Skip to main content

Dopamine and Wakefulness: Pharmacology, Genetics, and Circuitry

  • Chapter
  • First Online:
Sleep-Wake Neurobiology and Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 253))

Abstract

Over the period of decades in the mid to late twentieth century, arousal-promoting functions were attributed to neuromodulators including serotonin, hypocretin, histamine, and noradrenaline. For some time, a relatively minor role in regulating sleep and wake states was ascribed to dopamine and the dopamine-producing cells of the ventral tegmental area, despite the fact that dopaminergic signaling is a major target, if not the primary target, for wake-promoting agents. In recent years, due to observations from human genetic studies, pharmacogenetic studies in animal models, and the increasingly sophisticated methods used to manipulate the nervous systems of experimental animals, it has become clear that dopaminergic signaling is central to the regulation of arousal. This chapter reviews this central role of dopaminergic signaling, and in particular its antagonistic interaction with adenosinergic signaling, in maintaining vigilance and in the response to wake-promoting therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abremski K, Hoess R (1984) Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem 259:1509–1514

    CAS  PubMed  Google Scholar 

  • Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73:379–396

    Article  CAS  Google Scholar 

  • Blumenfeld H (2002) Basal ganglia. In: Blumenfeld H (ed) Neuroanatomy through clinical cases. Sinauer Associates, Sunderland, pp 689–735

    Google Scholar 

  • Bodenmann S, Xu S, Luhmann U, Arand M, Berger W, Jung H, Landolt H (2008) Pharmacogenetics of modafinil after sleep loss: catechol-O-methyltransferase genotype modulates waking functions but not recovery sleep. Clin Pharmacol Ther 85:296–304

    Article  Google Scholar 

  • Bodenmann S, Hohoff C, Freitag C, Deckert J, Retey JV, Bachmann V, Landolt HP (2012) Polymorphisms of ADORA2A modulate psychomotor vigilance and the effects of caffeine on neurobehavioural performance and sleep EEG after sleep deprivation. Br J Pharmacol 165:1904–1913

    Article  CAS  Google Scholar 

  • Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P (1997) Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 120(Pt 7):1173–1197

    Article  Google Scholar 

  • Cade BE, Gottlieb DJ, Lauderdale DS, Bennett DA, Buchman AS, Buxbaum SG, De Jager PL, Evans DS, Fulop T, Gharib SA, Johnson WC, Kim H, Larkin EK, Lee SK, Lim AS, Punjabi NM, Shin C, Stone KL, Tranah GJ, Weng J, Yaffe K, Zee PC, Patel SR, Zhu X, Redline S, Saxena R (2016) Common variants in DRD2 are associated with sleep duration: the CARe consortium. Hum Mol Genet 25:167–179

    Article  CAS  Google Scholar 

  • Callaway CW, Henriksen SJ (1992) Neuronal firing in the nucleus accumbens is associated with the level of cortical arousal. Neuroscience 51:547–553

    Article  CAS  Google Scholar 

  • Dash MB, Douglas CL, Vyazovskiy VV, Cirelli C, Tononi G (2009) Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J Neurosci 29:620–629

    Article  CAS  Google Scholar 

  • Dauvilliers Y, Tafti M, Landolt HP (2015) Catechol-O-methyltransferase, dopamine, and sleep-wake regulation. Sleep Med Rev 22:47–53

    Article  Google Scholar 

  • de Saint Hilaire Z, Orosco M, Rouch C, Python A, Nicolaidis S (2000) Neuromodulation of the prefrontal cortex during sleep: a microdialysis study in rats. Neuroreport 11:1619–1624

    Article  Google Scholar 

  • Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  CAS  Google Scholar 

  • Dzirasa K, Ribeiro S, Costa R, Santos LM, Lin SC, Grosmark A, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MA (2006) Dopaminergic control of sleep-wake states. J Neurosci 26:10577–10589

    Article  CAS  Google Scholar 

  • Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L (2016) VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 19:1356–1366

    Article  CAS  Google Scholar 

  • Faraone SV, Spencer TJ, Madras BK, Zhang-James Y, Biederman J (2014) Functional effects of dopamine transporter gene genotypes on in vivo dopamine transporter functioning: a meta-analysis. Mol Psychiatry 19:880–889

    Article  CAS  Google Scholar 

  • Fernandez-Duenas V, Gomez-Soler M, Lopez-Cano M, Taura JJ, Ledent C, Watanabe M, Jacobson KA, Vilardaga JP, Ciruela F (2014) Uncovering caffeine’s adenosine A2A receptor inverse agonism in experimental parkinsonism. ACS Chem Biol 9:2496–2501

    Article  CAS  Google Scholar 

  • Garcia-Rill E, Heister DS, Ye M, Charlesworth A, Hayar A (2007) Novel mechanism for sleep-wake control: electrical coupling. Sleep 30:1405–1414

    Article  Google Scholar 

  • Garzon M, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1999) Cholinergic axon terminals in the ventral tegmental area target a subpopulation of neurons expressing low levels of the dopamine transporter. J Comp Neurol 410:197–210

    Article  CAS  Google Scholar 

  • Gerashchenko D, Blanco-Centurion CA, Miller JD, Shiromani PJ (2006) Insomnia following hypocretin2-saporin lesions of the substantia nigra. Neuroscience 137:29–36

    Article  CAS  Google Scholar 

  • Goel N, Banks S, Lin L, Mignot E, Dinges DF (2011) Catechol-O-methyltransferase Val158Met polymorphism associates with individual differences in sleep physiologic responses to chronic sleep loss. PLoS One 6:e29283

    Article  CAS  Google Scholar 

  • Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, Ellis RJ, Richie CT, Harvey BK, Dannals RF, Pomper MG, Bonci A, Michaelides M (2017) Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357:503–507

    Article  CAS  Google Scholar 

  • Gronli J, Clegern WC, Schmidt MA, Nemri RS, Rempe MJ, Gallitano AL, Wisor JP (2016) Sleep homeostatic and waking behavioral phenotypes in Egr3-deficient mice associated with serotonin receptor 5-HT2 deficits. Sleep 39:2189–2199

    Article  Google Scholar 

  • Gujar N, Yoo SS, Hu P, Walker MP (2011) Sleep deprivation amplifies reactivity of brain reward networks, biasing the appraisal of positive emotional experiences. J Neurosci 31:4466–4474

    Article  CAS  Google Scholar 

  • Holst SC, Bersagliere A, Bachmann V, Berger W, Achermann P, Landolt HP (2014) Dopaminergic role in regulating neurophysiological markers of sleep homeostasis in humans. J Neurosci 34:566–573

    Article  CAS  Google Scholar 

  • Holst SC, Valomon A, Landolt HP (2016) Sleep pharmacogenetics: personalized sleep-wake therapy. Annu Rev Pharmacol Toxicol 56:577–603

    Article  CAS  Google Scholar 

  • Holst SC, Muller T, Valomon A, Seebauer B, Berger W, Landolt HP (2017) Functional polymorphisms in dopaminergic genes modulate neurobehavioral and neurophysiological consequences of sleep deprivation. Sci Rep 7:45982

    Article  CAS  Google Scholar 

  • Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8:858–859

    Article  CAS  Google Scholar 

  • Jones BE, Bobillier P, Pin C, Jouvet M (1973) The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res 58:157–177

    Article  CAS  Google Scholar 

  • Kim DS, Palmiter RD (2008) Interaction of dopamine and adenosine receptor function in behavior: studies with dopamine-deficient mice. Front Biosci 13:2311–2318

    Article  CAS  Google Scholar 

  • Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6:243–250

    Article  CAS  Google Scholar 

  • Landolt HP (2011) Genetic determination of sleep EEG profiles in healthy humans. Prog Brain Res 193:51–61

    Article  Google Scholar 

  • Lazarus M, Shen HY, Cherasse Y, Qu WM, Huang ZL, Bass CE, Winsky-Sommerer R, Semba K, Fredholm BB, Boison D, Hayaishi O, Urade Y, Chen JF (2011) Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J Neurosci 31:10067–10075

    Article  CAS  Google Scholar 

  • Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C (2005) Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep--wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81:891–899

    Article  CAS  Google Scholar 

  • Lim J, Ebstein R, Tse CY, Monakhov M, Lai PS, Dinges DF, Kwok K (2012) Dopaminergic polymorphisms associated with time-on-task declines and fatigue in the psychomotor vigilance test. PLoS One 7:e33767

    Article  CAS  Google Scholar 

  • Liu Z, Wang Y, Cai L, Li Y, Chen B, Dong Y, Huang YH (2016) Prefrontal cortex to accumbens projections in sleep regulation of reward. J Neurosci 36:7897–7910

    Article  CAS  Google Scholar 

  • Loland CJ, Mereu M, Okunola OM, Cao J, Prisinzano TE, Mazier S, Kopajtic T, Shi L, Katz JL, Tanda G, Newman AH (2012) R-modafinil (armodafinil): a unique dopamine uptake inhibitor and potential medication for psychostimulant abuse. Biol Psychiatry 72:405–413

    Article  CAS  Google Scholar 

  • Maquet P (1997) Positron emission tomography studies of sleep and sleep disorders. J Neurol 244:S23–S28

    Article  CAS  Google Scholar 

  • McGinty D, Szymusiak R (2011) Neural control of sleep in mammals. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. Elsevier/Saunders, Philadelphia, pp 76–91

    Chapter  Google Scholar 

  • Mignot E, Nishino S, Guilleminault C, Dement WC (1994) Modafinil binds to the dopamine uptake carrier site with low affinity. Sleep 17:436–437

    Article  CAS  Google Scholar 

  • Miller JD, Farber J, Gatz P, Roffwarg H, German DC (1983) Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res 273:133–141

    Article  CAS  Google Scholar 

  • Murillo-Rodriguez E, Haro R, Palomero-Rivero M, Millan-Aldaco D, Drucker-Colin R (2007) Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats. Behav Brain Res 176:353–357

    Article  CAS  Google Scholar 

  • Oishi Y, Lazarus M (2017) The control of sleep and wakefulness by mesolimbic dopamine systems. Neurosci Res 118:66–73

    Article  CAS  Google Scholar 

  • Oishi Y, Suzuki Y, Takahashi K, Yonezawa T, Kanda T, Takata Y, Cherasse Y, Lazarus M (2017) Activation of ventral tegmental area dopamine neurons produces wakefulness through dopamine D2-like receptors in mice. Brain Struct Funct 222:2907–2915

    Article  CAS  Google Scholar 

  • Qiu MH, Liu W, Qu WM, Urade Y, Lu J, Huang ZL (2012) The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal. PLoS One 7:e45471

    Article  CAS  Google Scholar 

  • Qu WM, Huang ZL, Xu XH, Matsumoto N, Urade Y (2008) Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J Neurosci 28:8462–8469

    Article  CAS  Google Scholar 

  • Qu WM, Xu XH, Yan MM, Wang YQ, Urade Y, Huang ZL (2010) Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. J Neurosci 30:4382–4389

    Article  CAS  Google Scholar 

  • Retey JV, Adam M, Khatami R, Luhmann UF, Jung HH, Berger W, Landolt HP (2007) A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin Pharmacol Ther 81:692–698

    Article  CAS  Google Scholar 

  • Rupp TL, Wesensten NJ, Newman R, Balkin TJ (2013) PER3 and ADORA2A polymorphisms impact neurobehavioral performance during sleep restriction. J Sleep Res 22:160–165

    Article  Google Scholar 

  • Sanders-Bush E, Hazelwood L (2011) 5-Hydroxytryptamine (serotonin) and dopamine. In: Brunton LL, Chabner BA, Knollmann BC (eds) Goodman and Gilman’s: the pharmacological basis of therapeutics. McGraw-Hill, New York

    Google Scholar 

  • Schmitt KC, Reith ME (2011) The atypical stimulant and nootropic modafinil interacts with the dopamine transporter in a different manner than classical cocaine-like inhibitors. PLoS One 6:e25790

    Article  CAS  Google Scholar 

  • Shouse MN, Staba RJ, Saquib SF, Farber PR (2000) Monoamines and sleep: microdialysis findings in pons and amygdala. Brain Res 860:181–189

    Article  CAS  Google Scholar 

  • Siegel JM (2011) REM sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. Elsevier/Saunders, Philadelphia, pp 92–111

    Chapter  Google Scholar 

  • Steinfels GF, Heym J, Strecker RE, Jacobs BL (1983) Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res 258:217–228

    Article  CAS  Google Scholar 

  • Taylor NE, Van Dort CJ, Kenny JD, Pei J, Guidera JA, Vlasov KY, Lee JT, Boyden ES, Brown EN, Solt K (2016) Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc Natl Acad Sci U S A

    Google Scholar 

  • Tellez LA, Perez IO, Simon SA, Gutierrez R (2012) Transitions between sleep and feeding states in rat ventral striatum neurons. J Neurophysiol 108:1739–1751

    Article  Google Scholar 

  • Trulson ME, Preussler DW (1984) Dopamine-containing ventral tegmental area neurons in freely moving cats: activity during the sleep-waking cycle and effects of stress. Exp Neurol 83:367–377

    Article  CAS  Google Scholar 

  • Urbano FJ, Leznik E, Llinas RR (2007) Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling. Proc Natl Acad Sci U S A 104:12554–12559

    Article  CAS  Google Scholar 

  • Van Dongen HP, Hinson JM, Whitney P, Satterfield BC, Schmidt MA, Wisor JP (2017) Feedback blunting due to sleep deprivation is affected by dopaminergic genotype. In: Cognitive Neuroscience Society, annual meeting

    Google Scholar 

  • Venkatraman V, Chuah YM, Huettel SA, Chee MW (2007) Sleep deprivation elevates expectation of gains and attenuates response to losses following risky decisions. Sleep 30:603–609

    Article  Google Scholar 

  • Venkatraman V, Huettel SA, Chuah LY, Payne JW, Chee MW (2011) Sleep deprivation biases the neural mechanisms underlying economic preferences. J Neurosci 31:3712–3718

    Article  CAS  Google Scholar 

  • Volkow ND, Tomasi D, Wang GJ, Telang F, Fowler JS, Logan J, Benveniste H, Kim R, Thanos PK, Ferre S (2012) Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain. J Neurosci 32:6711–6717

    Article  CAS  Google Scholar 

  • Whitney P, Hinson JM, Jackson ML, Van Dongen HP (2015) Feedback blunting: total sleep deprivation impairs decision making that requires updating based on feedback. Sleep 38:745–754

    Article  Google Scholar 

  • Wisor J (2013) Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions. Front Neurol 4:139

    Article  Google Scholar 

  • Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM (2001) Dopaminergic role in stimulant-induced wakefulness. J Neurosci 21:1787–1794

    Article  CAS  Google Scholar 

  • Xiao C, Cho JR, Zhou C, Treweek JB, Chan K, McKinney SL, Yang B, Gradinaru V (2016) Cholinergic mesopontine signals govern locomotion and reward through dissociable midbrain pathways. Neuron 90:333–347

    Article  CAS  Google Scholar 

  • Zhang JP, Xu Q, Yuan XS, Cherasse Y, Schiffmann SN, de Kerchove d’Exaerde A, Qu WM, Urade Y, Lazarus M, Huang ZL, Li RX (2013) Projections of nucleus accumbens adenosine A2A receptor neurons in the mouse brain and their implications in mediating sleep-wake regulation. Front Neuroanat 7:43

    Article  CAS  Google Scholar 

  • Zhu X, Ottenheimer D, DiLeone RJ (2016) Activity of D1/2 receptor expressing neurons in the nucleus accumbens regulates running, locomotion, and food intake. Front Behav Neurosci 10:66

    Article  Google Scholar 

  • Zolkowska D, Jain R, Rothman RB, Partilla JS, Roth BL, Setola V, Prisinzano TE, Baumann MH (2009) Evidence for the involvement of dopamine transporters in behavioral stimulant effects of modafinil. J Pharmacol Exp Ther 329:738–746

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Wisor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wisor, J.P. (2018). Dopamine and Wakefulness: Pharmacology, Genetics, and Circuitry. In: Landolt, HP., Dijk, DJ. (eds) Sleep-Wake Neurobiology and Pharmacology . Handbook of Experimental Pharmacology, vol 253. Springer, Cham. https://doi.org/10.1007/164_2018_95

Download citation

Publish with us

Policies and ethics