):164–175

    Google Scholar 

  • Quintavalle C, Mangani D, Roscigno G, Romano G, Diaz-Lagares A, Iaboni M, Donnarumma E, Fiore D, De Marinis P, Soini Y, Esteller M, Condorelli G (2013) MiR-221/222 target the DNA methyltransferase MGMT in glioma cells. PLoS One 8(9):e74466

    Google Scholar 

  • Ranson M, Middleton MR, Bridgewater J, Lee SM, Dawson M, Jowle D, Halbert G, Waller S, McGrath H, Gumbrell L, McElhinney RS, Donnelly D, McMurry TB, Margison GP (2006) Lomeguatrib, a potent inhibitor of O6-alkylguanine-DNA-alkyltransferase: phase I safety, pharmacodynamic, and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 12(5):1577–1584

    Google Scholar 

  • Regad T (2015) Targeting RTK signaling pathways in cancer. Cancers (Basel) 7(3):1758–1784

    Google Scholar 

  • Ren Y, Zhou X, Mei M, Yuan X-B, Han L, Wang G-X, Jia Z-F, Xu P, Pu P-Y, Kang C-S (2010) MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer 10(1):27

    Google Scholar 

  • Riganti C, Salaroglio IC, Caldera V, Campia I, Kopecka J, Mellai M, Annovazzi L, Bosia A, Ghigo D, Schiffer D (2013) Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/β-catenin pathway. Neuro-Oncology 15(11):1502–1517

    Google Scholar 

  • Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S, Mikkelson T, Wang D, Chang YC, Hu J, McAfee Q, Fisher J, Troxel AB, Piao S, Heitjan DF, Tan KS, Pontiggia L, O’Dwyer PJ, Davis LE, Amaravadi RK (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10(8):1359–1368

    Google Scholar 

  • Sabahi M, Salehipour A, Bazl MSY, Rezaei N, Mansouri A, Borghei-Razavi H (2023) Local immunotherapy of glioblastoma: a comprehensive review of the concept. J Neuroimmunol 381:578146

    Google Scholar 

  • Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M, Wick W (2008) Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 14(10):2900–2908

    Google Scholar 

  • Segerman A, Niklasson M, Haglund C, Bergström T, Jarvius M, Xie Y, Westermark A, Sönmez D, Hermansson A, Kastemar M, Naimaie-Ali Z, Nyberg F, Berglund M, Sundström M, Hesselager G, Uhrbom L, Gustafsson M, Larsson R, Fryknäs M, Segerman B, Westermark B (2016) Clonal variation in drug and radiation response among glioma-initiating cells is linked to proneural-mesenchymal transition. Cell Rep 17(11):2994–3009

    Google Scholar 

  • Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6(4):a018713

    Google Scholar 

  • Shah AH, Rivas SR, Doucet-O’Hare TT, Govindarajan V, DeMarino C, Wang T, Ampie L, Zhang Y, Banasavadi-Siddegowda YK, Walbridge S, Maric D, Garcia-Montojo M, Suter RK, Lee MH, Zaghloul KA, Steiner J, Elkahloun AG, Chandar J, Seetharam D, Desgraves J, Li W, Johnson K, Ivan ME, Komotar RJ, Gilbert MR, Heiss JD, Nath A (2023) Human endogenous retrovirus K contributes to a stem cell niche in glioblastoma. J Clin Invest 133(13)

    Google Scholar 

  • Sharfe N, Dadi HK, Roifman CM (1995) JAK3 protein tyrosine kinase mediates interleukin-7-induced activation of phosphatidylinositol-3′ kinase. Blood 86(6):2077–2085

    Google Scholar 

  • Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, Roy A, Ramalinga M, Harris B, Blancato J, Verma M, Kumar D (2016) MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med 5(8):1917–1946

    Google Scholar 

  • Shevchenko V, Arnotskaya N, Korneyko M, Zaytsev S, Khotimchenko Y, Sharma H, Bryukhovetskiy I (2019) Proteins of the Wnt signaling pathway as targets for the regulation of CD133+ cancer stem cells in glioblastoma. Oncol Rep 41(5):3080–3088

    Google Scholar 

  • Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavaré S (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110(10):4009–4014

    Google Scholar 

  • St Laurent G, Wahlestedt C, Kapranov P (2015) The landscape of long noncoding RNA classification. Trends Genet 31(5):239–251

    Google Scholar 

  • St-Coeur PD, Cormier M, LeBlanc VC, Morin PJ, Touaibia M (2016) Effect of O6-substituted guanine analogs on O6-methylguanine DNA-methyltransferase expression and glioblastoma cells viability. Med Chem 13(1):28–39

    Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Google Scholar 

  • Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, Li X, Wu Z, Yang D, Zhou Y, Wang H, Liao Q, Wang W (2019) Circular RNAs in cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer 18(1):90

    Google Scholar 

  • Suwala AK, Hanaford A, Kahlert UD, Maciaczyk J (2016) Clipping the wings of glioblastoma: modulation of WNT as a novel therapeutic strategy. J Neuropathol Exp Neurol 75(5):388–396

    Google Scholar 

  • Tada M, Concha ML, Heisenberg CP (2002) Non-canonical Wnt signalling and regulation of gastrulation movements. Semin Cell Dev Biol 13(3):251–260

    Google Scholar 

  • Tan Z, Jia J, Jiang Y (2018) MiR-150-3p targets SP1 and suppresses the growth of glioma cells. Biosci Rep 38(3)

    Google Scholar 

  • Tompa M, Kalovits F, Nagy A, Kalman B (2018) Contribution of the Wnt pathway to defining biology of glioblastoma. NeuroMolecular Med 20(4):437–451

    Google Scholar 

  • Trivedi RN, Almeida KH, Fornsaglio JL, Schamus S, Sobol RW (2005) The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res 65(14):6394–6400

    Google Scholar 

  • Tsai C-Y, Ko H-J, Chiou S-J, Lai Y-L, Hou C-C, Javaria T, Huang Z-Y, Cheng T-S, Hsu T-I, Chuang J-Y, Kwan A-L, Chuang T-H, Huang C-YF, Loh J-K, Hong Y-R (2021) NBM-BMX, an HDAC8 inhibitor, overcomes Temozolomide resistance in glioblastoma Multiforme by downregulating the β-catenin/c-Myc/SOX2 pathway and upregulating p53-mediated MGMT inhibition. Int J Mol Sci 22(11):5907

    Google Scholar 

  • Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N (2003) Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci 94(1):15–21

    Google Scholar 

  • Ugur HC, Taspinar M, Ilgaz S, Sert F, Canpinar H, Rey JA, Castresana JS, Sunguroglu A (2014) Chemotherapeutic resistance in anaplastic astrocytoma cell lines treated with a temozolomide-lomeguatrib combination. Mol Biol Rep 41(2):697–703

    Google Scholar 

  • Urakami S, Shiina H, Enokida H, Hirata H, Kawamoto K, Kawakami T, Kikuno N, Tanaka Y, Majid S, Nakagawa M, Igawa M, Dahiya R (2006) Wnt antagonist family genes as biomarkers for diagnosis, staging, and prognosis of renal cell carcinoma using tumor and serum DNA. Clin Cancer Res 12(23):6989–6997

    Google Scholar 

  • Vadla R, Miki S, Taylor B, Kawauchi D, Jones BM, Nathwani N, Pham P, Tsang J, Nathanson DA, Furnari FB (2023) Glioblastoma mesenchymal transition and invasion are dependent on a NF-κB/BRD2 chromatin complex. bioRxiv

    Google Scholar 

  • Vasileva NS, Ageenko AB, Richter VA, Kuligina EV (2022) The signaling pathways controlling the efficacy of glioblastoma therapy. Acta Nat 14(2):62–70

    Google Scholar 

  • Wang Y, Chen L, Bao Z, Li S, You G, Yan W, Shi Z, Liu Y, Yang P, Zhang W, Han L, Kang C, Jiang T (2011) Inhibition of STAT3 reverses alkylator resistance through modulation of the AKT and β-catenin signaling pathways. Oncol Rep 26(5):1173–1180

    Google Scholar 

  • Wang Z, Li Z, Fu Y, Han L, Tian Y (2019) MiRNA-130a-3p inhibits cell proliferation, migration, and TMZ resistance in glioblastoma by targeting Sp1. Am J Transl Res 11(12):7272–7285

    Google Scholar 

  • Wang S, Wei W, Yuan Y, Sun B, Yang D, Liu N, Zhao X (2023) Chimeric antigen receptor T cells targeting cell surface GRP78 efficiently kill glioblastoma and cancer stem cells. J Transl Med 21(1):493

    Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Google Scholar 

  • Watson AJ, Sabharwal A, Thorncroft M, McGown G, Kerr R, Bojanic S, Soonawalla Z, King A, Miller A, Waller S, Leung H, Margison GP, Middleton MR (2010) Tumor O(6)-methylguanine-DNA methyltransferase inactivation by oral lomeguatrib. Clin Cancer Res 16(2):743–749

    Google Scholar 

  • Weller M (2011) Novel diagnostic and therapeutic approaches to malignant glioma. Swiss Med Wkly 141:w13210

    Google Scholar 

  • Wen ZP, Zeng WJ, Chen YH, Li H, Wang JY, Cheng Q, Yu J, Zhou HH, Liu ZZ, Xiao J, Chen XP (2019) Knockdown ATG4C inhibits gliomas progression and promotes temozolomide chemosensitivity by suppressing autophagic flux. J Exp Clin Cancer Res 38(1):298

    Google Scholar 

  • Wend P, Holland JD, Ziebold U, Birchmeier W (2010) Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol 21(8):855–863

    Google Scholar 

  • Wickström M, Dyberg C, Milosevic J, Einvik C, Calero R, Sveinbjörnsson B, Sandén E, Darabi A, Siesjö P, Kool M, Kogner P, Baryawno N, Johnsen JI (2015) Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nat Commun 6:8904

    Google Scholar 

  • Wiestler B, Capper D, Holland-Letz T, Korshunov A, von Deimling A, Pfister SM, Platten M, Weller M, Wick W (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126(3):443–451

    Google Scholar 

  • Wong ST, Zhang XQ, Zhuang JT, Chan HL, Li CH, Leung GK (2012) MicroRNA-21 inhibition enhances in vitro chemosensitivity of temozolomide-resistant glioblastoma cells. Anticancer Res 32(7):2835–2841

    Google Scholar 

  • Wu S, Li X, Gao F, de Groot JF, Koul D, Yung WKA (2021) PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma. Neuro-Oncology 23(6):920–931

    Google Scholar 

  • Xin L, Tan Y, Zhu Y, Cui X, Wang Q, Zhao J, Tian S, Xu C, Xiao M, Hong B, Xu J, Yuan X, Wang C, Kang C, Fang C (2023) EPIC-0307-mediated selective disruption of PRADX-EZH2 interaction and enhancement of temozolomide sensitivity to glioblastoma via inhibiting DNA repair and MGMT. Neuro-Oncology

    Google Scholar 

  • Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65(2):613–621

    Google Scholar 

  • Yang G, Murashige DS, Humphrey SJ, James DE (2015) A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep 12(6):937–943

    Google Scholar 

  • Yang YN, Zhang XH, Wang YM, Zhang X, Gu Z (2018) miR-204 reverses temozolomide resistance and inhibits cancer initiating cells phenotypes by degrading FAP-α in glioblastoma. Oncol Lett 15(5):7563–7570

    Google Scholar 

  • Yang K, Luan L, Li X, Sun X, Yin J (2022) ERK inhibition in glioblastoma is associated with autophagy activation and tumorigenesis suppression. J Neuro-Oncol 156(1):123–137

    Google Scholar 

  • Yelton CJ, Ray SK (2018) Histone deacetylase enzymes and selective histone deacetylase inhibitors for antitumor effects and enhancement of antitumor immunity in glioblastoma. Neuroimmunol Neuroinflamm 5

    Google Scholar 

  • Yu Z, Chen Y, Wang S, Li P, Zhou G, Yuan Y (2018) Inhibition of NF-κB results in anti-glioma activity and reduces temozolomide-induced chemoresistance by down-regulating MGMT gene expression. Cancer Lett 428:77–89

    Google Scholar 

  • Yu W, Zhang L, Wei Q, Shao A (2019) O(6)-Methylguanine-DNA methyltransferase (MGMT): challenges and new opportunities in glioma chemotherapy. Front Oncol 9:1547

    Google Scholar 

  • Zanotto-Filho A, Braganhol E, Klafke K, Figueiró F, Terra SR, Paludo FJ, Morrone M, Bristot IJ, Battastini AM, Forcelini CM, Bishop AJR, Gelain DP, Moreira JCF (2015) Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett 358(2):220–231

    Google Scholar 

  • Zeng A, Yin J, Li Y, Li R, Wang Z, Zhou X, Jin X, Shen F, Yan W, You Y (2018) miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis 9(3):394

    Google Scholar 

  • Zhang M, Atkinson RL, Rosen JM (2010) Selective targeting of radiation-resistant tumor-initiating cells. Proc Natl Acad Sci U S A 107(8):3522–3527

    Google Scholar 

  • Zhang J, Stevens MF, Bradshaw TD (2012) Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 5(1):102–114

    Google Scholar 

  • Zhang S, Han L, Wei J, Shi Z, Pu P, Zhang J, Yuan X, Kang C (2015) Combination treatment with doxorubicin and microRNA-21 inhibitor synergistically augments anticancer activity through upregulation of tumor suppressing genes. Int J Oncol 46(4):1589–1600

    Google Scholar 

  • Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26(9):1277–1287

    Google Scholar 

  • Zhao LM, Zhang JH (2019) Histone deacetylase inhibitors in tumor immunotherapy. Curr Med Chem 26(17):2990–3008

    Google Scholar 

  • Zhao C, Guo R, Guan F, Ma S, Li M, Wu J, Liu X, Li H, Yang B (2020) MicroRNA-128-3p enhances the chemosensitivity of temozolomide in glioblastoma by targeting c-met and EMT. Sci Rep 10(1):9471

    Google Scholar 

  • Zhao J, Yang S, Cui X, Wang Q, Yang E, Tong F, Hong B, Xiao M, Xin L, Xu C, Tan Y, Kang C (2023) A novel compound EPIC-0412 reverses temozolomide resistance via inhibiting DNA repair/MGMT in glioblastoma. Neuro-Oncology 25(5):857–870

    Google Scholar 

  • Zhou RJ, Xu XY, Liu BX, Dai WZ, Cai MQ, Bai CF, Zhang XF, Wang LM, Lin L, Jia SZ, Wang WH (2015) Growth-inhibitory and chemosensitizing effects of microRNA-31 in human glioblastoma multiforme cells. Int J Mol Med 36(4):1159–1164

    Google Scholar 

  • Zou Y, Wang Q, Wang W (2015) MutL homolog 1 contributes to temozolomide-induced autophagy via ataxia-telangiectasia mutated in glioma. Mol Med Rep 11(6):4591–4596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

This narrative review was conducted in strict accordance with the ethical standards of the publishing institution and is in line with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical guidelines. While no primary research involving human participants or animals was conducted for this review, every effort was made to ensure the accuracy, transparency, and integrity of the information presented. All sources of information have been duly cited to give credit to the original authors. The authors declare that they have no conflict of interest related to the content of this review.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asl, M.S., Iranmehr, A., Hanaei, S. (2023). Mechanisms of Chemoresistance in High-Grade Gliomas. In: Interdisciplinary Cancer Research. Springer, Cham. https://doi.org/10.1007/16833_2023_185

Download citation

  • DOI: https://doi.org/10.1007/16833_2023_185

  • Published:

  • Publisher Name: Springer, Cham

Publish with us

Policies and ethics