Skip to main content

Intracellular TLRs of Mast Cells in Innate and Acquired Immunity

  • Chapter
  • First Online:
Toll-like Receptors in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 276))

Abstract

Mast cells (MCs) distribute to interface tissues with environment, such as skin, airway, and gut mucosa, thereby functioning as the sentinel against invading allergens and pathogens. To respond to and exclude these external substances promptly, MCs possess granules containing inflammatory mediators, including heparin, proteases, tumor necrosis factor, and histamine, and produce these mediators as a consequence of degranulation within minutes of activation. As a delayed response to external substances, MCs de novo synthesize inflammatory mediators, such as cytokines and chemokines, by sensing pathogen- and damage-associated molecular patterns through their pattern recognition receptors, including Toll-like receptors (TLRs). A substantial number of studies have reported immune responses by MCs through surface TLR signaling, particularly TLR2 and TLR4. However, less attention has been paid to immune responses through nucleic acid-recognizing intracellular TLRs. Among intracellular TLRs, human and rodent MCs express TLR3, TLR7, and TLR9, but not TLR8. Some virus infections modulate intracellular TLR expression in MCs. MC-derived mediators, such as histamine, cysteinyl leukotrienes, LL-37, and the granulocyte-macrophage colony-stimulating factor, have also been reported to modulate intracellular TLR expression in an autocrine and/or paracrine fashion. Synthetic ligands for intracellular TLRs and some viruses are sensed by intracellular TLRs of MCs, leading to the production of inflammatory cytokines and chemokines including type I interferons. These MC responses initiate and facilitate innate responses and the subsequent recruitment of additional innate effector cells. MCs also associate with the regulation of adaptive immunity. In this overview, the expression of intracellular TLRs in MCs and the recognition of pathogens, including viruses, by intracellular TLRs in MCs were critically evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agier J, Zelechowska P, Kozlowska E, Brzezinska-Blaszczyk E (2016) Expression of surface and intracellular toll-like receptors by mature mast cells. Cent Eur J Immunol 41(4):333–338

    Article  CAS  PubMed  Google Scholar 

  • Agier J, Brzezinska-Blaszczyk E, Zelechowska P, Wiktorska M, Pietrzak J, Rozalska S (2018a) Cathelicidin LL-37 affects surface and intracellular toll-like receptor expression in tissue mast cells. J Immunol Res 2018:7357162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agier J, Rozalska S, Wiktorska M, Zelechowska P, Pastwinska J, Brzezinska-Blaszczyk E (2018b) The RLR/NLR expression and pro-inflammatory activity of tissue mast cells are regulated by cathelicidin LL-37 and defensin hBD-2. Sci Rep 8(1):11750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agier J, Brzezinska-Blaszczyk E, Witczak P, Kozlowska E, Zelechowska P (2021) The impact of TLR7 agonist R848 treatment on mast cell phenotype and activity. Cell Immunol 359:104241

    Article  CAS  PubMed  Google Scholar 

  • Ahmed Z, Kawamura T, Shimada S, Piguet V (2015) The role of human dendritic cells in HIV-1 infection. J Invest Dermatol 135(5):1225–1233

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Carbonell D, Garcia-Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R et al (2017) Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology 14(1):9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony RM, Rutitzky LI, Urban JF Jr, Stadecker MJ, Gause WC (2007) Protective immune mechanisms in helminth infection. Nat Rev Immunol 7(12):975–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki R, Kawamura T, Goshima F, Ogawa Y, Nakae S, Nakao A et al (2013) Mast cells play a key role in host defense against herpes simplex virus infection through TNF-alpha and IL-6 production. J Invest Dermatol 133(9):2170–2179

    Article  CAS  PubMed  Google Scholar 

  • Aoki R, Kawamura T, Goshima F, Ogawa Y, Nakae S, Moriishi K et al (2016) The Alarmin IL-33 derived from HSV-2-infected keratinocytes triggers mast cell-mediated antiviral innate immunity. J Invest Dermatol 136(6):1290–1292

    Article  CAS  PubMed  Google Scholar 

  • Ashour DS (2015) Toll-like receptor signaling in parasitic infections. Expert Rev Clin Immunol 11(6):771–780

    Article  CAS  PubMed  Google Scholar 

  • Asturias JA, Gomez-Bayon N, Arilla MC, Martinez A, Palacios R, Sanchez-Gascon F et al (1999) Molecular characterization of American cockroach tropomyosin (Periplaneta americana allergen 7), a cross-reactive allergen. J Immunol 162(7):4342–4348

    Article  CAS  PubMed  Google Scholar 

  • Avila M, Martinez-Juarez A, Ibarra-Sanchez A, Gonzalez-Espinosa C (2012) Lyn kinase controls TLR4-dependent IKK and MAPK activation modulating the activity of TRAF-6/TAK-1 protein complex in mast cells. Innate Immun 18(4):648–660

    Article  CAS  PubMed  Google Scholar 

  • Back M, Dahlen SE, Drazen JM, Evans JF, Serhan CN, Shimizu T et al (2011) International Union of Basic and Clinical Pharmacology. LXXXIV: leukotriene receptor nomenclature, distribution, and pathophysiological functions. Pharmacol Rev 63(3):539–584

    Article  CAS  PubMed  Google Scholar 

  • Bannert N, Farzan M, Friend DS, Ochi H, Price KS, Sodroski J et al (2001) Human mast cell progenitors can be infected by macrophagetropic human immunodeficiency virus type 1 and retain virus with maturation in vitro. J Virol 75(22):10808–10814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker M, Lemmermann NA, Ebert S, Baars P, Renzaho A, Podlech J et al (2015) Mast cells as rapid innate sensors of cytomegalovirus by TLR3/TRIF signaling-dependent and -independent mechanisms. Cell Mol Immunol 12(2):192–201

    Article  CAS  PubMed  Google Scholar 

  • Biondo C, Malara A, Costa A, Signorino G, Cardile F, Midiri A et al (2012) Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis. Eur J Immunol 42(10):2632–2643

    Article  CAS  PubMed  Google Scholar 

  • Brown MG, McAlpine SM, Huang YY, Haidl ID, Al-Afif A, Marshall JS et al (2012) RNA sensors enable human mast cell anti-viral chemokine production and IFN-mediated protection in response to antibody-enhanced dengue virus infection. PLoS One 7(3):e34055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne SN, Limon-Flores AY, Ullrich SE (2008) Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. J Immunol 180(7):4648–4655

    Article  CAS  PubMed  Google Scholar 

  • Cardamone C, Parente R, Feo GD, Triggiani M (2016) Mast cells as effector cells of innate immunity and regulators of adaptive immunity. Immunol Lett 178:10–14

    Article  CAS  PubMed  Google Scholar 

  • Carroll-Portillo A, Cannon JL, te Riet J, Holmes A, Kawakami Y, Kawakami T et al (2015) Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation. J Cell Biol 210(5):851–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan MP, Onji M, Fukui R, Kawane K, Shibata T, Saitoh S et al (2015) DNase II-dependent DNA digestion is required for DNA sensing by TLR9. Nat Commun 6:5853

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Wang Q, Li G, Banga R, Ma J, Yu H et al (2018) TLR3 agonist and CD40-targeting vaccination induces immune responses and reduces HIV-1 reservoirs. J Clin Invest 128(10):4387–4396

    Article  PubMed  PubMed Central  Google Scholar 

  • Cildir G, Pant H, Lopez AF, Tergaonkar V (2017) The transcriptional program, functional heterogeneity, and clinical targeting of mast cells. J Exp Med 214(9):2491–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti P, Caraffa A, Gallenga CE, Ross R, Kritas SK, Frydas I et al (2020a) Coronavirus-19 (SARS-CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: a promising inhibitory strategy. J Biol Regul Homeost Agents 34(6):1971–1975

    CAS  PubMed  Google Scholar 

  • Conti P, Caraffa A, Tete G, Gallenga CE, Ross R, Kritas SK et al (2020b) Mast cells activated by SARS-CoV-2 release histamine which increases IL-1 levels causing cytokine storm and inflammatory reaction in COVID-19. J Biol Regul Homeost Agents 34(5):1629–1632

    CAS  PubMed  Google Scholar 

  • De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J et al (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192(7):1069–1074

    Article  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S (2004) Reis e Sousa C. innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303(5663):1529–1531

    Article  CAS  PubMed  Google Scholar 

  • Dietrich N, Rohde M, Geffers R, Kroger A, Hauser H, Weiss S et al (2010) Mast cells elicit proinflammatory but not type I interferon responses upon activation of TLRs by bacteria. Proc Natl Acad Sci U S A 107(19):8748–8753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doener F, Michel A, Reuter S, Friedrich P, Bohm L, Relle M et al (2013) Mast cell-derived mediators promote murine neutrophil effector functions. Int Immunol 25(10):553–561

    Article  CAS  PubMed  Google Scholar 

  • Drobits B, Holcmann M, Amberg N, Swiecki M, Grundtner R, Hammer M et al (2012) Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest 122(2):575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudeck A, Suender CA, Kostka SL, von Stebut E, Maurer M (2011) Mast cells promote Th1 and Th17 responses by modulating dendritic cell maturation and function. Eur J Immunol 41(7):1883–1893

    Article  CAS  PubMed  Google Scholar 

  • Dudeck J, Medyukhina A, Frobel J, Svensson CM, Kotrba J, Gerlach M et al (2017) Mast cells acquire MHCII from dendritic cells during skin inflammation. J Exp Med 214(12):3791–3811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudeck A, Koberle M, Goldmann O, Meyer N, Dudeck J, Lemmens S et al (2019) Mast cells as protectors of health. J Allergy Clin Immunol 144(4S):S4–S18

    Article  CAS  PubMed  Google Scholar 

  • Echtenacher B, Mannel DN, Hultner L (1996) Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381(6577):75–77

    Article  CAS  PubMed  Google Scholar 

  • Espinosa E, Valitutti S, Laroche M, Laurent C, Apoil PA, Hermine O et al (2018) Hydroxychloroquine as a novel therapeutic approach in mast cell activation diseases. Clin Immunol 194:75–79

    Article  CAS  PubMed  Google Scholar 

  • Fox RI (1993) Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum 23(2 Suppl 1):82–91

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Ushio H, Kawasaki J, Niyonsaba F, Takeuchi M, Baba T et al (2013) Expression and functional characterization of retinoic acid-inducible gene-I-like receptors of mast cells in response to viral infection. J Innate Immun 5(2):163–173

    Article  CAS  PubMed  Google Scholar 

  • Gebremeskel S, Schanin J, Coyle KM, Butuci M, Luu T, Brock EC et al (2021) Mast cell and eosinophil activation are associated with COVID-19 and TLR-mediated viral inflammation: implications for an anti-siglec-8 antibody. Front Immunol 12:650331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentek R, Ghigo C, Hoeffel G, Bulle MJ, Msallam R, Gautier G et al (2018) Hemogenic endothelial fate mapping reveals dual developmental origin of mast cells. Immunity 48(6):1160–71.e5

    Article  CAS  PubMed  Google Scholar 

  • Gilchrest H, Cheewatrakoolpong B, Billah M, Egan RW, Anthes JC, Greenfeder S (2003) Human cord blood-derived mast cells synthesize and release I-309 in response to IgE. Life Sci 73(20):2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Gordon JR, Galli SJ (1991) Release of both preformed and newly synthesized tumor necrosis factor alpha (TNF-alpha)/cachectin by mouse mast cells stimulated via the Fc epsilon RI. A mechanism for the sustained action of mast cell-derived TNF-alpha during IgE-dependent biological responses. J Exp Med 174(1):103–107

    Article  CAS  PubMed  Google Scholar 

  • Hacker H, Mischak H, Miethke T, Liptay S, Schmid R, Sparwasser T et al (1998) CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 17(21):6230–6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris NL, Loke P (2017) Recent advances in type-2-cell-mediated immunity: insights from helminth infection. Immunity 47(6):1024–1036

    Article  CAS  PubMed  Google Scholar 

  • Hayashi F, Means TK, Luster AD (2003) Toll-like receptors stimulate human neutrophil function. Blood 102(7):2660–2669

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Cottam HB, Chan M, Jin G, Tawatao RI, Crain B et al (2008) Mast cell-dependent anorexia and hypothermia induced by mucosal activation of toll-like receptor 7. Am J Physiol Regul Integr Comp Physiol 295(1):R123–R132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Yao S, Crain B, Chan M, Cottam HB, Lao F et al (2012) Mast cell-mediated inhibition of abdominal neutrophil inflammation by a PEGylated TLR7 ligand. Mediat Inflamm 2012:262394

    Article  CAS  Google Scholar 

  • Heib V, Becker M, Warger T, Rechtsteiner G, Tertilt C, Klein M et al (2007) Mast cells are crucial for early inflammation, migration of Langerhans cells, and CTL responses following topical application of TLR7 ligand in mice. Blood 110(3):946–953

    Article  CAS  PubMed  Google Scholar 

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303(5663):1526–1529

    Article  CAS  PubMed  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al (2000) A toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745

    Article  CAS  PubMed  Google Scholar 

  • Hepworth MR, Maurer M, Hartmann S (2012) Regulation of type 2 immunity to helminths by mast cells. Gut Microbes 3(5):476–481

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO et al (2003) Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424(6950):743–748

    Article  CAS  PubMed  Google Scholar 

  • Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B et al (2012) Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 209(6):1167–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11(3):263–270

    Article  CAS  PubMed  Google Scholar 

  • Igawa S, Di Nardo A (2017) Skin microbiome and mast cells. Transl Res 184:68–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikeda RK, Miller M, Nayar J, Walker L, Cho JY, McElwain K et al (2003) Accumulation of peribronchial mast cells in a mouse model of ovalbumin allergen induced chronic airway inflammation: modulation by immunostimulatory DNA sequences. J Immunol 171(9):4860–4867

    Article  CAS  PubMed  Google Scholar 

  • Inoue J, Aramaki Y (2007) Suppression of skin lesions by transdermal application of CpG-oligodeoxynucleotides in NC/Nga mice, a model of human atopic dermatitis. J Immunol 178(1):584–591

    Article  CAS  PubMed  Google Scholar 

  • Irani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB (1986) Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci U S A 83(12):4464–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H et al (2002) Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3(6):499

    Article  CAS  PubMed  Google Scholar 

  • Karpov V, Ilarraza R, Catalli A, Kulka M (2018) Cysteinyl leukotrienes C4 and D4 downregulate human mast cell expression of toll-like receptors 1 through 7. J Biol Regul Homeost Agents 32(2):233–239

    CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143:1–20

    Article  CAS  PubMed  Google Scholar 

  • Kawamura T, Kurtz SE, Blauvelt A, Shimada S (2005) The role of Langerhans cells in the sexual transmission of HIV. J Dermatol Sci 40(3):147–155

    Article  CAS  PubMed  Google Scholar 

  • Kawamura T, Ogawa Y, Aoki R, Shimada S (2014) Innate and intrinsic antiviral immunity in skin. J Dermatol Sci 75(3):159–166

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keck S, Muller I, Fejer G, Savic I, Tchaptchet S, Nielsen PJ et al (2011) Absence of TRIF signaling in lipopolysaccharide-stimulated murine mast cells. J Immunol 186(9):5478–5488

    Article  CAS  PubMed  Google Scholar 

  • Koblansky AA, Jankovic D, Oh H, Hieny S, Sungnak W, Mathur R et al (2013) Recognition of profilin by toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity 38(1):119–130

    Article  CAS  PubMed  Google Scholar 

  • Krug A, French AR, Barchet W, Fischer JA, Dzionek A, Pingel JT et al (2004a) TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21(1):107–119

    Article  CAS  PubMed  Google Scholar 

  • Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M (2004b) Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103(4):1433–1437

    Article  CAS  PubMed  Google Scholar 

  • Kulka M, Befus AD (2003) The dynamic and complex role of mast cells in allergic disease. Arch Immunol Ther Exp 51(2):111–120

    CAS  Google Scholar 

  • Kulka M, Metcalfe DD (2006) TLR3 activation inhibits human mast cell attachment to fibronectin and vitronectin. Mol Immunol 43(10):1579–1586

    Article  CAS  PubMed  Google Scholar 

  • Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD (2004) Activation of mast cells by double-stranded RNA: evidence for activation through toll-like receptor 3. J Allergy Clin Immunol 114(1):174–182

    Article  CAS  PubMed  Google Scholar 

  • Kuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R (2011) Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 186(8):4794–4804

    Article  CAS  PubMed  Google Scholar 

  • Lappalainen J, Rintahaka J, Kovanen PT, Matikainen S, Eklund KK (2013) Intracellular RNA recognition pathway activates strong anti-viral response in human mast cells. Clin Exp Immunol 172(1):121–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF et al (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5(2):190–198

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li L, Wadley R, Reddel SW, Qi JC, Archis C et al (2001) Mast cells/basophils in the peripheral blood of allergic individuals who are HIV-1 susceptible due to their surface expression of CD4 and the chemokine receptors CCR3, CCR5, and CXCR4. Blood 97(11):3484–3490

    Article  CAS  PubMed  Google Scholar 

  • Lotfi-Emran S, Ward BR, Le QT, Pozez AL, Manjili MH, Woodfolk JA et al (2018) Human mast cells present antigen to autologous CD4(+) T cells. J Allergy Clin Immunol 141(1):311–321.e10

    Article  CAS  PubMed  Google Scholar 

  • Love KS, Lakshmanan RR, Butterfield JH, Fox CC (1996) IFN-gamma-stimulated enhancement of MHC class II antigen expression by the human mast cell line HMC-1. Cell Immunol 170(1):85–90

    Article  CAS  PubMed  Google Scholar 

  • Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A (2003) Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198(3):513–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW et al (2004) Recognition of single-stranded RNA viruses by toll-like receptor 7. Proc Natl Acad Sci U S A 101(15):5598–5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macedo AB, Novis CL, De Assis CM, Sorensen ES, Moszczynski P, Huang SH et al (2018) Dual TLR2 and TLR7 agonists as HIV latency-reversing agents. JCI Insight 3(19):e122673

    Article  PubMed Central  Google Scholar 

  • Malaviya R, Ikeda T, Ross E, Abraham SN (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 381(6577):77–80

    Article  CAS  PubMed  Google Scholar 

  • Mancuso G, Gambuzza M, Midiri A, Biondo C, Papasergi S, Akira S et al (2009) Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nat Immunol 10(6):587–594

    Article  CAS  PubMed  Google Scholar 

  • Marshall JS, King CA, McCurdy JD (2003a) Mast cell cytokine and chemokine responses to bacterial and viral infection. Curr Pharm Des 9(1):11–24

    Article  CAS  PubMed  Google Scholar 

  • Marshall JS, McCurdy JD, Olynych T (2003b) Toll-like receptor-mediated activation of mast cells: implications for allergic disease? Int Arch Allergy Immunol 132(2):87–97

    Article  CAS  PubMed  Google Scholar 

  • Marshall JS, Portales-Cervantes L, Leong E (2019) Mast cell responses to viruses and pathogen products. Int J Mol Sci 20(17):4241

    Article  CAS  PubMed Central  Google Scholar 

  • Matsushima H, Yamada N, Matsue H, Shimada S (2004) TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol 173(1):531–541

    Article  CAS  PubMed  Google Scholar 

  • McCurdy JD, Olynych TJ, Maher LH, Marshall JS (2003) Cutting edge: distinct toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. J Immunol 170(4):1625–1629

    Article  CAS  PubMed  Google Scholar 

  • Meng D, Huo C, Wang M, Xiao J, Liu B, Wei T et al (2016) Influenza a viruses replicate productively in mouse mastocytoma cells (P815) and trigger pro-inflammatory cytokine and chemokine production through TLR3 signaling pathway. Front Microbiol 7:2130

    PubMed  Google Scholar 

  • Miyake K, Shiozawa N, Nagao T, Yoshikawa S, Yamanishi Y, Karasuyama H (2017) Trogocytosis of peptide-MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils. Proc Natl Acad Sci U S A 114(5):1111–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motakis E, Guhl S, Ishizu Y, Itoh M, Kawaji H, de Hoon M et al (2014) Redefinition of the human mast cell transcriptome by deep-CAGE sequencing. Blood 123(17):e58–e67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai K, Tsai M, Starkl P, Marichal T, Galli SJ (2016) IgE and mast cells in host defense against parasites and venoms. Semin Immunopathol 38(5):581–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai K, Tsai M, Saito H, Galli SJ (2018) Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 282(1):121–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Huda S, Sinha Babu SP (2019) Toll-like receptor polymorphism in host immune response to infectious diseases: a review. Scand J Immunol 90(1):e12771

    Article  CAS  PubMed  Google Scholar 

  • Muller T, Hamm S, Bauer S (2008) TLR9-mediated recognition of DNA. Handb Exp Pharmacol 183:51–70

    Article  Google Scholar 

  • Muller-Eberhard HJ (1986) The membrane attack complex of complement. Annu Rev Immunol 4:503–528

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Suzuki K, Niyonsaba F, Tada H, Reich J, Tamura H et al (2018) MrgX2mediated internalization of LL37 and degranulation of human LAD2 mast cells. Mol Med Rep 18(6):4951–4959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa Y, Kawamura T, Matsuzawa T, Aoki R, Shimada S (2014) Recruitment of plasmacytoid dendritic cells to skin regulates treatment responsiveness of actinic keratosis to imiquimod. J Dermatol Sci 76(1):67–69

    Article  CAS  PubMed  Google Scholar 

  • O'Mahony DS, Pham U, Iyer R, Hawn TR, Liles WC (2008) Differential constitutive and cytokine-modulated expression of human toll-like receptors in primary neutrophils, monocytes, and macrophages. Int J Med Sci 5(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orinska Z, Bulanova E, Budagian V, Metz M, Maurer M, Bulfone-Paus S (2005) TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood 106(3):978–987

    Article  CAS  PubMed  Google Scholar 

  • Otsuka A, Kubo M, Honda T, Egawa G, Nakajima S, Tanizaki H et al (2011) Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity. PLoS One 6(9):e25538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyama S, Funasaka Y, Tsuchiya SI, Kawana S, Saeki H (2017) Increased number of mast cells in the dermis in actinic keratosis lesions effectively treated with imiquimod. J Dermatol 44(8):944–949

    Article  CAS  PubMed  Google Scholar 

  • Paiva DD, Morais JC, Pilotto J, Veloso V, Duarte F, Lenzi HL (1996) Spectrum of morphologic changes of lymph nodes in HIV infection. Mem Inst Oswaldo Cruz 91(3):371–379

    Article  CAS  PubMed  Google Scholar 

  • Petzke MM, Brooks A, Krupna MA, Mordue D, Schwartz I (2009) Recognition of Borrelia burgdorferi, the Lyme disease spirochete, by TLR7 and TLR9 induces a type I IFN response by human immune cells. J Immunol 183(8):5279–5292

    Article  CAS  PubMed  Google Scholar 

  • Piliponsky AM, Romani L (2018) The contribution of mast cells to bacterial and fungal infection immunity. Immunol Rev 282(1):188–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinke KH, Lima HG, Cunha FQ, Lara VS (2016) Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1. Immunobiology 221(2):220–227

    Article  CAS  PubMed  Google Scholar 

  • Portales-Cervantes L, Haidl ID, Lee PW, Marshall JS (2017) Virus-infected human mast cells enhance natural killer cell functions. J Innate Immun 9(1):94–108

    Article  CAS  PubMed  Google Scholar 

  • Prodeus AP, Zhou X, Maurer M, Galli SJ, Carroll MC (1997) Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature 390(6656):172–175

    Article  CAS  PubMed  Google Scholar 

  • Ritter M, Mennerich D, Weith A, Seither P (2005) Characterization of toll-like receptors in primary lung epithelial cells: strong impact of the TLR3 ligand poly(I:C) on the regulation of toll-like receptors, adaptor proteins and inflammatory response. J Inflamm (Lond) 2:16

    Article  CAS  Google Scholar 

  • Sandig H, Bulfone-Paus S (2012) TLR signaling in mast cells: common and unique features. Front Immunol 3:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandig H, Jobbings CE, Roldan NG, Whittingham-Dowd JK, Orinska Z, Takeuchi O et al (2013) IL-33 causes selective mast cell tolerance to bacterial cell wall products by inducing IRAK1 degradation. Eur J Immunol 43(4):979–988

    Article  CAS  PubMed  Google Scholar 

  • Santos AB, Chapman MD, Aalberse RC, Vailes LD, Ferriani VP, Oliver C et al (1999) Cockroach allergens and asthma in Brazil: identification of tropomyosin as a major allergen with potential cross-reactivity with mite and shrimp allergens. J Allergy Clin Immunol 104(2 Pt 1):329–337

    Article  CAS  PubMed  Google Scholar 

  • Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP (2004) Activation of airway epithelial cells by toll-like receptor agonists. Am J Respir Cell Mol Biol 31(3):358–364

    Article  CAS  PubMed  Google Scholar 

  • Shelburne CP, Nakano H, St John AL, Chan C, McLachlan JB, Gunn MD et al (2009) Mast cells augment adaptive immunity by orchestrating dendritic cell trafficking through infected tissues. Cell Host Microbe 6(4):331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimomatsu T, Kanazawa N, Mikita N, Nakatani Y, Li HJ, Inaba Y et al (2016) The effect of hydroxychloroquine on lupus erythematosus-like skin lesions in MRL/lpr mice. Mod Rheumatol 26(5):744–748

    Article  CAS  PubMed  Google Scholar 

  • Sorensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS et al (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97(12):3951–3959

    Article  CAS  PubMed  Google Scholar 

  • St John AL, Abraham SN (2013) Innate immunity and its regulation by mast cells. J Immunol 190(9):4458–4463

    Article  CAS  PubMed  Google Scholar 

  • St John AL, Rathore AP, Yap H, Ng ML, Metcalfe DD, Vasudevan SG et al (2011) Immune surveillance by mast cells during dengue infection promotes natural killer (NK) and NKT-cell recruitment and viral clearance. Proc Natl Acad Sci U S A 108(22):9190–9195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staser K, Yang FC, Clapp DW (2010) Mast cells and the neurofibroma microenvironment. Blood 116(2):157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian H, Gupta K, Guo Q, Price R, Ali H (2011) Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: resistance to receptor phosphorylation, desensitization, and internalization. J Biol Chem 286(52):44739–44749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundstrom JB, Ellis JE, Hair GA, Kirshenbaum AS, Metcalfe DD, Yi H et al (2007) Human tissue mast cells are an inducible reservoir of persistent HIV infection. Blood 109(12):5293–5300

    Article  CAS  PubMed  Google Scholar 

  • Suto H, Nakae S, Kakurai M, Sedgwick JD, Tsai M, Galli SJ (2006) Mast cell-associated TNF promotes dendritic cell migration. J Immunol 176(7):4102–4112

    Article  CAS  PubMed  Google Scholar 

  • Suurmond J, van Heemst J, van Heiningen J, Dorjee AL, Schilham MW, van der Beek FB et al (2013) Communication between human mast cells and CD4(+) T cells through antigen-dependent interactions. Eur J Immunol 43(7):1758–1768

    Article  CAS  PubMed  Google Scholar 

  • Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, Sieling PA et al (2001) Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291(5508):1544–1547

    Article  CAS  PubMed  Google Scholar 

  • Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y et al (2005) Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 175(7):4662–4668

    Article  CAS  PubMed  Google Scholar 

  • Tomasinsig L, Pizzirani C, Skerlavaj B, Pellegatti P, Gulinelli S, Tossi A et al (2008) The human cathelicidin LL-37 modulates the activities of the P2X7 receptor in a structure-dependent manner. J Biol Chem 283(45):30471–30481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres A, Storey L, Anders M, Miller RL, Bulbulian BJ, Jin J et al (2007) Microarray analysis of aberrant gene expression in actinic keratosis: effect of the toll-like receptor-7 agonist imiquimod. Br J Dermatol 157(6):1132–1147

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui-Takeuchi M, Ushio H, Fukuda M, Yamada T, Niyonsaba F, Okumura K et al (2015) Roles of retinoic acid-inducible gene-I-like receptors (RLRs), toll-like receptor (TLR) 3 and 2'-5' oligoadenylate synthetase as viral recognition receptors on human mast cells in response to viral infection. Immunol Res 61(3):240–249

    Article  CAS  PubMed  Google Scholar 

  • van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD et al (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182(9):5836–5845

    Article  CAS  PubMed  Google Scholar 

  • Vestergaard C, Yoneyama H, Matsushima K (2000) The NC/Nga mouse: a model for atopic dermatitis. Mol Med Today 6(5):209–210

    Article  CAS  PubMed  Google Scholar 

  • von Kockritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A, Rohde M et al (2008) Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111(6):3070–3080

    Article  CAS  Google Scholar 

  • Vosskuhl K, Greten TF, Manns MP, Korangy F, Wedemeyer J (2010) Lipopolysaccharide-mediated mast cell activation induces IFN-gamma secretion by NK cells. J Immunol 185(1):119–125

    Article  CAS  PubMed  Google Scholar 

  • Vukman KV, Lalor R, Aldridge A, O'Neill SM (2016) Mast cells: new therapeutic target in helminth immune modulation. Parasite Immunol 38(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Wang HW, Tedla N, Lloyd AR, Wakefield D, McNeil PH (1998) Mast cell activation and migration to lymph nodes during induction of an immune response in mice. J Clin Invest 102(8):1617–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR (2006) Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80(10):5059–5064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witczak P, Pietrzak A, Wodz K, Brzezinska-Blaszczyk E (2014) Mast cells generate cysteinyl leukotrienes and interferon-beta as well as evince impaired IgE-dependent degranulation upon TLR7 engagement. Indian J Exp Biol 52(6):589–596

    CAS  PubMed  Google Scholar 

  • Witczak P, Brzezinska-Blaszczyk E, Agier J (2020) The response of tissue mast cells to TLR3 ligand poly(I:C) treatment. J Immunol Res 2020:2140694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie G, Wang F, Peng X, Liang Y, Yang H, Li L (2018) Modulation of mast cell toll-like receptor 3 expression and cytokines release by histamine. Cell Physiol Biochem 46(6):2401–2411

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Matsushima H, Tagaya Y, Shimada S, Katz SI (2003) Generation of a large number of connective tissue type mast cells by culture of murine fetal skin cells. J Invest Dermatol 121(6):1425–1432

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Wei J, Zhang H, Lin L, Zhang W, He S (2009) Upregulation of toll-like receptor (TLR) expression and release of cytokines from P815 mast cells by GM-CSF. BMC Cell Biol 10:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Kong X, Wei J, Liu C, Song W, Zhang W et al (2012) Cockroach allergen Per a 7 down-regulates expression of toll-like receptor 9 and IL-12 release from P815 cells through PI3K and MAPK signaling pathways. Cell Physiol Biochem 29(3–4):561–570

    Article  CAS  PubMed  Google Scholar 

  • Yokogawa M, Takaishi M, Nakajima K, Kamijima R, Fujimoto C, Kataoka S et al (2014) Epicutaneous application of toll-like receptor 7 agonists leads to systemic autoimmunity in wild-type mice: a new model of systemic lupus erythematosus. Arthritis Rheumatol 66(3):694–706

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka M, Fukuishi N, Iriguchi S, Ohsaki K, Yamanobe H, Inukai A et al (2007) Lipoteichoic acid downregulates FcepsilonRI expression on human mast cells through Toll-like receptor 2. J Allergy Clin Immunol 120(2):452–461

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Zhang Y, Zhang Y, Lai Y, Chen W, Xiao Z et al (2017) LL-37-induced human mast cell activation through G protein-coupled receptor MrgX2. Int Immunopharmacol 49:6–12

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Leung PC, Woo KS, Chen GG, Wong YO, Liu SX et al (2004) Inhibitory effects of budesonide, desloratadine and dexamethasone on cytokine release from human mast cell line (HMC-1). Inflamm Res 53(12):664–669

    Article  CAS  PubMed  Google Scholar 

  • Zhu FG, Marshall JS (2001) CpG-containing oligodeoxynucleotides induce TNF-alpha and IL-6 production but not degranulation from murine bone marrow-derived mast cells. J Leukoc Biol 69(2):253–262

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank all the colleagues of our department, in particular, the former colleagues who were engaged in MC research: Rui Aoki, Hironori Matsushima, Nobuo Yamada, and Hiroyuki Matsue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youichi Ogawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogawa, Y., Kinoshita, M., Kawamura, T., Shimada, S. (2021). Intracellular TLRs of Mast Cells in Innate and Acquired Immunity. In: Kumar, V. (eds) Toll-like Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 276. Springer, Cham. https://doi.org/10.1007/164_2021_540

Download citation

Publish with us

Policies and ethics