Skip to main content

Antinociceptive Effects of Kappa-Opioid Receptor Agonists

  • Chapter
  • First Online:
The Kappa Opioid Receptor

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 271))

Abstract

Preclinical models that assess “pain” in rodents typically measure increases in behaviors produced by a “pain stimulus.” A large literature exists showing that kappa opioid receptor (KOR) agonists can decrease these “pain-stimulated behaviors” following many different pain stimuli. Despite showing apparent antinociceptive properties in these preclinical models, KOR agonists failed as analgesics in clinical trials. Recent studies that assessed decreases in behavior due to a pain stimulus show that KOR agonists are not effective in restoring these “pain-depressed behaviors” to normal levels, which agrees with the lack of effectiveness for KOR agonists in clinical trials. One current explanation for the failure of previous KOR agonists in clinical trials is that those agonists activated beta-arrestin signaling and that KOR agonists with a greater bias for G protein signaling will be more successful. However, neither G protein-biased agonists nor beta-arrestin-biased agonists are very effective in assays of pain-depressed behavior, which suggests that novel biased agonists may still not be effective analgesics. This review provides a concise account of the effectiveness of KOR agonists in preclinical models of pain-stimulated and pain-depressed behaviors following the administration of different pain stimuli. Based on the previous results, it may be appropriate to include both behaviors when testing the analgesic potential of KOR agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JU, Chen X, DeRiel JK, Adler MW, Liu-Chen LY (1994) Intracerebroventricular treatment with an antisense oligodeoxynucleotide to kappa-opioid receptors inhibited kappa-agonist-induced analgesia in rats. Brain Res 667:129–132

    Article  CAS  PubMed  Google Scholar 

  • Albert-Vartanian A, Boyd MR, Hall AL, Morgado SJ, Nguyen E, Nguyen VP, Patel SP, Russo LJ, Shao AJ, Raffa RB (2016) Will peripherally restricted kappa-opioid receptor agonists (pKORAs) relieve pain with less opioid adverse effects and abuse potential? J Clin Pharm Ther 41:371–382

    Article  CAS  PubMed  Google Scholar 

  • Andrews N, Legg E, Lisak D, Issop Y, Richardson D, Harper S, Pheby T, Huang W, Burgess G, Machin I, Rice AS (2012) Spontaneous burrowing behaviour in the rat is reduced by peripheral nerve injury or inflammation associated pain. Eur J Pain 16:485–495

    Article  CAS  PubMed  Google Scholar 

  • Anseloni VC, Ennis M, Lidow MS (2003) Optimization of the mechanical nociceptive threshold testing with the Randall-Selitto assay. J Neurosci Methods 131:93–97

    Article  PubMed  Google Scholar 

  • Antic J, Vasiljevic T, Stanojevic S, Vujic V, Kovacevic-Jovanovic V, Djergovic D, Miljevic C, Markovic BM, Radulovic J (1996) Suppression of adjuvant arthritis by kappa-opioid receptor agonist: effect of route of administration and strain differences. Immunopharmacology 34:105–112

    Article  CAS  PubMed  Google Scholar 

  • Apfel SC, Newel M, Dormia C, Kessler JA (1995) Kappa opioid receptors participate in nerve growth factor-induced hyperalgesia. Neuroscience 68:1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Arendt-Nielsen L, Olesen AE, Staahl C, Menzaghi F, Kell S, Wong GY, Drewes AM (2009) Analgesic efficacy of peripheral kappa-opioid receptor agonist CR665 compared to oxycodone in a multi-modal, multi-tissue experimental human pain model: selective effect on visceral pain. Anesthesiology 111:616–624

    Article  CAS  PubMed  Google Scholar 

  • Arras M, Rettich A, Cinelli P, Kasermann HP, Burki K (2007) Assessment of post-laparotomy pain in laboratory mice by telemetric recording of heart rate and heart rate variability. BMC Vet Res 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Aubert A, Goodall G, Dantzer R, Gheusi G (1997) Differential effects of lipopolysaccharide on pup retrieving and nest building in lactating mice. Brain Behav Immun 11:107–118

    Article  CAS  PubMed  Google Scholar 

  • Auh QS, Ro JY (2012) Effects of peripheral kappa opioid receptor activation on inflammatory mechanical hyperalgesia in male and female rats. Neurosci Lett 524:111–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagdas D, Muldoon PP, AlSharari S, Carroll FI, Negus SS, Damaj MI (2016) Expression and pharmacological modulation of visceral pain-induced conditioned place aversion in mice. Neuropharmacology 102:236–243

    Article  CAS  PubMed  Google Scholar 

  • Barber A, Bartoszyk GD, Bender HM, Gottschlich R, Greiner HE, Harting J, Mauler F, Minck KO, Murray RD, Simon M et al (1994a) A pharmacological profile of the novel, peripherally-selective kappa-opioid receptor agonist, EMD 61753. Br J Pharmacol 113:1317–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber A, Bartoszyk GD, Greiner HE, Mauler F, Murray RD, Seyfried CA, Simon M, Gottschlich R, Harting J, Lues I (1994b) Central and peripheral actions of the novel kappa-opioid receptor agonist, EMD 60400. Br J Pharmacol 111:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  PubMed  Google Scholar 

  • Bileviciute-Ljungar I, Spetea M (2001) Contralateral but not systemic administration of the kappa-opioid agonist U-50,488H induces anti-nociception in acute hindpaw inflammation in rats. Br J Pharmacol 132:252–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder W, Walker JS (1998) Effect of the peripherally selective kappa-opioid agonist, asimadoline, on adjuvant arthritis. Br J Pharmacol 124:647–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohn LM, Aubé J (2017) Seeking (and finding) biased ligands of the kappa opioid receptor. ACS Med Chem Lett 8:694–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs SL, Rech RH, Sawyer DC (1998) Kappa antinociceptive activity of spiradoline in the cold-water tail-flick assay in rats. Pharmacol Biochem Behav 60:467–472

    Article  CAS  PubMed  Google Scholar 

  • Broadbear JH, Negus SS, Butelman ER, de Costa BR, Woods JH (1994) Differential effects of systemically administered nor-binaltorphimine (nor-BNI) on kappa-opioid agonists in the mouse writhing assay. Psychopharmacology (Berl) 115:311–319

    Article  CAS  Google Scholar 

  • Bruchas MR, Land BB, Aita M, Xu M, Barot SK, Li S, Chavkin C (2007) Stress-induced p38 mitogen-activated protein kinase activation mediates kappa-opioid-dependent dysphoria. J Neurosci 27:11614–11623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brust TF, Morgenweck J, Kim SA, Rose JH, Locke JL, Schmid CL, Zhou L, Stahl EL, Cameron MD, Scarry SM, Aube J, Jones SR, Martin TJ, Bohn LM (2016) Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Sci Signal 9:ra117

    Article  PubMed  PubMed Central  Google Scholar 

  • Calcagnetti DJ, Helmstetter FJ, Fanselow MS (1988) Analgesia produced by centrally administered DAGO, DPDPE and U50488H in the formalin test. Eur J Pharmacol 153:117–122

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Huang P, Chiu YT, Chen C, Wang H, Li M, Zheng Y, Ehlert FJ, Zhang Y, Liu-Chen LY (2020) Comparison of pharmacological properties between the kappa opioid receptor agonist nalfurafine and 42B, its 3-dehydroxy analogue: disconnect between in vitro agonist Bias and in vivo pharmacological effects. ACS Chem Nerosci 11:3036–3050

    Article  CAS  Google Scholar 

  • Capone F, Aloisi AM (2004) Refinement of pain evaluation techniques. The formalin test. Ann Ist Super Sanita 40:223–229

    PubMed  Google Scholar 

  • Catheline G, Kayser V, Idanpaan-Heikkila JJ, Guilbaud G (1996) The antinociceptive activity of kappa- but not delta-opioid receptor agonists is maintained in morphine-tolerant neuropathic rats. Eur J Pharmacol 318:273–281

    Article  CAS  PubMed  Google Scholar 

  • Celik MO, Labuz D, Henning K, Busch-Dienstfertig M, Gaveriaux-Ruff C, Kieffer BL, Zimmer A, Machelska H (2016) Leukocyte opioid receptors mediate analgesia via Ca(2+)-regulated release of opioid peptides. Brain Behav Immun 57:227–242

    Article  CAS  PubMed  Google Scholar 

  • Chang HY, Daubresse M, Kruszewski SP, Alexander GC (2014a) Prevalence and treatment of pain in EDs in the United States, 2000 to 2010. Am J Emerg Med 32:421–431

    Article  PubMed  Google Scholar 

  • Chang PC, Pollema-Mays SL, Centeno MV, Procissi D, Contini M, Baria AT, Martina M, Apkarian AV (2014b) Role of nucleus accumbens in neuropathic pain: linked multi-scale evidence in the rat transitioning to neuropathic pain. Pain 155:1128–1139

    Article  PubMed  PubMed Central  Google Scholar 

  • Chartier LC, Hebart ML, Howarth GS, Whittaker AL, Mashtoub S (2020) Affective state determination in a mouse model of colitis-associated colorectal cancer. PLoS One 15:e0228413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung JM, Kim HK, Chung K (2004) Segmental spinal nerve ligation model of neuropathic pain. In: Luo ZD (ed) Pain research: methods and protocols (methods in molecular medicine). Humana Press, Totowa

    Google Scholar 

  • Czlonkowski A, Stein C, Herz A (1993) Peripheral mechanisms of opioid antinociception in inflammation: involvement of cytokines. Eur J Pharmacol 242:229–235

    Article  CAS  PubMed  Google Scholar 

  • Deacon RM (2006) Burrowing in rodents: a sensitive method for detecting behavioral dysfunction. Nat Protoc 1:118–121

    Article  CAS  PubMed  Google Scholar 

  • Deacon RM (2009) Burrowing: a sensitive behavioural assay, tested in five species of laboratory rodents. Behav Brain Res 200:128–133

    Article  CAS  PubMed  Google Scholar 

  • Deuis JR, Dvorakova LS, Vetter I (2017) Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci 10:284

    Article  PubMed  PubMed Central  Google Scholar 

  • DiMattio KM, Ehlert FJ, Liu-Chen LY (2015) Intrinsic relative activities of kappa opioid agonists in activating Galpha proteins and internalizing receptor: differences between human and mouse receptors. Eur J Pharmacol 761:235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn AD, Reed B, Erazo J, Ben-Ezra A, Kreek MJ (2019) Signaling properties of structurally diverse kappa opioid receptor ligands: toward in vitro models of in vivo responses. ACS Chem Nerosci 10:3590–3600

    Article  CAS  Google Scholar 

  • Eisenach JC, Carpenter R, Curry R (2003) Analgesia from a peripherally active kappa-opioid receptor agonist in patients with chronic pancreatitis. Pain 101:89–95

    Article  CAS  PubMed  Google Scholar 

  • Endoh T, Matsuura H, Tajima A, Izumimoto N, Tajima C, Suzuki T, Saitoh A, Suzuki T, Narita M, Tseng L, Nagase H (1999) Potent antinociceptive effects of TRK-820, a novel kappa-opioid receptor agonist. Life Sci 65:1685–1694

    Article  CAS  PubMed  Google Scholar 

  • Fischer BD, Adeyemo A, O'Leary ME, Bottaro A (2017) Animal models of rheumatoid pain: experimental systems and insights. Arthritis Res Ther 19:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaskill BN, Karas AZ, Garner JP, Pritchett-Corning KR (2013) Nest building as an indicator of health and welfare in laboratory mice. J Vis Exp 51012

    Google Scholar 

  • Gonzalez-Cano R, Montilla-Garcia A, Ruiz-Cantero MC, Bravo-Caparros I, Tejada MA, Nieto FR, Cobos EJ (2020) The search for translational pain outcomes to refine analgesic development: where did we come from and where are we going? Neurosci Biobehav Rev 113:238–261

    Article  PubMed  Google Scholar 

  • Guida F, Luongo L, Aviello G, Palazzo E, De Chiaro M, Gatta L, Boccella S, Marabese I, Zjawiony JK, Capasso R, Izzo AA, de Novellis V, Maione S (2012) Salvinorin A reduces mechanical allodynia and spinal neuronal hyperexcitability induced by peripheral formalin injection. Mol Pain 8:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes AG, Sheehan MJ, Tyers MB (1987) Differential sensitivity of models of antinociception in the rat, mouse and guinea-pig to mu- and kappa-opioid receptor agonists. Br J Pharmacol 91:823–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Calvo M, Karu K, Olausen HR, Bathgate G, Okuse K, Bennett DL, Rice AS (2013) A clinically relevant rodent model of the HIV antiretroviral drug stavudine induced painful peripheral neuropathy. Pain 154:560–575

    Article  CAS  PubMed  Google Scholar 

  • Hylden JL, Thomas DA, Iadarola MJ, Nahin RL, Dubner R (1991) Spinal opioid analgesic effects are enhanced in a model of unilateral inflammation/hyperalgesia: possible involvement of noradrenergic mechanisms. Eur J Pharmacol 194:135–143

    Article  CAS  PubMed  Google Scholar 

  • Idanpaan-Heikkila JJ, Kalso EA, Seppala T (1994) Antinociceptive actions of dexmedetomidine and the kappa-opioid agonist U-50,488H against noxious thermal, mechanical and inflammatory stimuli. J Pharmacol Exp Ther 271:1306–1313

    CAS  PubMed  Google Scholar 

  • Jirkof P, Cesarovic N, Rettich A, Nicholls F, Seifert B, Arras M (2010) Burrowing behavior as an indicator of post-laparotomy pain in mice. Front Behav Neurosci 4:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Jirkof P, Fleischmann T, Cesarovic N, Rettich A, Vogel J, Arras M (2013) Assessment of postsurgical distress and pain in laboratory mice by nest complexity scoring. Lab Anim 47:153–161

    Article  CAS  PubMed  Google Scholar 

  • Jolivalt CG, Jiang Y, Freshwater JD, Bartoszyk GD, Calcutt NA (2006) Dynorphin A, kappa opioid receptors and the antinociceptive efficacy of asimadoline in streptozotocin-induced diabetic rats. Diabetologia 49:2775–2785

    Article  CAS  PubMed  Google Scholar 

  • Kamei J, Ohhashi Y, Aoki T, Kawasima N, Kasuya Y (1992) Streptozotocin-induced diabetes selectively alters the potency of analgesia produced by mu-opioid agonists, but not by delta- and kappa-opioid agonists. Brain Res 571:199–203

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy R, Calsbeek JJ, Morgan MM (2016) Home cage wheel running is an objective and clinically relevant method to assess inflammatory pain in male and female rats. J Neurosci Methods 263:115–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Kandasamy R, Lee AT, Morgan MM (2017) Depression of home cage wheel running: a reliable and clinically relevant method to assess migraine pain in rats. J Headache Pain 18:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaski SW, White AN, Gross JD, Trexler KR, Wix K, Harland AA, Prisinzano TE, Aube J, Kinsey SG, Kenakin T, Siderovski DP, Setola V (2019) Preclinical testing of nalfurafine as an opioid-sparing adjuvant that potentiates analgesia by the mu opioid receptor-targeting agonist morphine. J Pharmacol Exp Ther 371:487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    Article  Google Scholar 

  • Koepke EJ, Manning EL, Miller TE, Ganesh A, Williams DGA, Manning MW (2018) The rising tide of opioid use and abuse: the role of the anesthesiologist. Perioper Med 7:16

    Article  Google Scholar 

  • Kumar V, Guo D, Cassel JA, Daubert JD, Dehaven RN, Dehaven-Hudkins DL, Gauntner EK, Gottshall SL, Greiner SL, Koblish M, Little PJ, Mansson E, Maycock AL (2005) Synthesis and evaluation of novel peripherally restricted kappa-opioid receptor agonists. Bioorg Med Chem Lett 15:1091–1095

    Article  CAS  PubMed  Google Scholar 

  • Lazenka ML, Moerke MJ, Townsend EA, Freeman KB, Carroll FI, Negus SS (2018) Dissociable effects of the kappa opioid receptor agonist nalfurafine on pain/itch-stimulated and pain/itch-depressed behaviors in male rats. Psychopharmacology (Berl) 235:203–213

    Article  CAS  Google Scholar 

  • Le Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacol Rev 53:597–652

    PubMed  Google Scholar 

  • Leighton GE, Rodriguez RE, Hill RG, Hughes J (1988) Kappa-opioid agonists produce antinociception after i.v. and i.c.v. but not intrathecal administration in the rat. Br J Pharmacol 93:553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitl MD, Onvani S, Bowers MS, Cheng K, Rice KC, Carlezon WA Jr, Banks ML, Negus SS (2014a) Pain-related depression of the mesolimbic dopamine system in rats: expression, blockade by analgesics, and role of endogenous kappa-opioids. Neuropsychopharmacology 39:614–624

    Article  CAS  PubMed  Google Scholar 

  • Leitl MD, Potter DN, Cheng K, Rice KC, Carlezon WA Jr, Negus SS (2014b) Sustained pain-related depression of behavior: effects of intraplantar formalin and complete freund’s adjuvant on intracranial self-stimulation (ICSS) and endogenous kappa opioid biomarkers in rats. Mol Pain 10:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Lembo A (2006) Peripheral opioids for functional GI disease: a reappraisal. Dig Dis 24:91–98

    Article  PubMed  Google Scholar 

  • Lewter LA, Fisher JL, Siemian JN, Methuku KR, Poe MM, Cook JM, Li JX (2017) Antinociceptive effects of a novel alpha2/alpha3-subtype selective GABAA receptor positive allosteric modulator. ACS Chem Nerosci 8:1305–1312

    Article  CAS  Google Scholar 

  • Liu JJ, Chiu YT, DiMattio KM, Chen C, Huang P, Gentile TA, Muschamp JW, Cowan A, Mann M, Liu-Chen LY (2019) Phosphoproteomic approach for agonist-specific signaling in mouse brains: mTOR pathway is involved in kappa opioid aversion. Neuropsychopharmacology 44:939–949

    Article  CAS  PubMed  Google Scholar 

  • Machelska H, Pfluger M, Weber W, Piranvisseh-Volk M, Daubert JD, Dehaven R, Stein C (1999) Peripheral effects of the kappa-opioid agonist EMD 61753 on pain and inflammation in rats and humans. J Pharmacol Exp Ther 290:354–361

    CAS  PubMed  Google Scholar 

  • Manchikanti L, Helm S 2nd, Fellows B, Janata JW, Pampati V, Grider JS, Boswell MV (2012) Opioid epidemic in the United States. Pain Physician 15:ES9–E38

    Article  PubMed  Google Scholar 

  • Mangel AW, Bornstein JD, Hamm LR, Buda J, Wang J, Irish W, Urso D (2008) Clinical trial: asimadoline in the treatment of patients with irritable bowel syndrome. Aliment Pharmacol Ther 28:239–249

    Article  CAS  PubMed  Google Scholar 

  • Markham A (2020) Oliceridine: first approval. Drugs 80:1739–1744

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ (1989) Kappa-opioid receptor-mediated antinociception in the rat. I. Comparative actions of mu- and kappa-opioids against noxious thermal, pressure and electrical stimuli. J Pharmacol Exp Ther 251:334–341

    CAS  PubMed  Google Scholar 

  • Millan MJ, Czlonkowski A, Pilcher CW, Almeida OF, Millan MH, Colpaert FC, Herz A (1987) A model of chronic pain in the rat: functional correlates of alterations in the activity of opioid systems. J Neurosci 7:77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills C, Leblond D, Joshi S, Zhu C, Hsieh G, Jacobson P, Meyer M, Decker M (2012) Estimating efficacy and drug ED50’s using von Frey thresholds: impact of weber’s law and log transformation. J Pain 13:519–523

    Article  CAS  PubMed  Google Scholar 

  • Mores KL, Cummins BR, Cassell RJ, van Rijn RM (2019) A review of the therapeutic potential of recently developed G protein-biased kappa agonists. Front Pharmacol 10:407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muralidharan A, Kuo A, Jacob M, Lourdesamy JS, Carvalho LM, Nicholson JR, Corradini L, Smith MT (2016) Comparison of burrowing and stimuli-evoked pain behaviors as end-points in rat models of inflammatory pain and peripheral neuropathic pain. Front Behav Neurosci 10:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray CW, Cowan A (1991) Tonic pain perception in the mouse: differential modulation by three receptor-selective opioid agonists. J Pharmacol Exp Ther 257:335–341

    CAS  PubMed  Google Scholar 

  • Nagasaka H, Awad H, Yaksh TL (1996) Peripheral and spinal actions of opioids in the blockade of the autonomic response evoked by compression of the inflamed knee joint. Anesthesiology 85:808–816

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa T, Furuya Y, Kaneko T, Yamatsu K, Yoshino H, Tachibana S (1990) Analgesia produced by E-2078, a systemically active dynorphin analog, in mice. J Pharmacol Exp Ther 252:1247–1254

    CAS  PubMed  Google Scholar 

  • Nakazawa T, Furuya Y, Kaneko T, Yamatsu K (1991) Spinal kappa receptor-mediated analgesia of E-2078, a systemically active dynorphin analog, in mice. J Pharmacol Exp Ther 256:76–81

    CAS  PubMed  Google Scholar 

  • Navratilova E, Ji G, Phelps C, Qu C, Hein M, Yakhnitsa V, Neugebauer V, Porreca F (2019) Kappa opioid signaling in the central nucleus of the amygdala promotes disinhibition and aversiveness of chronic neuropathic pain. Pain 160:824–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negus SS (2013) Expression and treatment of pain-related behavioral depression. Lab Anim (NY) 42:292–300

    Article  Google Scholar 

  • Negus SS (2019) Core outcome measures in preclinical assessment of candidate analgesics. Pharmacol Rev 71:225–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negus SS, Miller LL (2014) Intracranial self-stimulation to evaluate abuse potential of drugs. Pharmacol Rev 66:869–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negus SS, Vanderah TW, Brandt MR, Bilsky EJ, Becerra L, Borsook D (2006) Preclinical assessment of candidate analgesic drugs: recent advances and future challenges. J Pharmacol Exp Ther 319:507–514

    Article  CAS  PubMed  Google Scholar 

  • Negus SS, Bilsky EJ, Do Carmo GP, Stevenson GW (2010a) Rationale and methods for assessment of pain-depressed behavior in preclinical assays of pain and analgesia. Methods Mol Biol 617:79–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Negus SS, Morrissey EM, Rosenberg M, Cheng K, Rice KC (2010b) Effects of kappa opioids in an assay of pain-depressed intracranial self-stimulation in rats. Psychopharmacology (Berl) 210:149–159

    Article  CAS  Google Scholar 

  • Negus SS, O'Connell R, Morrissey E, Cheng K, Rice KC (2012) Effects of peripherally restricted kappa opioid receptor agonists on pain-related stimulation and depression of behavior in rats. J Pharmacol Exp Ther 340:501–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negus SS, Neddenriep B, Altarifi AA, Carroll FI, Leitl MD, Miller LL (2015) Effects of ketoprofen, morphine, and kappa opioids on pain-related depression of nesting in mice. Pain 156:1153–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neubert JK, Widmer CG, Malphurs W, Rossi HL, Vierck CJ Jr, Caudle RM (2005) Use of a novel thermal operant behavioral assay for characterization of orofacial pain sensitivity. Pain 116:386–395

    Article  PubMed  Google Scholar 

  • Neubert JK, Rossi HL, Pogar J, Jenkins AC, Caudle RM (2007) Effects of mu- and kappa-2 opioid receptor agonists on pain and rearing behaviors. Behav Brain Funct 3:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Obara I, Mika J, Schafer MK, Przewlocka B (2003) Antagonists of the kappa-opioid receptor enhance allodynia in rats and mice after sciatic nerve ligation. Br J Pharmacol 140:538–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver VL, Thurston SE, Lofgren JL (2018) Using cageside measures to evaluate analgesic efficacy in mice (Mus musculus) after surgery. J Am Assoc Lab Anim Sci 57:186–201

    PubMed  PubMed Central  Google Scholar 

  • Pande AC, Pyke RE, Greiner M, Cooper SA, Benjamin R, Pierce MW (1996a) Analgesic efficacy of the kappa-receptor agonist, enadoline, in dental surgery pain. Clin Neuropharmacol 19:92–97

    Article  CAS  PubMed  Google Scholar 

  • Pande AC, Pyke RE, Greiner M, Wideman GL, Benjamin R, Pierce MW (1996b) Analgesic efficacy of enadoline versus placebo or morphine in postsurgical pain. Clin Neuropharmacol 19:451–456

    Article  CAS  PubMed  Google Scholar 

  • Paton KF, Biggerstaff A, Kaska S, Crowley RS, La Flamme AC, Prisinzano TE, Kivell BM (2020) Evaluation of biased and balanced salvinorin A analogs in preclinical models of pain. Front Neurosci 14:765

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelissier T, Paeile C, Soto-Moyano R, Saavedra H, Hernandez A (1990) Analgesia produced by intrathecal administration of the kappa opioid agonist, U-50,488H, on formalin-evoked cutaneous pain in the rat. Eur J Pharmacol 190:287–293

    Article  CAS  PubMed  Google Scholar 

  • Piercey MF, Einspahr FJ (1989) Spinal analgesic actions of kappa receptor agonists, U-50488H and spiradoline (U-62066). J Pharmacol Exp Ther 251:267–271

    CAS  PubMed  Google Scholar 

  • Porreca F, Mosberg HI, Omnaas JR, Burks TF, Cowan A (1987) Supraspinal and spinal potency of selective opioid agonists in the mouse writhing test. J Pharmacol Exp Ther 240:890–894

    CAS  PubMed  Google Scholar 

  • Przewlocki R, Stala L, Greczek M, Shearman GT, Przewlocka B, Herz A (1983) Analgesic effects of mu-, delta- and kappa-opiate agonists and, in particular, dynorphin at the spinal level. Life Sci 33(Suppl 1):649–652

    Article  CAS  PubMed  Google Scholar 

  • Qi JA, Heyman JS, Sheldon RJ, Koslo RJ, Porreca F (1990) Mu antagonist and kappa agonist properties of beta-funaltrexamine (beta-FNA) in vivo: long-lasting spinal analgesia in mice. J Pharmacol Exp Ther 252:1006–1011

    CAS  PubMed  Google Scholar 

  • Rogers H, Birch PJ, Harrison SM, Palmer E, Manchee GR, Judd DB, Naylor A, Scopes DI, Hayes AG (1992) GR94839, a kappa-opioid agonist with limited access to the central nervous system, has antinociceptive activity. Br J Pharmacol 106:783–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schattauer SS, Kuhar JR, Song A, Chavkin C (2017) Nalfurafine is a G-protein biased agonist having significantly greater bias at the human than rodent form of the kappa opioid receptor. Cell Signal 32:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmauss C, Yaksh TL, Shimohigashi Y, Harty G, Jensen T, Rodbard D (1983) Differential association of spinal mu, delta and kappa opioid receptors with cutaneous thermal and visceral chemical nociceptive stimuli in the rat. Life Sci 33(Suppl 1):653–656

    Article  CAS  PubMed  Google Scholar 

  • Schreiter A, Gore C, Labuz D, Fournie-Zaluski MC, Roques BP, Stein C, Machelska H (2012) Pain inhibition by blocking leukocytic and neuronal opioid peptidases in peripheral inflamed tissue. FASEB J 26:5161–5171

    Article  CAS  PubMed  Google Scholar 

  • Seguin L, Le Marouille-Girardon S, Millan MJ (1995) Antinociceptive profiles of non-peptidergic neurokinin1 and neurokinin2 receptor antagonists: a comparison to other classes of antinociceptive agent. Pain 61:325–343

    Article  CAS  PubMed  Google Scholar 

  • Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218

    Article  PubMed  Google Scholar 

  • Silva LC, Castor MG, Navarro LC, Romero TR, Duarte ID (2016) Kappa-opioid receptor participates of NSAIDs peripheral antinociception. Neurosci Lett 622:6–9

    Article  CAS  PubMed  Google Scholar 

  • Sounvoravong S, Takahashi M, Nakashima MN, Nakashima K (2004) Disability of development of tolerance to morphine and U-50,488H, a selective kappa-opioid receptor agonist, in neuropathic pain model mice. J Pharmacol Sci 94:305–312

    Article  CAS  PubMed  Google Scholar 

  • Stevenson GW, Mercer H, Cormier J, Dunbar C, Benoit L, Adams C, Jezierski J, Luginbuhl A, Bilsky EJ (2011) Monosodium iodoacetate-induced osteoarthritis produces pain-depressed wheel running in rats: implications for preclinical behavioral assessment of chronic pain. Pharmacol Biochem Behav 98:35–42

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Goto K, Shiizaki K, Omiya Y, Ishige A, Komatsu Y, Kamei J (2001) Antinociceptive effect of U-50488H, a kappa-opioid agonist, in streptozotocin-induced diabetic mice. J Pharm Pharmacol 53:521–526

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Izumimoto N, Takezawa Y, Fujimura M, Togashi Y, Nagase H, Tanaka T, Endoh T (2004) Effect of repeated administration of TRK-820, a kappa-opioid receptor agonist, on tolerance to its antinociceptive and sedative actions. Brain Res 995:167–175

    Article  CAS  PubMed  Google Scholar 

  • Tiseo PJ, Geller EB, Adler MW (1988) Antinociceptive action of intracerebroventricularly administered dynorphin and other opioid peptides in the rat. J Pharmacol Exp Ther 246:449–453

    CAS  PubMed  Google Scholar 

  • Tsukamoto A, Niino N, Sakamoto M, Ohtani R, Inomata T (2018) The validity of anesthetic protocols for the surgical procedure of castration in rats. Exp Anim 67:329–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyers MB (1980) A classification of opiate receptors that mediate antinociception in animals. Br J Pharmacol 69:503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulker E, Caillaud M, Patel T, White A, Rashid D, Alqasem M, Lichtman AH, Bryant CD, Damaj MI (2020) C57BL/6 substrain differences in formalin-induced pain-like behavioral responses. Behav Brain Res 390:112698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderah TW, Schteingart CD, Trojnar J, Junien JL, Lai J, Riviere PJ (2004) FE200041 (D-Phe-D-Phe-D-Nle-D-Arg-NH2): a peripheral efficacious kappa opioid agonist with unprecedented selectivity. J Pharmacol Exp Ther 310:326–333

    Article  CAS  PubMed  Google Scholar 

  • Vonvoigtlander PF, Lahti RA, Ludens JH (1983) U-50,488: a selective and structurally novel non-Mu (kappa) opioid agonist. J Pharmacol Exp Ther 224:7–12

    CAS  PubMed  Google Scholar 

  • Wadenberg ML (2003) A review of the properties of spiradoline: a potent and selective kappa-opioid receptor agonist. CNS Drug Rev 9:187–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker JS, Howlett CR, Nayanar V (1995) Anti-inflammatory effects of kappa-opioids in adjuvant arthritis. Life Sci 57:371–378

    Article  CAS  PubMed  Google Scholar 

  • Walker J, Catheline G, Guilbaud G, Kayser V (1999) Lack of cross-tolerance between the antinociceptive effects of systemic morphine and asimadoline, a peripherally-selective kappa-opioid agonist, in CCI-neuropathic rats. Pain 83:509–516

    Article  CAS  PubMed  Google Scholar 

  • Walsh SL, Strain EC, Abreu ME, Bigelow GE (2001) Enadoline, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in humans. Psychopharmacology (Berl) 157:151–162

    Article  CAS  Google Scholar 

  • Wen H, Wang HY, He X, Wu CI (2018) On the low reproducibility of cancer studies. Natl Sci Rev 5:619–624

    Article  PubMed  Google Scholar 

  • White KL, Scopton AP, Rives ML, Bikbulatov RV, Polepally PR, Brown PJ, Kenakin T, Javitch JA, Zjawiony JK, Roth BL (2014) Identification of novel functionally selective kappa-opioid receptor scaffolds. Mol Pharmacol 85:83–90

    Article  PubMed  PubMed Central  Google Scholar 

  • White KL, Robinson JE, Zhu H, DiBerto JF, Polepally PR, Zjawiony JK, Nichols DE, Malanga CJ, Roth BL (2015) The G protein-biased kappa-opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo. J Pharmacol Exp Ther 352:98–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkerson JL, Curry ZA, Kinlow PD, Mason BL, Hsu KL, van der Stelt M, Cravatt BF, Lichtman AH (2018) Evaluation of different drug classes on transient sciatic nerve injury-depressed marble burying in mice. Pain 159:1155–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson JL, Nayanar V, Walker JS (1996) The site of anti-arthritic action of the kappa-opioid, U-50, 488H, in adjuvant arthritis: importance of local administration. Br J Pharmacol 118:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wodarski R, Delaney A, Ultenius C, Morland R, Andrews N, Baastrup C, Bryden LA, Caspani O, Christoph T, Gardiner NJ, Huang W, Kennedy JD, Koyama S, Li D, Ligocki M, Lindsten A, Machin I, Pekcec A, Robens A, Rotariu SM, Vo BS, Segerdahl M, Stenfors C, Svensson CI, Treede RD, Uto K, Yamamoto K, Rutten K, Rice AS (2016) Cross-centre replication of suppressed burrowing behaviour as an ethologically relevant pain outcome measure in the rat: a prospective multicentre study. Pain 157:2350–2365

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu M, Petraschka M, McLaughlin JP, Westenbroek RE, Caron MG, Lefkowitz RJ, Czyzyk TA, Pintar JE, Terman GW, Chavkin C (2004) Neuropathic pain activates the endogenous kappa opioid system in mouse spinal cord and induces opioid receptor tolerance. J Neurosci 24:4576–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye GL, Savelieva KV, Vogel P, Baker KB, Mason S, Lanthorn TH, Rajan I (2015) Ligation of mouse L4 and L5 spinal nerves produces robust allodynia without major motor function deficit. Behav Brain Res 276:99–110

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The author is grateful to Dr. Steve Negus for his helpful comments during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew F. Lazenka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lazenka, M.F. (2021). Antinociceptive Effects of Kappa-Opioid Receptor Agonists. In: Liu-Chen, LY., Inan, S. (eds) The Kappa Opioid Receptor. Handbook of Experimental Pharmacology, vol 271. Springer, Cham. https://doi.org/10.1007/164_2020_430

Download citation

Publish with us

Policies and ethics