Skip to main content

WNT Signalling in Osteoarthritis and Its Pharmacological Targeting

  • Chapter
  • First Online:
Pharmacology of the WNT Signaling System

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 269))

Abstract

Osteoarthritis (OA) is a highly disabling musculoskeletal condition affecting millions of people worldwide. OA is characterised by progressive destruction and irreversible morphological changes of joint tissues and architecture. At molecular level, de-regulation of several pathways contributes to the disruption of tissue homeostasis in the joint. Overactivation of the WNT/β-catenin signalling pathway has been associated with degenerative processes in OA. However, the multiple layers of complexity in the modulation of the signalling and the still insufficient knowledge of the specific molecular drivers of pathogenetic mechanisms have made difficult the pharmacological targeting of this pathway for therapeutic purposes. This review aims to provide an overview of the WNT/β-catenin signalling in OA with a particular focus on its role in the articular cartilage. Pathway components whose targeting showed therapeutic potential will be highlighted and described. A specific section will be dedicated to Lorecivivint, the first inhibitor of the β-catenin-dependent pathway currently in phase III clinical trial as OA-modifying agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archer CW, Francis-West P (2003) The chondrocyte. Int J Biochem Cell Biol 35:401–404

    Article  CAS  PubMed  Google Scholar 

  • Bastakoty D, Saraswati S, Cates J, Lee E, Nanney LB, Young PP (2015) Inhibition of/β-catenin pathway promotes regenerative repair of cutaneous and cartilage injury. FASEB J 29:4881–4892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blom AB, Brockbank SM, van Lent PL, van Beuningen HM, Geurts J, Takahashi N, van der Kraan PM, van de Loo FA, Schreurs BW, Clements K, Newham P, van den Berg WB (2009) Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1. Arthritis Rheum 60:501–512

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz W, Funck-Brentano T, Lin H, Marty C, Ea HK, Hay E, Cohen-Solal M (2015) Loss of sclerostin promotes osteoarthritis in mice via β-catenin-dependent and -independent Wnt pathways. Arthritis Res Ther 17:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Castano-Betancourt MC, Evans DS, Ramos YF, Boer CG, Metrustry S, Liu Y, den Hollander W, van Rooij J, Kraus VB, Yau MS, Mitchell BD, Muir K, Hofman A, Doherty M, Doherty S, Zhang W, Kraaij R, Rivadeneira F, Barrett-Connor E, Maciewicz RA, Arden N, Nelissen RG, Kloppenburg M, Jordan JM, Nevitt MC, Slagboom EP, Hart DJ, Lafeber F, Styrkarsdottir U, Zeggini E, Evangelou E, Spector TD, Uitterlinden AG, Lane NE, Meulenbelt I, Valdes AM, van Meurs JB (2016) Novel genetic variants for cartilage thickness and hip osteoarthritis. PLoS Genet 12:e1006260

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan BY, Fuller ES, Russell AK, Smith SM, Smith MM, Jackson MT, Cake MA, Read RA, Bateman JF, Sambrook PN, Little CB (2011) Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthr Cartil 19:874–885

    Article  CAS  Google Scholar 

  • Chang JC, Christiansen BA, Murugesh DK, Sebastian A, Hum NR, Collette NM, Hatsell S, Economides AN, Blanchette CD, Loots GG (2018) SOST/Sclerostin improves posttraumatic osteoarthritis and inhibits MMP2/3 expression after injury. J Bone Miner Res 33:1105–1113

    Article  PubMed  Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  PubMed  Google Scholar 

  • Cornelis FMF, de Roover A, Storms L, Hens A, Lories RJ, Monteagudo S (2019) Increased susceptibility to develop spontaneous and post-traumatic osteoarthritis in Dot1l-deficient mice. Osteoarthr Cartil 27:513–525

    Article  CAS  Google Scholar 

  • Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H (2020) Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine 29–30:100587

    Article  PubMed  PubMed Central  Google Scholar 

  • Dao DY, Yang X, Chen D, Zuscik M, O'Keefe RJ (2007) Axin1 and Axin2 are regulated by TGF- and mediate cross-talk between TGF- and Wnt signaling pathways. Ann N Y Acad Sci 1116:82–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dell'Accio F, De Bari C, Luyten FP (2001) Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis Rheum 44:1608–1619

    Article  CAS  PubMed  Google Scholar 

  • Dell'Accio F, De Bari C, El Tawil NM, Barone F, Mitsiadis TA, O'Dowd J, Pitzalis C (2006) Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res Ther 8:R139

    Article  PubMed  PubMed Central  Google Scholar 

  • Dell'accio F, De Bari C, Eltawil NM, Vanhummelen P, Pitzalis C (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 58:1410–1421

    Article  CAS  PubMed  Google Scholar 

  • Deng Q, Li P, Che M, Liu J, Biswas S, Ma G, He L, Wei Z, Zhang Z, Yang Y, Liu H, Li B (2019) Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-catenin. elife 8:e50208

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmukh V, Hu H, Barroga C, Bossard C, Kc S, Dellamary L, Stewart J, Chiu K, Ibanez M, Pedraza M, Seo T, Do L, Cho S, Cahiwat J, Tam B, Tambiah JRS, Hood J, Lane NE, Yazici Y (2018) A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthr Cartil 26:18–27

    Article  CAS  Google Scholar 

  • Dickinson SC, Sutton CA, Brady K, Salerno A, Katopodi T, Williams RL, West CC, Evseenko D, Wu L, Pang S, Ferro de Godoy R, Goodship AE, Peault B, Blom AW, Kafienah W, Hollander AP (2017) The Wnt5a receptor, receptor tyrosine kinase-like orphan receptor 2, is a predictive cell surface marker of human mesenchymal stem cells with an enhanced capacity for chondrogenic differentiation. Stem Cells 35:2280–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Lu W, Dai C, Huang W, Liu F, Shan W, Cheng C, Xu J, Yin Z, He W (2020) The CRD of frizzled 7 exhibits chondroprotective effects in osteoarthritis via inhibition of the canonical Wnt3a/β-catenin signaling pathway. Int Immunopharmacol 82:106367

    Article  CAS  PubMed  Google Scholar 

  • Eldridge SE, Barawi A, Wang H, Roelofs AJ, Kaneva M, Guan Z, Lydon H, Thomas BL, Thorup AS, Fernandez BF, Caxaria S, Strachan D, Ali A, Shanmuganathan K, Pitzalis C, Whiteford JR, Henson F, McCaskie AW, De Bari C, Dell'Accio F (2020) Agrin induces long-term osteochondral regeneration by supporting repair morphogenesis. Sci Transl Med 12(559):eaax9086

    Article  CAS  PubMed  Google Scholar 

  • Elsaid KA, Jay GD, Warman ML, Rhee DK, Chichester CO (2005) Association of articular cartilage degradation and loss of boundary-lubricating ability of synovial fluid following injury and inflammatory arthritis. Arthritis Rheum 52:1746–1755

    Article  CAS  PubMed  Google Scholar 

  • Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Oei L, Albagha OM, Amin N, Kemp JP, Koller DL, Li G, Liu CT, Minster RL, Moayyeri A, Vandenput L, Willner D, Xiao SM, Yerges-Armstrong LM, Zheng HF, Alonso N, Eriksson J, Kammerer CM, Kaptoge SK, Leo PJ, Thorleifsson G, Wilson SG, Wilson JF, Aalto V, Alen M, Aragaki AK, Aspelund T, Center JR, Dailiana Z, Duggan DJ, Garcia M, Garcia-Giralt N, Giroux S, Hallmans G, Hocking LJ, Husted LB, Jameson KA, Khusainova R, Kim GS, Kooperberg C, Koromila T, Kruk M, Laaksonen M, Lacroix AZ, Lee SH, Leung PC, Lewis JR, Masi L, Mencej-Bedrac S, Nguyen TV, Nogues X, Patel MS, Prezelj J, Rose LM, Scollen S, Siggeirsdottir K, Smith AV, Svensson O, Trompet S, Trummer O, van Schoor NM, Woo J, Zhu K, Balcells S, Brandi ML, Buckley BM, Cheng S, Christiansen C, Cooper C, Dedoussis G, Ford I, Frost M, Goltzman D, Gonzalez-Macias J, Kahonen M, Karlsson M, Khusnutdinova E, Koh JM, Kollia P, Langdahl BL, Leslie WD, Lips P, Ljunggren O, Lorenc RS, Marc J, Mellstrom D, Obermayer-Pietsch B, Olmos JM, Pettersson-Kymmer U, Reid DM, Riancho JA, Ridker PM, Rousseau F, Slagboom PE, Tang NL, Urreizti R, Van Hul W, Viikari J, Zarrabeitia MT, Aulchenko YS, Castano-Betancourt M, Grundberg E, Herrera L, Ingvarsson T, Johannsdottir H, Kwan T, Li R, Luben R, Medina-Gomez C, Palsson ST, Reppe S, Rotter JI, Sigurdsson G, van Meurs JB, Verlaan D, Williams FM, Wood AR, Zhou Y, Gautvik KM, Pastinen T, Raychaudhuri S, Cauley JA, Chasman DI, Clark GR, Cummings SR, Danoy P, Dennison EM, Eastell R, Eisman JA, Gudnason V, Hofman A, Jackson RD, Jones G, Jukema JW, Khaw KT, Lehtimaki T, Liu Y, Lorentzon M, McCloskey E, Mitchell BD, Nandakumar K, Nicholson GC, Oostra BA, Peacock M, Pols HA, Prince RL, Raitakari O, Reid IR, Robbins J, Sambrook PN, Sham PC, Shuldiner AR, Tylavsky FA, van Duijn CM, Wareham NJ, Cupples LA, Econs MJ, Evans DM, Harris TB, Kung AW, Psaty BM, Reeve J, Spector TD, Streeten EA, Zillikens MC, Thorsteinsdottir U, Ohlsson C, Karasik D, Richards JB, Brown MA, Stefansson K, Uitterlinden AG, Ralston SH, Ioannidis JP, Kiel DP, Rivadeneira F (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrera-Hernandez A, Marin-Llera JC, Chimal-Monroy J (2021) WNT5A-Ca(2+)-CaN-NFAT signalling plays a permissive role during cartilage differentiation in embryonic chick digit development. Dev Biol 469:86–95

    Article  CAS  PubMed  Google Scholar 

  • Fu HD, Wang BK, Wan ZQ, Lin H, Chang ML, Han GL (2016) Wnt5a mediated canonical Wnt signaling pathway activation in orthodontic tooth movement: possible role in the tension force-induced bone formation. J Mol Histol 47:455–466

    Article  CAS  PubMed  Google Scholar 

  • Funck-Brentano T, Bouaziz W, Marty C, Geoffroy V, Hay E, Cohen-Solal M (2014) Dkk-1-mediated inhibition of Wnt signaling in bone ameliorates osteoarthritis in mice. Arthritis Rheumatol 66:3028–3039

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ibarbia C, Perez-Nunez MI, Olmos JM, Valero C, Perez-Aguilar MD, Hernandez JL, Zarrabeitia MT, Gonzalez-Macias J, Riancho JA (2013) Missense polymorphisms of the WNT16 gene are associated with bone mass, hip geometry and fractures. Osteoporos Int 24:2449–2454

    Article  CAS  PubMed  Google Scholar 

  • Glasson SS, Blanchet TJ, Morris EA (2007) The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr Cartil 15:1061–1069

    Article  CAS  Google Scholar 

  • Goldring MB, Marcu KB (2009) Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 11:224

    Article  PubMed  PubMed Central  Google Scholar 

  • Green J, Nusse R, van Amerongen R (2014) The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb Perspect Biol 6:a009175

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang Y (2004) Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev 18:2404–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Mak KK, Taketo MM, Yang Y (2009) The Wnt/beta-catenin pathway interacts differentially with PTHrP signaling to control chondrocyte hypertrophy and final maturation. PLoS One 4:e6067

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamada D, Sampson ER, Maynard RD, Zuscik MJ (2014) Surgical induction of posttraumatic osteoarthritis in the mouse. Methods Mol Biol 1130:61–72

    Article  PubMed  Google Scholar 

  • Honsawek S, Tanavalee A, Yuktanandana P, Ngarmukos S, Saetan N, Tantavisut S (2010) Dickkopf-1 (Dkk-1) in plasma and synovial fluid is inversely correlated with radiographic severity of knee osteoarthritis patients. BMC Musculoskelet Disord 11:257

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Zhong L, van Helvoort E, Lafeber F, Mastbergen S, Hendriks J, Post JN, Karperien M (2019) The expressions of Dickkopf-related protein 1 and frizzled-related protein are negatively correlated to local inflammation and osteoarthritis severity. Cartilage. https://doi.org/10.1177/1947603519841676

  • Jain P, Karthikeyan C, Moorthy NS, Waiker DK, Jain AK, Trivedi P (2014) Human CDC2-like kinase 1 (CLK1): a novel target for Alzheimer’s disease. Curr Drug Targets 15:539–550

    Article  CAS  PubMed  Google Scholar 

  • Kemp CR, Willems E, Wawrzak D, Hendrickx M, Agbor Agbor T, Leyns L (2007) Expression of Frizzled5, Frizzled7, and Frizzled10 during early mouse development and interactions with canonical Wnt signaling. Dev Dyn 236:2011–2019

    Article  CAS  PubMed  Google Scholar 

  • Kevorkian L, Young DA, Darrah C, Donell ST, Shepstone L, Porter S, Brockbank SM, Edwards DR, Parker AE, Clark IM (2004) Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum 50:131–141

    Article  CAS  PubMed  Google Scholar 

  • Kloppenburg M, Berenbaum F (2020) Osteoarthritis year in review 2019: epidemiology and therapy. Osteoarthr Cartil 28:242–248

    Article  CAS  Google Scholar 

  • Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, Okabe T, Ochiai T, Kamiya N, Rountree RB, Kingsley DM, Iwamoto M, Enomoto-Iwamoto M, Pacifici M (2008) A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 316:62–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laham AJ, Saber-Ayad M, El-Awady R (2021) DYRK1A: a down syndrome-related dual protein kinase with a versatile role in tumorigenesis. Cell Mol Life Sci 78:603–619

    Article  CAS  PubMed  Google Scholar 

  • Lane NE, Lian K, Nevitt MC, Zmuda JM, Lui L, Li J, Wang J, Fontecha M, Umblas N, Rosenbach M, de Leon P, Corr M (2006) Frizzled-related protein variants are risk factors for hip osteoarthritis. Arthritis Rheum 54:1246–1254

    Article  CAS  PubMed  Google Scholar 

  • Leijten JC, Bos SD, Landman EB, Georgi N, Jahr H, Meulenbelt I, Post JN, van Blitterswijk CA, Karperien M (2013) GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors. Arthritis Res Ther 15:R126

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Newton PT, Bouderlique T, Sejnohova M, Zikmund T, Kozhemyakina E, Xie M, Krivanek J, Kaiser J, Qian H, Dyachuk V, Lassar AB, Warman ML, Barenius B, Adameyko I, Chagin AS (2017) Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB J 31:1067–1084

    Article  PubMed  Google Scholar 

  • Li J, Xue J, Jing Y, Wang M, Shu R, Xu H, Xue C, Feng J, Wang P, Bai D (2019) SOST deficiency aggravates osteoarthritis in mice by promoting sclerosis of subchondral bone. Biomed Res Int 2019:7623562

    Article  PubMed  PubMed Central  Google Scholar 

  • Lietman C, Wu B, Lechner S, Shinar A, Sehgal M, Rossomacha E, Datta P, Sharma A, Gandhi R, Kapoor M, Young PP (2018) Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. JCI Insight 3(3):e96308

    Article  PubMed Central  Google Scholar 

  • Little CB, Barai A, Burkhardt D, Smith SM, Fosang AJ, Werb Z, Shah M, Thompson EW (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 60:3723–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Li X, Hua B, Yang X, Zheng J, Liu S (2021) WNT16 is upregulated early in mouse TMJ osteoarthritis and protects fibrochondrocytes against IL-1beta induced inflammatory response by regulation of RUNX2/MMP13 cascade. Bone 143:115793

    Article  CAS  PubMed  Google Scholar 

  • Lories RJ, Peeters J, Bakker A, Tylzanowski P, Derese I, Schrooten J, Thomas JT, Luyten FP (2007) Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum 56:4095–4103

    Article  CAS  PubMed  Google Scholar 

  • Loughlin J, Dowling B, Chapman K, Marcelline L, Mustafa Z, Southam L, Ferreira A, Ciesielski C, Carson DA, Corr M (2004) Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc Natl Acad Sci U S A 101:9757–9762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Liu Y, Zhao X, Li P, Jin Q (2019) Rapamycin attenuates articular cartilage degeneration by inhibiting β-catenin in a murine model of osteoarthritis. Connect Tissue Res 60:452–462

    Article  CAS  PubMed  Google Scholar 

  • Martineau X, Abed E, Martel-Pelletier J, Pelletier JP, Lajeunesse D (2017) Alteration of Wnt5a expression and of the non-canonical Wnt/PCP and Wnt/PKC-Ca2+ pathways in human osteoarthritis osteoblasts. PLoS One 12:e0180711

    Article  PubMed  PubMed Central  Google Scholar 

  • Mason JB, Gurda BL, Hankenson KD, Harper LR, Carlson CS, Wilson JM, Richardson DW (2017) Wnt10b and Dkk-1 gene therapy differentially influenced trabecular bone architecture, soft tissue integrity, and osteophytosis in a skeletally mature rat model of osteoarthritis. Connect Tissue Res 58:542–552

    Article  CAS  PubMed  Google Scholar 

  • Mazieres J, You L, He B, Xu Z, Lee AY, Mikami I, McCormick F, Jablons DM (2005) Inhibition of Wnt16 in human acute lymphoblastoid leukemia cells containing the t(1;19) translocation induces apoptosis. Oncogene 24:5396–5400

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Reinoso V, Beverdam A (2018) Epidermal YAP activity drives canonical WNT16/beta-catenin signaling to promote keratinocyte proliferation in vitro and in the murine skin. Stem Cell Res 29:15–23

    Article  CAS  PubMed  Google Scholar 

  • Merle P, Kim M, Herrmann M, Gupte A, Lefrancois L, Califano S, Trepo C, Tanaka S, Vitvitski L, de la Monte S, Wands JR (2005) Oncogenic role of the frizzled-7/beta-catenin pathway in hepatocellular carcinoma. J Hepatol 43:854–862

    Article  CAS  PubMed  Google Scholar 

  • Miclea RL, Siebelt M, Finos L, Goeman JJ, Cwgm L, Oostdijk W, Weinans H, Wit JM, Robanus-Maandag EC, Karperien M (2011) Inhibition of Gsk3 beta in cartilage induces osteoarthritic features through activation of the canonical Wnt signaling pathway. Osteoarthr Cartil 19:1363–1372

    Article  CAS  Google Scholar 

  • Miller RE, Miller RJ, Malfait AM (2014) Osteoarthritis joint pain: the cytokine connection. Cytokine 70:185–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min S, Wang C, Lu W, Xu Z, Shi D, Chen D, Teng H, Jiang Q (2017) Serum levels of the bone turnover markers dickkopf-1, osteoprotegerin, and TNF-alpha in knee osteoarthritis patients. Clin Rheumatol 36:2351–2358

    Article  PubMed  Google Scholar 

  • Min S, Shi T, Han X, Chen D, Xu Z, Shi D, Teng H, Jiang Q (2021) Serum levels of leptin, osteopontin, and sclerostin in patients with and without knee osteoarthritis. Clin Rheumatol 40:287–294

    Article  PubMed  Google Scholar 

  • Monteagudo S, Cornelis FMF, Aznar-Lopez C, Yibmantasiri P, Guns LA, Carmeliet P, Cailotto F, Lories RJ (2017) DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. Nat Commun 8:15889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moverare-Skrtic S, Henning P, Liu X, Nagano K, Saito H, Borjesson AE, Sjogren K, Windahl SH, Farman H, Kindlund B, Engdahl C, Koskela A, Zhang FP, Eriksson EE, Zaman F, Hammarstedt A, Isaksson H, Bally M, Kassem A, Lindholm C, Sandberg O, Aspenberg P, Savendahl L, Feng JQ, Tuckermann J, Tuukkanen J, Poutanen M, Baron R, Lerner UH, Gori F, Ohlsson C (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20:1279–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musumeci G, Aiello FC, Szychlinska MA, Di Rosa M, Castrogiovanni P, Mobasheri A (2015) Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci 16:6093–6112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalesso G, Sherwood J, Bertrand J, Pap T, Ramachandran M, De Bari C, Pitzalis C, Dell'accio F (2011) WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. J Cell Biol 193:551–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalesso G, Thomas BL, Sherwood JC, Yu J, Addimanda O, Eldridge SE, Thorup AS, Dale L, Schett G, Zwerina J, Eltawil N, Pitzalis C, Dell'Accio F (2017) WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann Rheum Dis 76:218–226

    Article  CAS  PubMed  Google Scholar 

  • Nalesso G, Thorup AS, Eldridge SE, De Palma A, Kaur A, Peddireddi K, Blighe K, Rana S, Stott B, Vincent TL, Thomas BL, Bertrand J, Sherwood J, Fioravanti A, Pitzalis C, Dell'Accio F (2021) Calcium calmodulin kinase II activity is required for cartilage homeostasis in osteoarthritis. Sci Rep 11:5682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan E, Tzahor E (2009) sFRPs: a declaration of (Wnt) independence. Nat Cell Biol 11:13

    Article  CAS  PubMed  Google Scholar 

  • Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, Sugano S, Akiyama T (2004) DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 23:8520–8526

    Article  CAS  PubMed  Google Scholar 

  • Oh H, Chun CH, Chun JS (2012) Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum 64:2568–2578

    Article  CAS  PubMed  Google Scholar 

  • Papathanasiou I, Malizos KN, Tsezou A (2012) Bone morphogenetic protein-2-induced Wnt/beta-catenin signaling pathway activation through enhanced low-density-lipoprotein receptor-related protein 5 catabolic activity contributes to hypertrophy in osteoarthritic chondrocytes. Arthritis Res Ther 14:R82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puig-Junoy J, Ruiz Zamora A (2015) Socio-economic costs of osteoarthritis: a systematic review of cost-of-illness studies. Semin Arthritis Rheum 44:531–541

    Article  PubMed  Google Scholar 

  • Rothbacher U, Lemaire P (2002) Creme de la Kremen of Wnt signalling inhibition. Nat Cell Biol 4:E172–E173

    Article  PubMed  Google Scholar 

  • Roudier M, Li X, Niu QT, Pacheco E, Pretorius JK, Graham K, Yoon BR, Gong J, Warmington K, Ke HZ, Black RA, Hulme J, Babij P (2013) Sclerostin is expressed in articular cartilage but loss or inhibition does not affect cartilage remodeling during aging or following mechanical injury. Arthritis Rheum 65:721–731

    Article  CAS  PubMed  Google Scholar 

  • Saitta B, Elphingstone J, Limfat S, Shkhyan R, Evseenko D (2019) CaMKII inhibition in human primary and pluripotent stem cell-derived chondrocytes modulates effects of TGFbeta and BMP through SMAD signaling. Osteoarthr Cartil 27:158–171

    Article  CAS  Google Scholar 

  • Salazar VS, Gamer LW, Rosen V (2016) BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol 12:203–221

    Article  CAS  PubMed  Google Scholar 

  • Samarzija I, Sini P, Schlange T, Macdonald G, Hynes NE (2009) Wnt3a regulates proliferation and migration of HUVEC via canonical and non-canonical Wnt signaling pathways. Biochem Biophys Res Commun 386:449–454

    Article  CAS  PubMed  Google Scholar 

  • Schivo S, Khurana S, Govindaraj K, Scholma J, Kerkhofs J, Zhong L, Huang X, van de Pol J, Langerak R, van Wijnen AJ, Geris L, Karperien M, Post JN (2020) ECHO, the executable CHOndrocyte: a computational model to study articular chondrocytes in health and disease. Cell Signal 68:109471

    Article  CAS  PubMed  Google Scholar 

  • Semënov MV, He X (2000–2013) Secreted antagonists/modulators of Wnt signaling. In: Madame Curie bioscience database. Landes Bioscience, Austin

    Google Scholar 

  • Smith AJ, Gidley J, Sandy JR, Perry MJ, Elson CJ, Kirwan JR, Spector TD, Doherty M, Bidwell JL, Mansell JP (2005) Haplotypes of the low-density lipoprotein receptor-related protein 5 (LRP5) gene: are they a risk factor in osteoarthritis? Osteoarthr Cartil 13:608–613

    Article  CAS  Google Scholar 

  • Stow JL (2004) ICAT is a multipotent inhibitor of beta-catenin. Focus on “role for ICAT in beta-catenin-dependent nuclear signaling and cadherin functions”. Am J Physiol Cell Physiol 286:C745–C746

    Article  CAS  PubMed  Google Scholar 

  • Sugita S, Hosaka Y, Okada K, Mori D, Yano F, Kobayashi H, Taniguchi Y, Mori Y, Okuma T, Chang SH, Kawata M, Taketomi S, Chikuda H, Akiyama H, Kageyama R, Chung UI, Tanaka S, Kawaguchi H, Ohba S, Saito T (2015) Transcription factor Hes1 modulates osteoarthritis development in cooperation with calcium/calmodulin-dependent protein kinase 2. Proc Natl Acad Sci U S A 112:3080–3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takamatsu A, Ohkawara B, Ito M, Masuda A, Sakai T, Ishiguro N, Ohno K (2014) Verapamil protects against cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling. PLoS One 9:e92699

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorup AS, Strachan D, Caxaria S, Poulet B, Thomas BL, Eldridge SE, Nalesso G, Whiteford JR, Pitzalis C, Aigner T, Corder R, Bertrand J, Dell'Accio F (2020) ROR2 blockade as a therapy for osteoarthritis. Sci Transl Med 12(561):eaax3063

    Article  CAS  PubMed  Google Scholar 

  • Tong W, Zeng Y, Chow DHK, Yeung W, Xu J, Deng Y, Chen S, Zhao H, Zhang X, Ho KK, Qin L, Mak KK (2019) Wnt16 attenuates osteoarthritis progression through a PCP/JNK-mTORC1-PTHrP cascade. Ann Rheum Dis 78:551–561

    Article  CAS  PubMed  Google Scholar 

  • van den Bosch MH, Blom AB, van Lent PL, van Beuningen HM, Blaney Davidson EN, van der Kraan PM, van den Berg WB (2014) Canonical Wnt signaling skews TGF-β signaling in chondrocytes towards signaling via ALK1 and Smad 1/5/8. Cell JM 26:951–958

    Google Scholar 

  • van Lierop AH, Hamdy NA, Hamersma H, van Bezooijen RL, Power J, Loveridge N, Papapoulos SE (2011) Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res 26:2804–2811

    Article  PubMed  Google Scholar 

  • Vincent TL (2020) Of mice and men: converging on a common molecular understanding of osteoarthritis. Lancet Rheumatol 2:e633–ee45

    Article  PubMed  PubMed Central  Google Scholar 

  • von Maltzahn J, Renaud J, Parise G, Rudnicki MA (2012) Wnt7a treatment ameliorates muscular dystrophy. Proc Natl Acad Sci U S A 109:20614–20619

    Article  Google Scholar 

  • Waller KA, Zhang LX, Elsaid KA, Fleming BC, Warman ML, Jay GD (2013) Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci U S A 110:5852–5857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weivoda MM, Ruan M, Hachfeld CM, Pederson L, Howe A, Davey RA, Zajac JD, Kobayashi Y, Williams BO, Westendorf JJ, Khosla S, Oursler MJ (2016) Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J Bone Miner Res 31:65–75

    Article  CAS  PubMed  Google Scholar 

  • Weng LH, Wang CJ, Ko JY, Sun YC, Wang FS (2010) Control of Dkk-1 ameliorates chondrocyte apoptosis, cartilage destruction, and subchondral bone deterioration in osteoarthritic knees. Arthritis Rheum 62:1393–1402

    Article  CAS  PubMed  Google Scholar 

  • Wiese KE, Nusse R, van Amerongen R (2018) Wnt signalling: conquering complexity. Development 145:dev165902

    Article  PubMed  Google Scholar 

  • Wright SC, Kozielewicz P, Kowalski-Jahn M, Petersen J, Bowin C, Slodkowicz G, Marti-Solano M, Rodríguez D, Hot B, Okashah N, Strakova K, Valnohova J, Babu MM, Lambert NA, Carlsson J, Schult G (2019) A conserved molecular switch in Class F receptorsregulates receptor activation and pathway selection. Nat Commun 10:667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan F, Yano F, Mori D, Chijimatsu R, Maenohara Y, Nakamoto H, Mori Y, Makii Y, Oichi T, Taketo MM, Hojo H, Ohba S, Chung UI, Tanaka S, Saito T (2019) Wnt/beta-catenin signaling contributes to articular cartilage homeostasis through lubricin induction in the superficial zone. Arthritis Res Ther 21:247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Zou Y, Guo XM, Tan HS, Denslin V, Yeow CH, Ren XF, Liu TM, Hui JH, Lee EH (2012) Temporal activation of beta-catenin signaling in the chondrogenic process of mesenchymal stem cells affects the phenotype of the cartilage generated. Stem Cells Dev 21:1966–1976

    Article  CAS  PubMed  Google Scholar 

  • Yasuhara R, Ohta Y, Yuasa T, Kondo N, Hoang T, Addya S, Fortina P, Pacifici M, Iwamoto M, Enomoto-Iwamoto M (2011) Roles of beta-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab Investig 91:1739–1752

    Article  CAS  PubMed  Google Scholar 

  • Yazici Y, McAlindon TE, Gibofsky A, Lane NE, Clauw D, Jones M, Bergfeld J, Swearingen CJ, DiFrancesco A, Simsek I, Tambiah J, Hochberg MC (2020) Lorecivivint, a novel intra-articular CLK/DYRK1A inhibitor and Wnt pathway modulator for treatment of knee osteoarthritis: a phase 2 randomized trial. Arthritis Rheumatol 72(10):1694–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazici Y, McAlindon TE, Gibofsky A, Lane NE, Lattermann C, Skrepnik N, Swearingen CJ, Simsek I, Ghandehari H, DiFrancesco A, Gibbs J, Tambiah JRS, Hochberg MC (2021) A phase 2b randomized trial of lorecivivint, a novel intra-articular CLK2/DYRK1A inhibitor and Wnt pathway modulator for knee osteoarthritis. Osteoarthr Cartil 29(5):654–666

    Article  CAS  Google Scholar 

  • Yuasa T, Kondo N, Yasuhara R, Shimono K, Mackem S, Pacifici M, Iwamoto M, Enomoto-Iwamoto M (2009) Transient activation of Wnt/{beta}-catenin signaling induces abnormal growth plate closure and articular cartilage thickening in postnatal mice. Am J Pathol 175:1993–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng L, Wang W, Rong XF, Zhong Y, Jia P, Zhou GQ, Li RH (2014) Chondroprotective effects and multi-target mechanisms of Icariin in IL-1 beta-induced human SW 1353 chondrosarcoma cells and a rat osteoarthritis model. Int Immunopharmacol 18:175–181

    Article  CAS  PubMed  Google Scholar 

  • Zheng HF, Tobias JH, Duncan E, Evans DM, Eriksson J, Paternoster L, Yerges-Armstrong LM, Lehtimaki T, Bergstrom U, Kahonen M, Leo PJ, Raitakari O, Laaksonen M, Nicholson GC, Viikari J, Ladouceur M, Lyytikainen LP, Medina-Gomez C, Rivadeneira F, Prince RL, Sievanen H, Leslie WD, Mellstrom D, Eisman JA, Moverare-Skrtic S, Goltzman D, Hanley DA, Jones G, Pourcain BS, Xiao Y, Timpson NJ, Smith GD, Reid IR, Ring SM, Sambrook PN, Karlsson M, Dennison EM, Kemp JP, Danoy P, Sayers A, Wilson SG, Nethander M, McCloskey E, Vandenput L, Eastell R, Liu J, Spector T, Mitchell BD, Streeten EA, Brommage R, Pettersson-Kymmer U, Brown MA, Ohlsson C, Richards JB, Lorentzon M (2012) WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet 8:e1002745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Ge YX, Li YX, Bao ZY, Yao C, Teng HJ, Jiang Q (2017) Accelerated development of instability-induced osteoarthritis in transgenic mice overexpressing SOST. Int J Clin Exp Pathol 10:10830–10840

    PubMed  PubMed Central  Google Scholar 

  • Zhu M, Chen M, Zuscik M, Wu Q, Wang YJ, Rosier RN, O'Keefe RJ, Chen D (2008) Inhibition of beta-catenin signaling in articular chondrocytes results in articular cartilage destruction. Arthritis Rheum 58:2053–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Tang D, Wu Q, Hao S, Chen M, Xie C, Rosier RN, O'Keefe RJ, Zuscik M, Chen D (2009) Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J Bone Miner Res 24:12–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Funding: This work was supported by the Medical Research Council MR/S008608/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Nalesso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Palma, A., Nalesso, G. (2021). WNT Signalling in Osteoarthritis and Its Pharmacological Targeting. In: Schulte, G., Kozielewicz, P. (eds) Pharmacology of the WNT Signaling System. Handbook of Experimental Pharmacology, vol 269. Springer, Cham. https://doi.org/10.1007/164_2021_525

Download citation

Publish with us

Policies and ethics