Skip to main content

The Climate System with Human Actors – A Time Scale Perspective

  • Chapter
  • First Online:
Multiplicity of Time Scales in Complex Systems

Abstract

The IPCC now assess the global mean temperature increase since the latter part of the nineteenth century to be entirely anthropogenically in its origin. Along this development, decision-makers engaged with mitigating climate change are looking closely to the findings by the IPCC to achieve the goals of the Paris Agreement. This close encounter between decision-makers and the scientific community give rise to both scientific and public discussions that take their point of departure in the perception of the findings or lack thereof by the IPCC. Related to this, certain time scales emerge that reflect scientific progress as well as the frequency of IPCC updates. Here I report on these processes and how it implies intrinsic time scales to this interaction between the scientific and decision-making communities, emerging to be about 6 and 30 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bindoff, N. L., et al. (2013). Detection and attribution of climate change, from global to regional. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 867–952). Cambridge University Press. https://doi.org/10.1017/cbo9781107415324.022

    Google Scholar 

  • Canadell, J. G., Quere, C. L., Raupach, M. R., Field, C. B., Buitehuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., & Marland, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18866–18870. https://doi.org/10.1073/pnas.0702737104

    Article  Google Scholar 

  • Eyring, V., Bony, S., Meehl, G. A., et al. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

    Article  Google Scholar 

  • Forest, C. E. (2002). Quantifying uncertainties in climate system properties with the use of recent climate 21 observations. Science, 295(5552), 113–117. https://doi.org/10.1126/science.1064419

    Article  Google Scholar 

  • Forster, P., et al. (2021). The Earth’s energy budget, climate feedbacks, and climate sensitivity. In V. Masson-Delmotte et al. (Eds.), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

    Google Scholar 

  • Fourier, J. B. J., & Darboux, G. (1822). Théorie analytique de la chaleur (Vol. 504). Didot.

    Google Scholar 

  • Frame, D. J., et al. (2005). Constraining climate forecasts: The role of prior assumptions. Geophysical Research Letters, 32(9), 1–4. https://doi.org/10.1029/2004gl022241

    Article  Google Scholar 

  • Goodwin, P. (2016). How historic simulation–observation discrepancy affects future warming projections in a very large 43 model ensemble. Climate Dynamics, 47, 2219–2233. https://doi.org/10.1007/s00382-015-2960-z

    Article  Google Scholar 

  • Hansen, J. E. (1988). Greenhouse effect and global climate change, part 2, US Senate Committee on Energy and Natural Resources. In 100th congress, 1st session (Vol. 23). U.S. Government Printing Office.

    Google Scholar 

  • Hegerl, G. C., Ballinger, A. P., Booth, B. B. B., et al. (2021). Toward consistent observational constraints in climate predictions and projections. Frontiers in Climate, 3, 678109.

    Article  Google Scholar 

  • Henry, W. (1803). Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Philosophical Transactions. Royal Society of London, 93, 29–43. https://doi.org/10.1098/rstl.1803.0004

    Article  Google Scholar 

  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.

    Article  Google Scholar 

  • IPCC. (1990). In J. Houghton, G. J. Jenkins, & J. J. Ephraums (Eds.), Scientific assessment of climate change – Report of working group I (Vol. I of IPCC First Assessment Report). Cambridge University Press.

    Google Scholar 

  • IPCC. (1995). In J. T. Houghton, L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg, & K. Maskell (Eds.), Climate change 1995: The science of climate change. Contribution of Working Group I to the Second assessment report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • IPCC. (2013). In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • IPCC. (2021). In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • IPCC. (2022). Summary for policymakers. In P. R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, & J. Malley (Eds.), Climate change 2022: Mitigation of climate change. Contribution of Working Group III to the Sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press. https://doi.org/10.1017/9781009157926.001

  • Kosaka, Y., & Xie, S. P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467), 403–407.

    Article  Google Scholar 

  • Le Quere, C., Rodenbeck, C., Buitenhuis, E. T., Conway, T. J., Langenfelds, R., Gomez, A., Labuschagne, C., Ramonet, M., Nakazawa, T., Metzl, N., Gillett, N., & Heimann, M. (2007). Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316(5832), 1735–1738.

    Article  Google Scholar 

  • Lewis, N. (2013). An objective Bayesian improved approach for applying optimal fingerprint techniques to estimate climate sensitivity. Journal of Climate, 26, 7414–7429. https://doi.org/10.1175/jcli-d-12-00473.1

    Article  Google Scholar 

  • Manabe, S., & Bryan, K. (1969). Climate calculations with a combined ocean-atmosphere model. Journal of the Atmospheric Sciences, 26(4), 786–789.

    Article  Google Scholar 

  • O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., & Solecki, W. (2016). The roads ahead: Narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Global Environmental Change, 42, 169–180. https://doi.org/10.1016/j.gloenvcha.2015.01.004

    Article  Google Scholar 

  • Riahi, K., van Vuuren, D. P., Kriegler, E., et al. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

    Article  Google Scholar 

  • Slingo, J., Bates, P., Bauer, P., Belcher, S., Palmer, T., Stephens, G., et al. (2022). Ambitious partnership needed for reliable climate prediction. Nature Climate Change, 12(6), 499–503.

    Article  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498.

    Article  Google Scholar 

  • Tyndall, J. (1859). On the transmission of heat of different qualities through gases of different kinds. Proceedings of the Royal Institution, 3, 155–158.

    Google Scholar 

  • UN. (1988, December 6). Protection of global climate for present and future generations of mankind: Resolution/adopted by the General Assembly (A/RES/43/53). UN General Assembly.

    Google Scholar 

  • United Nations Framework Convention on Climate Change (UNFCCC). (1992). (FCCC/INFORMAL/84 GE.05-62220 (E) 200705). New York. https://unfccc.int/resource/docs/convkp/conveng.pdf

  • United Nations Framework Convention on Climate Change (UNFCCC). (1997). (FCCC/CP/1997/L.7/Add.1). Kyoto. https://unfccc.int/sites/default/files/resource/docs/cop3/l07a01.pdf

  • United Nations Framework Convention on Climate Change (UNFCCC). (2015). Adoption of the Paris Agreement, 21st Conference of the Parties (FCCC/CP/2015/L.9/Rev.1). Paris. https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf. Accessed 15 July 2022.

  • van Vuuren, D. P., Edmonds, J., Kainuma, M., et al. (2011). The representative concentration pathways: An overview. Climatic Change, 109, 5. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • WMO. (2017). WMO guidelines on the calculation of climate normals (WMO-No. 1203). World Meteorological Organization.

    Google Scholar 

  • Xie, S. P., & Kosaka, Y. (2017). What caused the global surface warming hiatus of 1998–2013? Current Climate Change Reports, 3(2), 128–140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Hesselbjerg Christensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christensen, J.H. (2023). The Climate System with Human Actors – A Time Scale Perspective. In: Booß-Bavnbek, B., Hesselbjerg Christensen, J., Richardson, K., Vallès Codina, O. (eds) Multiplicity of Time Scales in Complex Systems. Mathematics Online First Collections. Springer, Cham. https://doi.org/10.1007/16618_2023_62

Download citation

Publish with us

Policies and ethics