Skip to main content

Brain Distribution of Drugs: Brain Morphology, Delivery Routes, and Species Differences

  • Chapter
  • First Online:
Physiology, Pharmacology and Pathology of the Blood-Brain Barrier

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 273))

Abstract

Neuropharmacokinetics considers cerebral drug distribution as a critical process for central nervous system drug action as well as for drug penetration through the CNS barriers. Brain distribution of small molecules obeys classical rules of drug partition, permeability, binding to fluid proteins or tissue components, and tissue perfusion. The biodistribution of all drugs, including both small molecules and biologics, may also be influenced by specific brain properties related to brain anatomy and physiological barriers, fluid dynamics, and cellular and biochemical composition, each of which can exhibit significant interspecies differences. All of these properties contribute to select optimal dosing paradigms and routes of drug delivery to reach brain targets for classical small molecule drugs as well as for biologics. The importance of these properties for brain delivery and exposure also highlights the need for efficient new analytical technologies to more comprehensively investigate drug distribution in the CNS, a complex multi-compartmentalized organ system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG (2018) The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? Acta Neuropathol 135(3):387–407

    Article  CAS  PubMed  Google Scholar 

  • Agarwal S, Elmquist WF (2012) Insight into the cooperation of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) at the blood-brain barrier: a case study examining sorafenib efflux clearance. Mol Pharm 9(3):678–684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agranoff B, Benjamins J, Hajra A (1999) Properties of brain lipids. In: Siegel G, Agranoff B, Albers R (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Akanuma S, Sakurai T, Tachikawa M, Kubo Y, Hosoya K (2015) Transporter-mediated L-glutamate elimination from cerebrospinal fluid: possible involvement of excitatory amino acid transporters expressed in ependymal cells and choroid plexus epithelial cells. Fluids Barriers CNS 12:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al Feteisi H, Al-Majdoub ZM, Achour B, Couto N, Rostami-Hodjegan A, Barber J (2018) Identification and quantification of blood-brain barrier transporters in isolated rat brain microvessels. J Neurochem 146(6):670–685

    Article  PubMed  CAS  Google Scholar 

  • Ashraf T, Kao A, Bendayan R (2014) Functional expression of drug transporters in glial cells: potential role on drug delivery to the CNS. Adv Pharmacol 71:45–111

    Article  CAS  PubMed  Google Scholar 

  • Bakker R, Tiesinga P, Kötter R (2015) The scalable brain atlas: instant web-based access to public brain atlases and related content. Neuroinformatics 13(3):353–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Ball K, Bouzom F, Scherrmann JM, Walther B, Decleves X (2013) Physiologically based pharmacokinetic modelling of drug penetration across the blood-brain barrier--towards a mechanistic IVIVE-based approach. AAPS J 15(4):913–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer M, Zeitlinger M, Karch R, Matzneller P, Stanek J, Jager W, Bohmdorfer M, Wadsak W, Mitterhauser M, Bankstahl JP, Loscher W, Koepp M, Kuntner C, Muller M, Langer O (2012) Pgp-mediated interaction between (R)-[11C]verapamil and tariquidar at the human blood-brain barrier: a comparison with rat data. Clin Pharmacol Ther 91(2):227–233

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Karch R, Zeitlinger M, Philippe C, Romermann K, Stanek J, Maier-Salamon A, Wadsak W, Jager W, Hacker M, Muller M, Langer O (2015) Approaching complete inhibition of P-glycoprotein at the human blood-brain barrier: an (R)-[11C]verapamil PET study. J Cereb Blood Flow Metab 35(5):743–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein HG, Holzl G, Dobrowolny H, Hildebrandt J, Trubner K, Krohn M, Bogerts B, Pahnke J (2014) Vascular and extravascular distribution of the ATP-binding cassette transporters ABCB1 and ABCC1 in aged human brain and pituitary. Mech Ageing Dev 141-142:12–21

    Article  CAS  PubMed  Google Scholar 

  • Bourasset F, Scherrmann JM (2006) Carrier-mediated processes at several rat brain interfaces determine the neuropharmacokinetics of morphine and morphine-6-beta-D-glucuronide. Life Sci 78(20):2302–2314

    Article  CAS  PubMed  Google Scholar 

  • Bourasset F, Bernard K, Munoz C, Genissel P, Scherrmann JM (2005) Neuropharmacokinetics of a new alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) modulator, S18986 [(S)-2,3-dihydro-[3,4]cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide], in the rat. Drug Metab Dispos 33(8):1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Bozek K, Wei Y, Yan Z, Liu X, Xiong J, Sugimoto M, Tomita M, Paabo S, Sherwood CC, Hof PR, Ely JJ, Li Y, Steinhauser D, Willmitzer L, Giavalisco P, Khaitovich P (2015) Organization and evolution of brain lipidome revealed by large-scale analysis of human, chimpanzee, macaque, and mouse tissues. Neuron 85(4):695–702

    Article  CAS  PubMed  Google Scholar 

  • Brockmann K (2009) The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev 31(7):545–552

    Article  PubMed  Google Scholar 

  • Dallas S, Block ML, Thompson DM, Bonini MG, Ronaldson PT, Bendayan R, Miller DS (2013) Microglial activation decreases retention of the protease inhibitor saquinavir: implications for HIV treatment. J Neuroinflammation 10:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel WA, Wojcikowski J, Palucha A (2001) Intracellular distribution of psychotropic drugs in the grey and white matter of the brain: the role of lysosomal trapping. Br J Pharmacol 134(4):807–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do TM, Noel-Hudson MS, Ribes S, Besengez C, Smirnova M, Cisternino S, Buyse M, Calon F, Chimini G, Chacun H, Scherrmann JM, Farinotti R, Bourasset F (2012) ABCG2- and ABCG4-mediated efflux of amyloid-beta peptide 1-40 at the mouse blood-brain barrier. J Alzheimers Dis 30(1):155–166

    Article  CAS  PubMed  Google Scholar 

  • Dodacki A, Wortman M, Saubamea B, Chasseigneaux S, Nicolic S, Prince N, Lochus M, Raveu AL, Decleves X, Scherrmann JM, Patel SB, Bourasset F (2017) Expression and function of Abcg4 in the mouse blood-brain barrier: role in restricting the brain entry of amyloid-beta peptide. Sci Rep 7(1):13393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galynker I, Schlyer DJ, Dewey SL, Fowler JS, Logan J, Gatley SJ, MacGregor RR, Ferrieri RA, Holland MJ, Brodie J, Simon E, Wolf AP (1996) Opioid receptor imaging and displacement studies with [6-O-[11C] methyl]buprenorphine in baboon brain. Nucl Med Biol 23(3):325–331

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC (2019) ABC transporters at the blood-brain interfaces, their study models, and drug delivery implications in gliomas. Pharmaceutics 12(1)

    Google Scholar 

  • Goutal S, Gerstenmayer M, Auvity S, Caille F, Meriaux S, Buvat I, Larrat B, Tournier N (2018) Physical blood-brain barrier disruption induced by focused ultrasound does not overcome the transporter-mediated efflux of erlotinib. J Control Release 292:210–220

    Article  CAS  PubMed  Google Scholar 

  • Hammarlund-Udenaes M, De Lange ECM, Thorne RG (2014) Drug delivery to the brain: physiological concepts, methodologies and approaches. Springer, New York

    Book  Google Scholar 

  • Herculano-Houzel S, Catania K, Manger PR, Kaas JH (2015) Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of Glires, Primates, Scandentia, Eulipotyphlans, Afrotherians and artiodactyls, and their relationship with body mass. Brain Behav Evol 86(3–4):145–163

    Article  PubMed  Google Scholar 

  • Hersom M, Helms HC, Pretzer N, Goldeman C, Jensen AI, Severin G, Nielsen MS, Holm R, Brodin B (2016) Transferrin receptor expression and role in transendothelial transport of transferrin in cultured brain endothelial monolayers. Mol Cell Neurosci 76:59–67

    Article  CAS  PubMed  Google Scholar 

  • Hoshi Y, Uchida Y, Tachikawa M, Inoue T, Ohtsuki S, Terasaki T (2013) Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J Pharm Sci 102(9):3343–3355

    Article  CAS  PubMed  Google Scholar 

  • Hrabetova S, Cognet L, Rusakov DA, Nagerl UV (2018) Unveiling the extracellular space of the brain: from super-resolved microstructure to in vivo function. J Neurosci 38(44):9355–9363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliff J, Simon M (2019) CrossTalk proposal: the glymphatic system supports convective exchange of cerebrospinal fluid and brain interstitial fluid that is mediated by perivascular aquaporin-4. J Physiol 597(17):4417–4419

    Article  CAS  PubMed  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147ra111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123(3):1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, Kamiie J, Terasaki T (2011) Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 100(9):3939–3950

    Article  CAS  PubMed  Google Scholar 

  • Kodaira H, Kusuhara H, Ushiki J, Fuse E, Sugiyama Y (2010) Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther 333(3):788–796

    Article  CAS  PubMed  Google Scholar 

  • Koehn LM, Dziegielewska KM, Mollgard K, Saudrais E, Strazielle N, Ghersi-Egea JF, Saunders NR, Habgood MD (2019) Developmental differences in the expression of ABC transporters at rat brain barrier interfaces following chronic exposure to diallyl sulfide. Sci Rep 9(1):5998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuntner C, Bankstahl JP, Bankstahl M, Stanek J, Wanek T, Stundner G, Karch R, Brauner R, Meier M, Ding X, Muller M, Loscher W, Langer O (2010) Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R)-[(11)C]verapamil PET. Eur J Nucl Med Mol Imaging 37(5):942–953

    Article  CAS  PubMed  Google Scholar 

  • Loryan I, Hoppe E, Hansen K, Held F, Kless A, Linz K, Marossek V, Nolte B, Ratcliffe P, Saunders D, Terlinden R, Wegert A, Welbers A, Will O, Hammarlund-Udenaes M (2017) Quantitative assessment of drug delivery to tissues and association with Phospholipidosis: a case study with two structurally related diamines in development. Mol Pharm 14(12):4362–4373

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Chiba Y, Fujihara R, Kubo H, Sakamoto H, Ueno M (2015) Immunohistochemical analysis of transporters related to clearance of amyloid-beta peptides through blood-cerebrospinal fluid barrier in human brain. Histochem Cell Biol 144(6):597–611

    Article  CAS  PubMed  Google Scholar 

  • Mercier C, Masseguin C, Roux F, Gabrion J, Scherrmann JM (2004) Expression of P-glycoprotein (ABCB1) and Mrp1 (ABCC1) in adult rat brain: focus on astrocytes. Brain Res 1021(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Pangalos MN, Schechter LE, Hurko O (2007) Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov 6(7):521–532

    Article  CAS  PubMed  Google Scholar 

  • Pizzo ME, Wolak DJ, Kumar NN, Brunette E, Brunnquell CL, Hannocks MJ, Abbott NJ, Meyerand ME, Sorokin L, Stanimirovic DB, Thorne RG (2018) Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. J Physiol 596(3):445–475

    Article  CAS  PubMed  Google Scholar 

  • Saunders NR, Habgood MD, Mollgard K, Dziegielewska KM (2016) The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? F1000Res 5

    Google Scholar 

  • Saunders NR, Dziegielewska KM, Mollgard K, Habgood MD (2018) Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. J Physiol 596(23):5723–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherrmann JM (2001) Compartiments profonds et système nerveux central. In: Sanctuaires du virus de l'immunodéficience humaine de type 1: la face cachée de l'iceberg? Excerpta Medica, Elsevier, Paris, pp 33–47

    Google Scholar 

  • Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, van der Valk MA, Robanus-Maandag EC, te Riele HP et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77(4):491–502

    Article  CAS  PubMed  Google Scholar 

  • Shawahna R, Uchida Y, Decleves X, Ohtsuki S, Yousif S, Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, Couraud PO, Terasaki T, Scherrmann JM (2011) Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 8(4):1332–1341

    Article  CAS  PubMed  Google Scholar 

  • Shayman JA, Abe A (2013) Drug induced phospholipidosis: an acquired lysosomal storage disorder. Biochim Biophys Acta 1831(3):602–611

    Article  CAS  PubMed  Google Scholar 

  • Smith AJ, Verkman AS (2019) CrossTalk opposing view: going against the flow: interstitial solute transport in brain is diffusive and aquaporin-4 independent. J Physiol 597(17):4421–4424

    Article  CAS  PubMed  Google Scholar 

  • Stain-Texier F, Boschi G, Sandouk P, Scherrmann JM (1999) Elevated concentrations of morphine 6-beta-D-glucuronide in brain extracellular fluid despite low blood-brain barrier permeability. Br J Pharmacol 128(4):917–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strazielle N, Ghersi-Egea JF (2013) Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 10(5):1473–1491

    Article  CAS  PubMed  Google Scholar 

  • Strazielle N, Ghersi-Egea JF (2015) Efflux transporters in blood-brain interfaces of the developing brain. Front Neurosci 9:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Swales JG, Tucker JW, Spreadborough MJ, Iverson SL, Clench MR, Webborn PJ, Goodwin RJ (2015) Mapping drug distribution in brain tissue using liquid extraction surface analysis mass spectrometry imaging. Anal Chem 87(19):10146–10152

    Article  CAS  PubMed  Google Scholar 

  • Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88(4):1277–1340

    Article  CAS  PubMed  Google Scholar 

  • Syvanen S, Lindhe O, Palner M, Kornum BR, Rahman O, Langstrom B, Knudsen GM, Hammarlund-Udenaes M (2009) Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos 37(3):635–643

    Article  CAS  PubMed  Google Scholar 

  • Taccola C, Cartot-Cotton S, Valente D, Barneoud P, Aubert C, Boutet V, Gallen F, Lochus M, Nicolic S, Dodacki A, Smirnova M, Cisternino S, Decleves X, Bourasset F (2018) High brain distribution of a new central nervous system drug candidate despite its P-glycoprotein-mediated efflux at the mouse blood-brain barrier. Eur J Pharm Sci 117:68–79

    Article  CAS  PubMed  Google Scholar 

  • Thorne RG, Frey WH 2nd (2001) Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 40(12):907–946

    Article  CAS  PubMed  Google Scholar 

  • Thorne RG, Nicholson C (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A 103(14):5567–5572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd (2004) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127(2):481–496

    Article  CAS  PubMed  Google Scholar 

  • Thorne RG, Lakkaraju A, Rodriguez-Boulan E, Nicholson C (2008) In vivo diffusion of lactoferrin in brain extracellular space is regulated by interactions with heparan sulfate. Proc Natl Acad Sci U S A 105(24):8416–8421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomioka NH, Nakamura M, Doshi M, Deguchi Y, Ichida K, Morisaki T, Hosoyamada M (2013) Ependymal cells of the mouse brain express urate transporter 1 (URAT1). Fluids Barriers CNS 10(1):31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toth AE, Holst MR, Nielsen MS (2020) Vesicular transport machinery in brain endothelial cells: what we know and what we don’t. Curr Pharm Des 26:1405–1416

    Article  CAS  PubMed  Google Scholar 

  • Tournier N, Stieger B, Langer O (2018) Imaging techniques to study drug transporter function in vivo. Pharmacol Ther 189:104–122

    Article  CAS  PubMed  Google Scholar 

  • Tzvetkov MV, dos Santos Pereira JN, Meineke I, Saadatmand AR, Stingl JC, Brockmoller J (2013) Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochem Pharmacol 86(5):666–678

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T (2011) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117(2):333–345

    Article  CAS  PubMed  Google Scholar 

  • Ueno M, Nishi N, Nakagawa T, Chiba Y, Tsukamoto I, Kusaka T, Miki T, Sakamoto H, Yamaguchi F, Tokuda M (2014) Immunoreactivity of glucose transporter 5 is located in epithelial cells of the choroid plexus and ependymal cells. Neuroscience 260:149–157

    Article  CAS  PubMed  Google Scholar 

  • Vendel E, Rottschafer V, de Lange ECM (2019) The need for mathematical modelling of spatial drug distribution within the brain. Fluids Barriers CNS 16(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  • Whish S, Dziegielewska KM, Mollgard K, Noor NM, Liddelow SA, Habgood MD, Richardson SJ, Saunders NR (2015) The inner CSF-brain barrier: developmentally controlled access to the brain via intercellular junctions. Front Neurosci 9:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolak DJ, Thorne RG (2013) Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm 10(5):1492–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, Atwal J, Elliott JM, Prabhu S, Watts RJ, Dennis MS (2011) Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 3(84):84ra44

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Tachikawa M, Uchida Y, Terasaki T (2018) Drug clearance from cerebrospinal fluid mediated by organic anion transporters 1 (Slc22a6) and 3 (Slc22a8) at arachnoid membrane of rats. Mol Pharm 15(3):911–922

    Article  CAS  PubMed  Google Scholar 

  • Zhou CJ, Inagaki N, Pleasure SJ, Zhao LX, Kikuyama S, Shioda S (2002) ATP-binding cassette transporter ABCA2 (ABC2) expression in the developing spinal cord and PNS during myelination. J Comp Neurol 451(4):334–345

    Article  CAS  PubMed  Google Scholar 

  • Zupanc GKH (2017) Mapping brain structure and function: cellular resolution, global perspective. J Comp Physiol A 203(4):245–264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert G. Thorne or Jean-Michel Scherrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bourasset, F., Auvity, S., Thorne, R.G., Scherrmann, JM. (2020). Brain Distribution of Drugs: Brain Morphology, Delivery Routes, and Species Differences. In: Cader, Z., Neuhaus, W. (eds) Physiology, Pharmacology and Pathology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 273. Springer, Cham. https://doi.org/10.1007/164_2020_402

Download citation

Publish with us

Policies and ethics