Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 279))

Abstract

The CACNA1C gene encodes the pore-forming subunit of the CaV1.2 L-type Ca2+ channel, a critical component of membrane physiology in multiple tissues, including the heart, brain, and immune system. As such, mutations altering the function of these channels have the potential to impact a wide array of cellular functions. The first mutations identified within CACNA1C were shown to cause a severe, multisystem disorder known as Timothy syndrome (TS), which is characterized by neurodevelopmental deficits, long-QT syndrome, life-threatening cardiac arrhythmias, craniofacial abnormalities, and immune deficits. Since this initial description, the number and variety of disease-associated mutations identified in CACNA1C have grown tremendously, expanding the range of phenotypes observed in affected patients. CACNA1C channelopathies are now known to encompass multisystem phenotypes as described in TS, as well as more selective phenotypes where patients may exhibit predominantly cardiac or neurological symptoms. Here, we review the impact of genetic mutations on CaV1.2 function and the resultant physiological consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablinger C, Geisler SM, Stanika RI, Klein CT, Obermair GJ (2020) Neuronal alpha2delta proteins and brain disorders. Pflugers Arch 472:845–863

    PubMed  PubMed Central  Google Scholar 

  • Alcover A, Weiss MJ, Daley JF, Reinherz EL (1986) The T11 glycoprotein is functionally linked to a calcium channel in precursor and mature T-lineage cells. Proc Natl Acad Sci U S A 83:2614–2618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angelini M et al (2021) Suppression of ventricular arrhythmias by targeting late L-type Ca2+ current. J Gen Physiol 153

    Google Scholar 

  • Antzelevitch C et al (2007) Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115:442–449

    PubMed  PubMed Central  Google Scholar 

  • Bader PL et al (2011) Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proc Natl Acad Sci U S A 108:15432–15437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bamgboye MA et al (2022a) CaV1.2 channelopathic mutations evoke diverse pathophysiological mechanisms. J Gen Physiol 154

    Google Scholar 

  • Bamgboye MA et al (2022b) Impaired CaV1.2 inactivation reduces the efficacy of calcium channel blockers in the treatment of LQT8. J Mol Cell Cardiol 173:92–100

    CAS  PubMed  Google Scholar 

  • Barrett CF, Tsien RW (2008) The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of CaV1.2 L-type calcium channels. Proc Natl Acad Sci U S A 105:2157–2162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer R, Timothy KW, Golden A (2021) Update on the molecular genetics of Timothy syndrome. Front Pediatr 9:668546

    PubMed  PubMed Central  Google Scholar 

  • Berger SM, Bartsch D (2014) The role of L-type voltage-gated calcium channels Cav1.2 and Cav1.3 in normal and pathological brain function. Cell Tissue Res 357:463–476

    CAS  PubMed  Google Scholar 

  • Bers DM (1991) Ca regulation in cardiac muscle. Med Sci Sports Exerc 23:1157–1162

    CAS  PubMed  Google Scholar 

  • Beziau DM et al (2014) Complex Brugada syndrome inheritance in a family harbouring compound SCN5A and CACNA1C mutations. Basic Res Cardiol 109:446

    PubMed  Google Scholar 

  • Bhat S et al (2012) CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog Neurobiol 99:1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biel S et al (2016) Mutation in S6 domain of HCN4 channel in patient with suspected Brugada syndrome modifies channel function. Pflugers Arch 468:1663–1671

    CAS  PubMed  Google Scholar 

  • Bigos KL et al (2010) Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry 67:939–945

    PubMed  PubMed Central  Google Scholar 

  • Blancard M et al (2018) An African loss-of-function CACNA1C variant p.T1787M associated with a risk of ventricular fibrillation. Sci Rep 8:14619

    PubMed  PubMed Central  Google Scholar 

  • Boczek NJ et al (2013) Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. Circ Cardiovasc Genet 6:279–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boczek NJ et al (2015a) Novel Timothy syndrome mutation leading to increase in CACNA1C window current. Heart Rhythm 12:211–219

    PubMed  Google Scholar 

  • Boczek NJ et al (2015b) Identification and functional characterization of a novel CACNA1C-mediated cardiac disorder characterized by prolonged QT intervals with hypertrophic cardiomyopathy, congenital heart defects, and sudden cardiac death. Circ Arrhythm Electrophysiol 8:1122–1132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bozarth X et al (2018) Expanding clinical phenotype in CACNA1C related disorders: from neonatal onset severe epileptic encephalopathy to late-onset epilepsy. Am J Med Genet A 176:2733–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breitenkamp AF et al (2014) Rare mutations of CACNB2 found in autism spectrum disease-affected families alter calcium channel function. PLoS One 9:e95579

    PubMed  PubMed Central  Google Scholar 

  • Buraei Z, Yang J (2010) The ss subunit of voltage-gated Ca2+ channels. Physiol Rev 90:1461–1506

    CAS  PubMed  Google Scholar 

  • Burashnikov E et al (2010) Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm 7:1872–1882

    PubMed  PubMed Central  Google Scholar 

  • C. Cross-Disorder Group of the Psychiatric Genomics (2013) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–1379

    Google Scholar 

  • Calorio C et al (2019) Impaired chromaffin cell excitability and exocytosis in autistic Timothy syndrome TS2-neo mouse rescued by L-type calcium channel blockers. J Physiol 597:1705–1733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmody DP, Lewis M (2010) Regional white matter development in children with autism spectrum disorders. Dev Psychobiol 52:755–763

    PubMed  Google Scholar 

  • Casamassima F et al (2010) L-type calcium channels and psychiatric disorders: a brief review. Am J Med Genet B Neuropsychiatr Genet 153B:1373–1390

    CAS  PubMed  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    CAS  PubMed  Google Scholar 

  • Catterall WA, Lenaeus MJ, Gamal El-Din TM (2020) Structure and pharmacology of voltage-gated sodium and calcium channels. Annu Rev Pharmacol Toxicol 60:133–154

    CAS  PubMed  Google Scholar 

  • Cheli VT et al (2018) Enhanced oligodendrocyte maturation and myelination in a mouse model of Timothy syndrome. Glia 66:2324–2339

    PubMed  PubMed Central  Google Scholar 

  • Chen J, Sun Y, Liu X, Li J (2019) Identification of a novel mutation in the CACNA1C gene in a Chinese family with autosomal dominant cerebellar ataxia. BMC Neurol 19:157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng EP et al (2011) Restoration of normal L-type Ca2+ channel function during Timothy syndrome by ablation of an anchoring protein. Circ Res 109:255–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chesnoy-Marchais D, Fritsch J (1988) Voltage-gated sodium and calcium currents in rat osteoblasts. J Physiol 398:291–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark MB et al (2020) Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain. Mol Psychiatry 25:37–47

    CAS  PubMed  Google Scholar 

  • Colson C et al (2019) Unusual clinical description of adult with Timothy syndrome, carrier of a new heterozygote mutation of CACNA1C. Eur J Med Genet 62:103648

    PubMed  Google Scholar 

  • Courchesne E et al (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57:245–254

    CAS  PubMed  Google Scholar 

  • Craddock N, Sklar P (2013) Genetics of bipolar disorder. Lancet 381:1654–1662

    CAS  PubMed  Google Scholar 

  • Dao DT et al (2010) Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans. Biol Psychiatry 68:801–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davenport B, Li Y, Heizer JW, Schmitz C, Perraud AL (2015) Signature channels of excitability no more: L-type channels in immune cells. Front Immunol 6:375

    PubMed  PubMed Central  Google Scholar 

  • Dick IE, Joshi-Mukherjee R, Yang W, Yue DT (2016) Arrhythmogenesis in Timothy syndrome is associated with defects in Ca(2+)-dependent inactivation. Nat Commun 7:10370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolphin AC (2018) Voltage-gated calcium channel alpha 2delta subunits: an assessment of proposed novel roles. F1000Res 7

    Google Scholar 

  • Drum BM, Dixon RE, Yuan C, Cheng EP, Santana LF (2014) Cellular mechanisms of ventricular arrhythmias in a mouse model of Timothy syndrome (long QT syndrome 8). J Mol Cell Cardiol 66:63–71

    CAS  PubMed  Google Scholar 

  • Dufendach KA et al (2018) Clinical outcomes and modes of death in Timothy syndrome: a multicenter international study of a rare disorder. JACC Clin Electrophysiol 4:459–466

    PubMed  Google Scholar 

  • Endres D et al (2020) New Cav1.2 channelopathy with high-functioning autism, affective disorder, severe dental enamel defects, a short QT interval, and a novel CACNA1C loss-of-function mutation. Int J Mol Sci 21

    Google Scholar 

  • Erk S et al (2014) Hippocampal and frontolimbic function as intermediate phenotype for psychosis: evidence from healthy relatives and a common risk variant in CACNA1C. Biol Psychiatry 76:466–475

    CAS  PubMed  Google Scholar 

  • Faber GM, Silva J, Livshitz L, Rudy Y (2007) Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophys J 92:1522–1543

    CAS  PubMed  Google Scholar 

  • Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Phys 245:C1–C14

    CAS  Google Scholar 

  • Ferreira MA et al (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frohler S et al (2014) Exome sequencing helped the fine diagnosis of two siblings afflicted with atypical Timothy syndrome (TS2). BMC Med Genet 15:48

    PubMed  PubMed Central  Google Scholar 

  • Fukuyama M et al (2013) L-type calcium channel mutations in Japanese patients with inherited arrhythmias. Circ J 77:1799–1806

    CAS  PubMed  Google Scholar 

  • G. C. B. D. W. G. Psychiatric (2011) Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 43:977–983

    Google Scholar 

  • Gakenheimer-Smith L et al (2021) Expanding the phenotype of CACNA1C mutation disorders. Mol Genet Genomic Med 9:e1673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y et al (2013) Inhibition of late sodium current by mexiletine: a novel pharmotherapeutical approach in timothy syndrome. Circ Arrhythm Electrophysiol 6:614–622

    CAS  PubMed  Google Scholar 

  • Gershon ES et al (2014) A rare mutation of CACNA1C in a patient with bipolar disorder, and decreased gene expression associated with a bipolar-associated common SNP of CACNA1C in brain. Mol Psychiatry 19:890–894

    CAS  PubMed  Google Scholar 

  • Gillis J et al (2012) Long QT, syndactyly, joint contractures, stroke and novel CACNA1C mutation: expanding the spectrum of Timothy syndrome. Am J Med Genet A 158A:182–187

    PubMed  Google Scholar 

  • Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L, Dolmetsch R (2006) The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell 127:591–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Ospina N et al (2013) A promoter in the coding region of the calcium channel gene CACNA1C generates the transcription factor CCAT. PLoS One 8:e60526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green EK et al (2010) The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 15:1016–1022

    CAS  PubMed  Google Scholar 

  • Green EK et al (2013) Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case-control sample. Mol Psychiatry 18:1302–1307

    CAS  PubMed  Google Scholar 

  • Guggino SE, Lajeunesse D, Wagner JA, Snyder SH (1989) Bone remodeling signaled by a dihydropyridine- and phenylalkylamine-sensitive calcium channel. Proc Natl Acad Sci U S A 86:2957–2960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halvorsen M et al (2021) De novo mutations in childhood cases of sudden unexplained death that disrupt intracellular Ca(2+) regulation. Proc Natl Acad Sci U S A 118

    Google Scholar 

  • Harvey RD, Hell JW (2013) CaV1.2 signaling complexes in the heart. J Mol Cell Cardiol 58:143–152

    CAS  PubMed  Google Scholar 

  • Hennessey JA et al (2014) A CACNA1C variant associated with reduced voltage-dependent inactivation, increased CaV1.2 channel window current, and arrhythmogenesis. PLoS One 9:e106982

    PubMed  PubMed Central  Google Scholar 

  • Hering S et al (1997) Molecular mechanism of use-dependent calcium channel block by phenylalkylamines: role of inactivation. Proc Natl Acad Sci U S A 94:13323–13328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hermida A et al (2021) Long-term follow-up of a patient with type 2 Timothy syndrome and the partial efficacy of mexiletine. Gene 777:145465

    CAS  PubMed  Google Scholar 

  • Hiippala A, Tallila J, Myllykangas S, Koskenvuo JW, Alastalo TP (2015) Expanding the phenotype of Timothy syndrome type 2: an adolescent with ventricular fibrillation but normal development. Am J Med Genet A 167A:629–634

    PubMed  Google Scholar 

  • Jacobs A, Knight BP, McDonald KT, Burke MC (2006) Verapamil decreases ventricular tachyarrhythmias in a patient with Timothy syndrome (LQT8). Heart Rhythm 3:967–970

    PubMed  Google Scholar 

  • Janiri D et al (2021) Genetic neuroimaging of bipolar disorder: a systematic 2017-2020 update. Psychiatr Genet 31:50–64

    CAS  PubMed  Google Scholar 

  • Keers R, Farmer AE, Aitchison KJ (2009) Extracting a needle from a haystack: reanalysis of whole genome data reveals a readily translatable finding. Psychol Med 39:1231–1235

    CAS  PubMed  Google Scholar 

  • Klugbauer N, Welling A, Specht V, Seisenberger C, Hofmann F (2002) L-type Ca2+ channels of the embryonic mouse heart. Eur J Pharmacol 447:279–284

    CAS  PubMed  Google Scholar 

  • Koch K et al (2019) CACNA1C risk variant affects microstructural connectivity of the amygdala. Neuroimage Clin 22:101774

    PubMed  PubMed Central  Google Scholar 

  • Kosaki R, Ono H, Terashima H, Kosaki K (2018) Timothy syndrome-like condition with syndactyly but without prolongation of the QT interval. Am J Med Genet A 176:1657–1661

    CAS  PubMed  Google Scholar 

  • Krey JF et al (2013) Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat Neurosci 16:201–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krug A et al (2010) Effect of CACNA1C rs1006737 on neural correlates of verbal fluency in healthy individuals. NeuroImage 49:1831–1836

    CAS  PubMed  Google Scholar 

  • Kschonsak M et al (2020) Structure of the human sodium leak channel NALCN. Nature 587:313–318

    CAS  PubMed  Google Scholar 

  • Lachmann A et al (2018) Massive mining of publicly available RNA-seq data from human and mouse. Nat Commun 9:1366

    PubMed  PubMed Central  Google Scholar 

  • Lancaster TM, Foley S, Tansey KE, Linden DE, Caseras X (2016) CACNA1C risk variant is associated with increased amygdala volume. Eur Arch Psychiatry Clin Neurosci 266:269–275

    CAS  PubMed  Google Scholar 

  • Lederer WJ et al (1990) Excitation-contraction coupling in heart cells. Roles of the sodium-calcium exchange, the calcium current, and the sarcoplasmic reticulum. Ann N Y Acad Sci 588:190–206

    CAS  PubMed  Google Scholar 

  • Lee KS, Tsien RW (1983) Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature 302:790–794

    CAS  PubMed  Google Scholar 

  • Lee AS et al (2012) Forebrain elimination of cacna1c mediates anxiety-like behavior in mice. Mol Psychiatry 17:1054–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J et al (2015) Schizophrenia related variants in CACNA1C also confer risk of autism. PLoS One 10:e0133247

    PubMed  PubMed Central  Google Scholar 

  • Li B, Tadross MR, Tsien RW (2016) Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression. Science 351:863–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao P, Yong TF, Liang MC, Yue DT, Soong TW (2005) Splicing for alternative structures of Cav1.2 Ca2+ channels in cardiac and smooth muscles. Cardiovasc Res 68:197–203

    CAS  PubMed  Google Scholar 

  • Liao P et al (2007) A smooth muscle Cav1.2 calcium channel splice variant underlies hyperpolarized window current and enhanced state-dependent inhibition by nifedipine. J Biol Chem 282:35133–35142

    CAS  PubMed  Google Scholar 

  • Liao P et al (2015) Alternative splicing generates a novel truncated Cav1.2 channel in neonatal rat heart. J Biol Chem 290:9262–9272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lory P, Nicole S, Monteil A (2020) Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch 472:831–844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Cohen S, Li B, Tsien RW (2012) Exploring the dominant role of Cav1 channels in signalling to the nucleus. Biosci Rep 33:97–101

    PubMed  Google Scholar 

  • Marcantoni A, Calorio C, Hidisoglu E, Chiantia G, Carbone E (2020) Cav1.2 channelopathies causing autism: new hallmarks on Timothy syndrome. Pflugers Arch 472:775–789

    CAS  PubMed  Google Scholar 

  • Marks ML, Whisler SL, Clericuzio C, Keating M (1995) A new form of long QT syndrome associated with syndactyly. J Am Coll Cardiol 25:59–64

    CAS  PubMed  Google Scholar 

  • Matza D, Flavell RA (2009) Roles of Ca(v) channels and AHNAK1 in T cells: the beauty and the beast. Immunol Rev 231:257–264

    CAS  PubMed  Google Scholar 

  • Mellor GJ et al (2019) Type 8 long QT syndrome: pathogenic variants in CACNA1C-encoded Cav1.2 cluster in STAC protein binding site. Europace 21:1725–1732

    PubMed  Google Scholar 

  • Meszaros JG, Karin NJ, Akanbi K, Farach-Carson MC (1996) Down-regulation of L-type Ca2+ channel transcript levels by 1,25-dihyroxyvitamin D3. Osteoblastic cells express L-type alpha1C Ca2+ channel isoforms. J Biol Chem 271:32981–32985

    CAS  PubMed  Google Scholar 

  • Moosmang S et al (2005) Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J Neurosci 25:9883–9892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morotti S, Grandi E, Summa A, Ginsburg KS, Bers DM (2012) Theoretical study of L-type Ca(2+) current inactivation kinetics during action potential repolarization and early afterdepolarizations. J Physiol 590:4465–4481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy JG et al (2014) AKAP-anchored PKA maintains neuronal L-type calcium channel activity and NFAT transcriptional signaling. Cell Rep 7:1577–1588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Napolitano C, Splawski I, Timothy KW, Bloise R, Priori SG (1993) In: Pagon RA et al (eds) GeneReviews(R), Seattle

    Google Scholar 

  • Narula N, Tester DJ, Paulmichl A, Maleszewski JJ, Ackerman MJ (2015) Post-mortem whole exome sequencing with gene-specific analysis for autopsy-negative sudden unexplained death in the young: a case series. Pediatr Cardiol 36:768–778

    PubMed  Google Scholar 

  • Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85:1205–1253

    CAS  PubMed  Google Scholar 

  • Niu J et al (2018) Allosteric regulators selectively prevent Ca(2+)-feedback of CaV and NaV channels. elife 7

    Google Scholar 

  • Ozawa J et al (2018) A novel CACNA1C mutation identified in a patient with Timothy syndrome without syndactyly exerts both marked loss- and gain-of-function effects. HeartRhythm Case Rep 4:273–277

    PubMed  PubMed Central  Google Scholar 

  • Pasca SP et al (2011) Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 17:1657–1662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pitt GS, Matsui M, Cao C (2021) Voltage-gated calcium channels in nonexcitable tissues. Annu Rev Physiol 83:183–203

    CAS  PubMed  Google Scholar 

  • Polster A et al (2018) Stac proteins suppress Ca(2+)-dependent inactivation of neuronal l-type Ca(2+) channels. J Neurosci 38:9215–9227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pouget JG et al (2019) Cross-disorder analysis of schizophrenia and 19 immune-mediated diseases identifies shared genetic risk. Hum Mol Genet 28:3498–3513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran KV et al (2013) Calcium influx through L-type CaV1.2 Ca2+ channels regulates mandibular development. J Clin Invest 123:1638–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raybaud A et al (2006) The role of the GX9GX3G motif in the gating of high voltage-activated Ca2+ channels. J Biol Chem 281:39424–39436

    CAS  PubMed  Google Scholar 

  • Reichenbach H, Meister EM, Theile H (1992) The heart-hand syndrome. A new variant of disorders of heart conduction and syndactylia including osseous changes in hands and feet. Kinderarztl Prax 60:54–56

    CAS  PubMed  Google Scholar 

  • Rodan LH et al (2021) Phenotypic expansion of CACNA1C-associated disorders to include isolated neurological manifestations. Genet Med 23:1922–1932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roussos P, Giakoumaki SG, Georgakopoulos A, Robakis NK, Bitsios P (2011) The CACNA1C and ANK3 risk alleles impact on affective personality traits and startle reactivity but not on cognition or gating in healthy males. Bipolar Disord 13:250–259

    PubMed  Google Scholar 

  • Sayad A et al (2019) Association study of sequence variants in voltage-gated Ca2+ channel subunit alpha-1C and autism spectrum disorders. Rep Biochem Mol Biol 8:56–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt A et al (2022) Post-mortem gene expression of calcium channels Cav1.2 and Cav1.3 in schizophrenia. Eur Arch Psychiatry Clin Neurosci 272:1135–1137

    PubMed  PubMed Central  Google Scholar 

  • Scholl UI et al (2013) Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 45:1050–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sepp R et al (2017) Timothy syndrome 1 genotype without syndactyly and major extracardiac manifestations. Am J Med Genet A 173:784–789

    CAS  PubMed  Google Scholar 

  • Shah DP, Baez-Escudero JL, Weisberg IL, Beshai JF, Burke MC (2010) Ranolazine safely decreases ventricular and atrial fibrillation in timothy syndrome (LQT8). Pacing Clin Electrophysiol

    Google Scholar 

  • Shah DP, Baez-Escudero JL, Weisberg IL, Beshai JF, Burke MC (2012) Ranolazine safely decreases ventricular and atrial fibrillation in Timothy syndrome (LQT8). Pacing Clin Electrophysiol 35:e62–e64

    PubMed  Google Scholar 

  • Shelley C, Whitt JP, Montgomery JR, Meredith AL (2013) Phosphorylation of a constitutive serine inhibits BK channel variants containing the alternate exon “SRKR”. J Gen Physiol 142:585–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng X et al (2012) Two mechanistically distinct effects of dihydropyridine nifedipine on CaV1.2 L-type Ca(2)(+) channels revealed by Timothy syndrome mutation. Eur J Pharmacol 685:15–23

    CAS  PubMed  Google Scholar 

  • Sinnegger-Brauns MJ et al (2009) Expression and 1,4-dihydropyridine-binding properties of brain L-type calcium channel isoforms. Mol Pharmacol 75:407–414

    CAS  PubMed  Google Scholar 

  • Sklar P et al (2008) Whole-genome association study of bipolar disorder. Mol Psychiatry 13:558–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soldatov NM (1992) Molecular diversity of L-type Ca2+ channel transcripts in human fibroblasts. Proc Natl Acad Sci U S A 89:4628–4632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song L et al (2015) Dual optical recordings for action potentials and calcium handling in induced pluripotent stem cell models of cardiac arrhythmias using genetically encoded fluorescent indicators. Stem Cells Transl Med 4:468–475

    PubMed  PubMed Central  Google Scholar 

  • Song L, Park SE, Isseroff Y, Morikawa K, Yazawa M (2017) Inhibition of CDK5 alleviates the cardiac phenotypes in timothy syndrome. Stem Cell Rep 9:50–57

    CAS  Google Scholar 

  • Splawski I et al (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31

    CAS  PubMed  Google Scholar 

  • Splawski I et al (2005) Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A 102:8089–8096. Discussion 8086–8088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stotz SC, Zamponi GW (2001) Identification of inactivation determinants in the domain IIS6 region of high voltage-activated calcium channels. J Biol Chem 276:33001–33010

    CAS  PubMed  Google Scholar 

  • Stotz SC, Hamid J, Spaetgens RL, Jarvis SE, Zamponi GW (2000) Fast inactivation of voltage-dependent calcium channels. A hinged-lid mechanism? J Biol Chem 275:24575–24582

    CAS  PubMed  Google Scholar 

  • Striessnig J (2021) Voltage-gated Ca(2+)-channel alpha1-subunit de novo missense mutations: gain or loss of function – implications for potential therapies. Front Synaptic Neurosci 13:634760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Striessnig J, Pinggera A, Kaur G, Bock G, Tuluc P (2014) L-type Ca(2+) channels in heart and brain. Wiley Interdiscip Rev Membr Transp Signal 3:15–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan PF et al (2009) Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry 14:359–375

    CAS  PubMed  Google Scholar 

  • Sutphin BS et al (2016) Molecular and functional characterization of rare CACNA1C variants in sudden unexplained death in the young. Congenit Heart Dis 11:683–692

    PubMed  Google Scholar 

  • Tadross MR, Ben Johny M, Yue DT (2010) Molecular endpoints of Ca2+/calmodulin- and voltage-dependent inactivation of Ca(v)1.3 channels. J Gen Physiol 135:197–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang ZZ et al (2004) Transcript scanning reveals novel and extensive splice variations in human l-type voltage-gated calcium channel, Cav1.2 alpha1 subunit. J Biol Chem 279:44335–44343

    CAS  PubMed  Google Scholar 

  • Terrillion CE et al (2017) Reduced levels of Cacna1c attenuate mesolimbic dopamine system function. Genes Brain Behav 16:495–505

    CAS  PubMed  Google Scholar 

  • Tunca Sahin G, Ergul Y (2018) A case report: is mexiletine usage effective in the shortening of QTC interval and improving the T-wave alternans in Timothy syndrome? Ann Noninvasive Electrocardiol 23:e12522

    PubMed  Google Scholar 

  • Wei XY et al (1991) Heterologous regulation of the cardiac Ca2+ channel alpha 1 subunit by skeletal muscle beta and gamma subunits. Implications for the structure of cardiac L-type Ca2+ channels. JBiolChem 266:21943–21947

    CAS  Google Scholar 

  • Wemhoner K et al (2015) Gain-of-function mutations in the calcium channel CACNA1C (Cav1.2) cause non-syndromic long-QT but not Timothy syndrome. J Mol Cell Cardiol 80:186–195

    PubMed  Google Scholar 

  • Wolf C et al (2014) CACNA1C genotype explains interindividual differences in amygdala volume among patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 264:93–102

    PubMed  Google Scholar 

  • Yarotskyy V, Elmslie KS (2007) Roscovitine, a cyclin-dependent kinase inhibitor, affects several gating mechanisms to inhibit cardiac L-type (Ca(V)1.2) calcium channels. Br J Pharmacol 152:386–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yarotskyy V, Gao G, Peterson BZ, Elmslie KS (2009) The Timothy syndrome mutation of cardiac CaV1.2 (L-type) channels: multiple altered gating mechanisms and pharmacological restoration of inactivation. J Physiol 587:551–565

    CAS  PubMed  Google Scholar 

  • Yarotskyy V et al (2010) Roscovitine binds to novel L-channel (CaV1.2) sites that separately affect activation and inactivation. J Biol Chem 285:43–53

    CAS  PubMed  Google Scholar 

  • Yazawa M et al (2011) Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471:230–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimizu T et al (2015) Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons. Mol Psychiatry 20:162–169

    CAS  PubMed  Google Scholar 

  • Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 67:821–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H et al (2021) CACNA1C rs1006737 SNP increases the risk of essential hypertension in both Chinese Han and ethnic Russian people of Northeast Asia. Medicine (Baltimore) 100:e24825

    CAS  PubMed  Google Scholar 

  • Zhu D et al (2019) CACNA1C (rs1006737) may be a susceptibility gene for schizophrenia: an updated meta-analysis. Brain Behav 9:e01292

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivy E. Dick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herold, K.G., Hussey, J.W., Dick, I.E. (2023). CACNA1C-Related Channelopathies. In: Striessnig, J. (eds) Voltage-gated Ca2+ Channels: Pharmacology, Modulation and their Role in Human Disease. Handbook of Experimental Pharmacology, vol 279. Springer, Cham. https://doi.org/10.1007/164_2022_624

Download citation

Publish with us

Policies and ethics