Skip to main content

Histamine H2 Receptor in Blood Cells: A Suitable Target for the Treatment of Acute Myeloid Leukemia

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 241))

Abstract

Acute myeloid leukemia (AML) consists in a cancer of early hematopoietic cells arising in the bone marrow, most often of those cells that would turn into white blood cells (except lymphocytes). Chemotherapy is the treatment of choice for AML but one of the major complications is that current drugs are highly toxic and poorly tolerated. In general, treatment for AML consists of induction chemotherapy and post-remission therapy. If no further post-remission is given, almost all patients will eventually relapse. Histamine, acting at histamine type-2 (H2) receptors on phagocytes and AML blast cells, helps prevent the production and release of oxygen-free radicals, thereby protecting NK and cytotoxic T cells. This protection allows immune-stimulating agents, such as interleukin-2 (IL-2), to activate cytotoxic cells more effectively, enhancing the killing of tumor cells. Based on this mechanism, post-remission therapy with histamine and IL-2 was found to significantly prevent relapse of AML. Alternatively, another potentially less toxic approach to treat AML employs drugs to induce differentiation of malignant cells. It is based on the assumption that many neoplastic cell types exhibit reversible defects in differentiation, which upon appropriate treatment results in tumor reprogramming and the induction of terminal differentiation. There are promissory results showing that an elevated and sustained signaling through H2 receptors is able to differentiate leukemia-derived cell lines, opening the door for the use of H2 agonists for specific differentiation therapies. In both situations, histamine acting through H2 receptors constitutes an eligible treatment to induce leukemic cell differentiation, improving combined therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi M, Reid G, Schuetz JD (2002) Therapeutic and biological importance of getting nucleotides out of cells: a case for the ABC transporters, MRP4 and 5. Adv Drug Deliv Rev 54:1333–1342

    Article  CAS  PubMed  Google Scholar 

  • Advani AS, Shadman M, Ali-Osman F et al (2010) A Phase II trial of gemcitabine and mitoxantrone for patients with acute myeloid leukemia in first relapse. Clin Lymphoma Myeloma Leuk 10:473–476. doi:10.3816/CLML.2010.n.082

    Article  CAS  PubMed  Google Scholar 

  • Anderlini P, Luna M, Kantarjian HM et al (1996) Causes of initial remission induction failure in patients with acute myeloid leukemia and myelodysplastic syndromes. Leukemia 10:600–608

    CAS  PubMed  Google Scholar 

  • Ash AS, Schild HO (1966) Receptors mediating some actions of histamine. Br J Pharmacol Chemother 27:427–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aurelius J, Martner A, Brune M et al (2012) Remission maintenance in acute myeloid leukemia: impact of functional histamine H2 receptors expressed by leukemic cells. Haematologica 97:1904–1908. doi:10.3324/haematol.2012.066399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baer MR, George SL, Caligiuri MA et al (2008) Low-dose interleukin-2 immunotherapy does not improve outcome of patients age 60 years and older with acute myeloid leukemia in first complete remission: Cancer and Leukemia Group B Study 9720. J Clin Oncol Off J Am Soc Clin Oncol 26:4934–4939. doi:10.1200/JCO.2008.17.0472

    Article  CAS  Google Scholar 

  • Barrett AJ (2008) Understanding and harnessing the graft-versus-leukaemia effect. Br J Haematol 142:877–888. doi:10.1111/j.1365-2141.2008.07260.x

    Article  CAS  PubMed  Google Scholar 

  • Black JW, Duncan WA, Durant CJ et al (1972) Definition and antagonism of histamine H 2 -receptors. Nature 236:385–390

    Article  CAS  PubMed  Google Scholar 

  • Blaise D, Attal M, Reiffers J et al (2000) Randomized study of recombinant interleukin-2 after autologous bone marrow transplantation for acute leukemia in first complete remission. Eur Cytokine Netw 11:91–98

    CAS  PubMed  Google Scholar 

  • Bröderdorf S, Zang S, Schaletzki Y et al (2014) cAMP regulates expression of the cyclic nucleotide transporter MRP4 (ABCC4) through the EPAC pathway. Pharmacogenet Genomics 24:522–526. doi:10.1097/FPC.0000000000000084

    Article  PubMed  CAS  Google Scholar 

  • Brune M, Hansson M, Mellqvist UH et al (1996) NK cell-mediated killing of AML blasts: role of histamine, monocytes and reactive oxygen metabolites. Eur J Haematol 57:312–319

    Article  CAS  PubMed  Google Scholar 

  • Brune M, Castaigne S, Catalano J et al (2006) Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood 108:88–96. doi:10.1182/blood-2005-10-4073

    Article  CAS  PubMed  Google Scholar 

  • Carozzo A, Diez F, Gomez N et al (2015) Dual role of cAMP in the transcriptional regulation of multidrug resistance-associated protein 4 (MRP4) in pancreatic adenocarcinoma cell lines. PLoS One 10:e0120651. doi:10.1371/journal.pone.0120651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaplinski TJ, Niedel JE (1982) Cyclic nucleotide-induced maturation of human promyelocytic leukemia cells. J Clin Invest 70:953–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew CS (1985) Differential effects of extracellular calcium removal and nonspecific effects of Ca2+ antagonists on acid secretory activity in isolated gastric glands. Biochim Biophys Acta 846:370–378

    Article  CAS  PubMed  Google Scholar 

  • Chew CS (1986) Cholecystokinin, carbachol, gastrin, histamine, and forskolin increase [Ca2+]i in gastric glands. Am J Physiol 250:G814–G823

    CAS  PubMed  Google Scholar 

  • Chew CS, Petropoulos AC (1991) Thapsigargin potentiates histamine-stimulated HCl secretion in gastric parietal cells but does not mimic cholinergic responses. Cell Regul 2:27–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ching TL, Koelemij JG, Bast A (1995) The effect of histamine on the oxidative burst of HL60 cells before and after exposure to reactive oxygen species. Inflamm Res 44:99–104

    Article  CAS  PubMed  Google Scholar 

  • Chou W-C, Chen H-Y, Yu S-L et al (2005) Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood 106:304–310. doi:10.1182/blood-2005-01-0241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang TT, Sallese M, Ambrosini G et al (1992) High expression of beta-adrenergic receptor kinase in human peripheral blood leukocytes. Isoproterenol and platelet activating factor can induce kinase translocation. J Biol Chem 267:6886–6892

    CAS  PubMed  Google Scholar 

  • Conti M, Jin SL, Monaco L et al (1991) Hormonal regulation of cyclic nucleotide phosphodiesterases. Endocr Rev 12:218–234. doi:10.1210/edrv-12-3-218

    Article  CAS  PubMed  Google Scholar 

  • Copsel S, Garcia C, Diez F et al (2011) Multidrug resistance protein 4 (MRP4/ABCC4) regulates cAMP cellular levels and controls human leukemia cell proliferation and differentiation. J Biol Chem 286:6979–6988. doi:10.1074/jbc.M110.166868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copsel S, Bruzzone A, May M et al (2014) Multidrug resistance protein 4/ ATP binding cassette transporter 4: a new potential therapeutic target for acute myeloid leukemia. Oncotarget 5:9308–9321. doi:10.18632/oncotarget.2425

    Google Scholar 

  • Costello RT, Sivori S, Marcenaro E et al (2002) Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99:3661–3667

    Article  CAS  PubMed  Google Scholar 

  • Davio CA, Cricco GP, Bergoc RM, Rivera ES (1995a) H1 and H2 histamine receptors in N-nitroso-N-methylurea (NMU)-induced carcinomas with atypical coupling to signal transducers. Biochem Pharmacol 50:91–96

    Article  CAS  PubMed  Google Scholar 

  • Davio C, Baldi A, Mladovan A et al (1995b) Expression of histamine receptors in different cell lines derived from mammary gland and human breast carcinomas. Inflamm Res 44(Suppl 1):S70–S71

    Article  CAS  PubMed  Google Scholar 

  • Davio C, Mladovan A, Lemos B et al (2002) H1 and H2 histamine receptors mediate the production of inositol phosphates but not cAMP in human breast epithelial cells. Inflamm Res 51:1–7

    Article  CAS  PubMed  Google Scholar 

  • Decouture B, Dreano E, Belleville-Rolland T et al (2015) Impaired platelet activation and cAMP homeostasis in MRP4-deficient mice. Blood 126:1823–1830. doi:10.1182/blood-2015-02-631044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deeley RG, Westlake C, Cole SPC (2006) Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 86:849–899. doi:10.1152/physrev.00035.2005

    Article  CAS  PubMed  Google Scholar 

  • Delvalle J, Tsunoda Y, Williams JA, Yamada T (1992) Regulation of [Ca2+]i by secretagogue stimulation of canine gastric parietal cells. Am J Physiol 262:G420–G426

    CAS  PubMed  Google Scholar 

  • Estey E, Döhner H (2006) Acute myeloid leukaemia. Lancet Lond Engl 368:1894–1907. doi:10.1016/S0140-6736(06)69780-8

    Article  Google Scholar 

  • Farag SS, Archer KJ, Mrózek K et al (2006) Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Blood 108:63–73. doi:10.1182/blood-2005-11-4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fauriat C, Just-Landi S, Mallet F et al (2007) Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 109:323–330. doi:10.1182/blood-2005-08-027979

    Article  CAS  PubMed  Google Scholar 

  • Fernández N, Monczor F, Lemos B et al (2002) Reduction of G protein-coupled receptor kinase 2 expression in U-937 cells attenuates H2 histamine receptor desensitization and induces cell maturation. Mol Pharmacol 62:1506–1514

    Article  PubMed  Google Scholar 

  • Fernandez N, Monczor F, Tubio MR et al (2007) Regulatory mechanisms underlying GKR2 levels in U937 cells: evidence for GRK3 involvement. Biochem Pharmacol 73:1758–1767. doi:10.1016/j.bcp.2007.01.019

    Article  CAS  PubMed  Google Scholar 

  • Fernandez N, Monczor F, Baldi A et al (2008) Histamine H2 receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H2 receptor internalization. Mol Pharmacol 74:1109–1118. doi:10.1124/mol.108.045336

    Article  CAS  PubMed  Google Scholar 

  • Fernandez N, Gottardo FL, Alonso MN et al (2011) Roles of phosphorylation-dependent and -independent mechanisms in the regulation of histamine H2 receptor by G protein-coupled receptor kinase 2. J Biol Chem 286:28697–28706. doi:10.1074/jbc.M111.269613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman NJ, Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. Recent Prog Horm Res 51:319–351, discussion 352–353

    CAS  PubMed  Google Scholar 

  • Fukushima Y, Asano T, Takata K et al (1997) Role of the C terminus in histamine H2 receptor signaling, desensitization, and agonist-induced internalization. J Biol Chem 272:19464–19470

    Article  CAS  PubMed  Google Scholar 

  • Gallay N, Dos Santos C, Cuzin L et al (2009) The level of AKT phosphorylation on threonine 308 but not on serine 473 is associated with high-risk cytogenetics and predicts poor overall survival in acute myeloid leukaemia. Leukemia 23:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Gausdal G, Wergeland A, Skavland J et al (2013) Cyclic AMP can promote APL progression and protect myeloid leukemia cells against anthracycline-induced apoptosis. Cell Death Dis 4, e516. doi:10.1038/cddis.2013.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimwade D, Walker H, Oliver F et al (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 92:2322–2333

    CAS  PubMed  Google Scholar 

  • Grimwade D, Walker H, Harrison G et al (2001) The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 98:1312–1320

    Article  CAS  PubMed  Google Scholar 

  • Guillemin M-C, Raffoux E, Vitoux D et al (2002) In vivo activation of cAMP signaling induces growth arrest and differentiation in acute promyelocytic leukemia. J Exp Med 196:1373–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Köck K, Ritter CA et al (2009) Expression of ABCC-type nucleotide exporters in blasts of adult acute myeloid leukemia: relation to long-term survival. Clin Cancer Res 15:1762–1769. doi:10.1158/1078-0432.CCR-08-0442

    Article  CAS  PubMed  Google Scholar 

  • Hellstrand K (2002) Histamine in cancer immunotherapy: a preclinical background. Semin Oncol 29:35–40

    Article  CAS  PubMed  Google Scholar 

  • Hellstrand K, Hermodsson S (1986) Histamine H2-receptor-mediated regulation of human natural killer cell activity. J Immunol 137:656–660

    Google Scholar 

  • Hellstrand K, Asea A, Dahlgren C, Hermodsson S (1994) Histaminergic regulation of NK cells. Role of monocyte-derived reactive oxygen metabolites. J Immunol 153:4940–4947

    Google Scholar 

  • Hill SJ, Ganellin CR, Timmerman H et al (1997) International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 49:253–278

    CAS  PubMed  Google Scholar 

  • Honma Y, Kasukabe T, Hozumi M (1978) Induction of lysozyme activity by adenosine 3’:5’ cyclic monophosphate in cultured mouse myeloid leukemic cells. Biochem Biophys Res Commun 82:1246–1250

    Article  CAS  PubMed  Google Scholar 

  • Jutel M, Blaser K, Akdis CA (2006) The role of histamine in regulation of immune responses. Chem Immunol Allergy 91:174–187. doi:10.1159/000090280

    Article  CAS  PubMed  Google Scholar 

  • Jutel M, Akdis M, Akdis CA (2009) Histamine, histamine receptors and their role in immune pathology. Clin Exp Allergy 39:1786–1800. doi:10.1111/j.1365-2222.2009.03374.x

    Article  CAS  PubMed  Google Scholar 

  • Karin M (1994) Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr Opin Cell Biol 6:415–424

    Article  CAS  PubMed  Google Scholar 

  • Kelley MT, Bürckstümmer T, Wenzel-Seifert K et al (2001) Distinct interaction of human and guinea pig histamine H2-receptor with guanidine-type agonists. Mol Pharmacol 60:1210–1225

    CAS  PubMed  Google Scholar 

  • Kobsar A, Heeg S, Krohne K et al (2008) Cyclic nucleotide-regulated proliferation and differentiation vary in human hematopoietic progenitor cells derived from healthy persons, tumor patients, and chronic myelocytic leukemia patients. Stem Cells Dev 17:81–91. doi:10.1089/scd.2007.0060

    Article  CAS  PubMed  Google Scholar 

  • Kolitz JE, George SL, Benson DM et al (2014) Recombinant interleukin-2 in patients aged younger than 60 years with acute myeloid leukemia in first complete remission: results from Cancer and Leukemia Group B 19808. Cancer 120:1010–1017. doi:10.1002/cncr.28516

    Article  CAS  PubMed  Google Scholar 

  • Kühn B, Schmid A, Harteneck C et al (1996) G proteins of the Gq family couple the H2 histamine receptor to phospholipase C. Mol Endocrinol 10:1697–1707. doi:10.1210/mend.10.12.8961278

    PubMed  Google Scholar 

  • Lemos Legnazzi B, Shayo C, Monczor F et al (2000) Rapid desensitization and slow recovery of the cyclic AMP response mediated by histamine H(2) receptors in the U937 cell line. Biochem Pharmacol 60:159–166

    Article  CAS  PubMed  Google Scholar 

  • Leopoldt D, Harteneck C, Nürnberg B (1997) G proteins endogenously expressed in Sf 9 cells: interactions with mammalian histamine receptors. Naunyn Schmiedebergs Arch Pharmacol 356:216–224

    Article  CAS  PubMed  Google Scholar 

  • Lerner A, Epstein PM (2006) Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies. Biochem J 393:21–41. doi:10.1042/BJ20051368

    Article  CAS  PubMed  Google Scholar 

  • Leurs R, Smit MJ, Menge WM, Timmerman H (1994) Pharmacological characterization of the human histamine H2 receptor stably expressed in Chinese hamster ovary cells. Br J Pharmacol 112:847–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leurs R, Smit MJ, Timmerman H (1995) Molecular pharmacological aspects of histamine receptors. Pharmacol Ther 66:413–463

    Article  CAS  PubMed  Google Scholar 

  • Lian S, Wang Y, Zhou S, Sukthankar M, Neale GA, Downing JR, Schuetz JD (2013) A role of Abcc4/Mrp4 in pediatric acute myeloid leukemia (AML); 10th Annual ABC Genetic Workshop. Blood, Maryland

    Google Scholar 

  • Lotzová E, Savary CA, Herberman RB (1987) Inhibition of clonogenic growth of fresh leukemia cells by unstimulated and IL-2 stimulated NK cells of normal donors. Leuk Res 11:1059–1066

    Article  PubMed  Google Scholar 

  • Lowdell MW, Craston R, Samuel D et al (2002) Evidence that continued remission in patients treated for acute leukaemia is dependent upon autologous natural killer cells. Br J Haematol 117:821–827

    Article  CAS  PubMed  Google Scholar 

  • Malek TR, Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4:665–674. doi:10.1038/nri1435

    Article  CAS  PubMed  Google Scholar 

  • Malinowska DH, Sachs G, Cuppoletti J (1988) Gastric H+ secretion: histamine (cAMP-mediated) activation of protein phosphorylation. Biochim Biophys Acta 972:95–109

    CAS  PubMed  Google Scholar 

  • Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376

    Article  CAS  PubMed  Google Scholar 

  • Martelli AM, Nyakern M, Tabellini G et al (2006) Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 20:911–928

    Article  CAS  PubMed  Google Scholar 

  • Martelli AM, Evangelisti C, Chiarini F et al (2009) Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opin Investig Drugs 18:1333–1349

    Article  CAS  PubMed  Google Scholar 

  • Martner A, Thorén FB, Aurelius J et al (2010) Immunotherapy with histamine dihydrochloride for the prevention of relapse in acute myeloid leukemia. Expert Rev Hematol 3:381–391. doi:10.1586/ehm.10.30

    Article  CAS  PubMed  Google Scholar 

  • Mekhail T, Wood L, Bukowski R (2000) Interleukin-2 in cancer therapy: uses and optimum management of adverse effects. BioDrugs 14:299–318

    Article  CAS  PubMed  Google Scholar 

  • Min YH, Eom JI, Cheong JW et al (2003) Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 17:995–997

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi M, Mitsuhashi T, Payan DG (1989) Multiple signaling pathways of histamine H2 receptors. Identification of an H2 receptor-dependent Ca2+ mobilization pathway in human HL-60 promyelocytic leukemia cells. J Biol Chem 264:18356–18362

    CAS  PubMed  Google Scholar 

  • Monczor F, Fernandez N, Riveiro E et al (2006) Histamine H2 receptor overexpression induces U937 cell differentiation despite triggered mechanisms to attenuate cAMP signalling. Biochem Pharmacol 71:1219–1228. doi:10.1016/j.bcp.2005.12.037

    Article  CAS  PubMed  Google Scholar 

  • Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224–2234. doi:10.1182/blood-2004-03-1109

    Article  CAS  PubMed  Google Scholar 

  • Nguyen E, Gausdal G, Varennes J et al (2013) Activation of both protein kinase A (PKA) type I and PKA type II isozymes is required for retinoid-induced maturation of acute promyelocytic leukemia cells. Mol Pharmacol 83:1057–1065. doi:10.1124/mol.112.081034

    Article  CAS  PubMed  Google Scholar 

  • Nonaka T, Mio M, Doi M, Tasaka K (1992) Histamine-induced differentiation of HL-60 cells. The role of cAMP and protein kinase A. Biochem Pharmacol 44:1115–1121

    Article  CAS  PubMed  Google Scholar 

  • Nowak D, Stewart D, Koeffler HP (2009) Differentiation therapy of leukemia: 3 decades of development. Blood 113:3655–3665. doi:10.1182/blood-2009-01-198911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oevermann L, Scheitz J, Starke K et al (2009) Hematopoietic stem cell differentiation affects expression and function of MRP4 (ABCC4), a transport protein for signaling molecules and drugs. Int J Cancer 124:2303–2311. doi:10.1002/ijc.24207

    Article  CAS  PubMed  Google Scholar 

  • Osycka-Salut C, Diez F, Burdet J et al (2014) Cyclic AMP efflux, via MRPs and A1 adenosine receptors, is critical for bovine sperm capacitation. Mol Hum Reprod 20:89–99. doi:10.1093/molehr/gat053

    Article  CAS  PubMed  Google Scholar 

  • Palczewski K (1997) GTP-binding-protein-coupled receptor kinases--two mechanistic models. Eur J Biochem 248:261–269

    Article  CAS  PubMed  Google Scholar 

  • Panula P, Chazot PL, Cowart M et al (2015) International Union of basic and clinical pharmacology. XCVIII. Histamine receptors. Pharmacol Rev 67:601–655. doi:10.1124/pr.114.010249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pautas C, Merabet F, Thomas X et al (2010) Randomized study of intensified anthracycline doses for induction and recombinant interleukin-2 for maintenance in patients with acute myeloid leukemia age 50 to 70 years: results of the ALFA-9801 study. J Clin Oncol 28:808–814. doi:10.1200/JCO.2009.23.2652

    Article  CAS  PubMed  Google Scholar 

  • Pearce FL (1991) Biological effects of histamine: an overview. Agents Actions 33:4–7

    Article  CAS  PubMed  Google Scholar 

  • Penela P, Ribas C, Mayor F (2003) Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell Signal 15:973–981

    Article  CAS  PubMed  Google Scholar 

  • Penn RB, Pronin AN, Benovic JL (2000) Regulation of G protein-coupled receptor kinases. Trends Cardiovasc Med 10:81–89

    Article  CAS  PubMed  Google Scholar 

  • Pui C-H, Schrappe M, Ribeiro RC, Niemeyer CM (2004) Childhood and adolescent lymphoid and myeloid leukemia. Hematol Am Soc Hematol Educ Program 118–145. doi:10.1182/asheducation-2004.1.118

    Google Scholar 

  • Reher TM, Brunskole I, Neumann D, Seifert R (2012) Evidence for ligand-specific conformations of the histamine H(2)-receptor in human eosinophils and neutrophils. Biochem Pharmacol 84:1174–1185. doi:10.1016/j.bcp.2012.08.014

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Pena MS, Timmerman H, Leurs R (2000) Modulation of histamine H(2) receptor signalling by G-protein-coupled receptor kinase 2 and 3. Br J Pharmacol 131:1707–1715. doi:10.1038/sj.bjp.0703676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero AI, Thorén FB, Aurelius J et al (2009) Post-consolidation immunotherapy with histamine dihydrochloride and interleukin-2 in AML. Scand J Immunol 70:194–205. doi:10.1111/j.1365-3083.2009.02303.x

    Article  CAS  PubMed  Google Scholar 

  • Russel FGM, Koenderink JB, Masereeuw R (2008) Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci 29:200–207. doi:10.1016/j.tips.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  • Safa M, Mousavizadeh K, Noori S et al (2014) cAMP protects acute promyelocytic leukemia cells from arsenic trioxide-induced caspase-3 activation and apoptosis. Eur J Pharmacol 736:115–123. doi:10.1016/j.ejphar.2014.04.040

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Höer A, Schwaner I, Buschauer A (1992) Histamine increases cytosolic Ca2+ in HL-60 promyelocytes predominantly via H2 receptors with an unique agonist/antagonist profile and induces functional differentiation. Mol Pharmacol 42:235–241

    CAS  PubMed  Google Scholar 

  • Shayo C, Davio C, Brodsky A et al (1997) Histamine modulates the expression of c-fos through cyclic AMP production via the H2 receptor in the human promonocytic cell line U937. Mol Pharmacol 51:983–990

    CAS  PubMed  Google Scholar 

  • Shayo C, Fernandez N, Legnazzi BL et al (2001) Histamine H2 receptor desensitization: involvement of a select array of G protein-coupled receptor kinases. Mol Pharmacol 60:1049–1056

    CAS  PubMed  Google Scholar 

  • Shayo C, Legnazzi BL, Monczor F et al (2004) The time-course of cyclic AMP signaling is critical for leukemia U-937 cell differentiation. Biochem Biophys Res Commun 314:798–804

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29. doi: 10.3322/caac.21254

    Google Scholar 

  • Smit MJ, Roovers E, Timmerman H et al (1996) Two distinct pathways for histamine H2 receptor down-regulation. H2 Leu124. Ala receptor mutant provides evidence for a cAMP-independent action of H2 agonists. J Biol Chem 271:7574–7582

    Article  CAS  PubMed  Google Scholar 

  • Steinbach D, Lengemann J, Voigt A et al (2003) Response to chemotherapy and expression of the genes encoding the multidrug resistance-associated proteins MRP2, MRP3, MRP4, MRP5, and SMRP in childhood acute myeloid leukemia. Clin Cancer Res 9:1083–1086

    CAS  PubMed  Google Scholar 

  • Takeuchi K, Shibata M, Kashiyama E, Umehara K (2012) Expression levels of multidrug resistance-associated protein 4 (MRP4) in human leukemia and lymphoma cell lines, and the inhibitory effects of the MRP-specific inhibitor MK-571 on methotrexate distribution in rats. Exp Ther Med 4:524–532. doi:10.3892/etm.2012.627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Traiffort E, Ruat M, Arrang JM et al (1992) Expression of a cloned rat histamine H2 receptor mediating inhibition of arachidonate release and activation of cAMP accumulation. Proc Natl Acad Sci U S A 89:2649–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventimiglia MS, Najenson AC, Perazzo JC et al (2015) Blockade of multidrug resistance-associated proteins aggravates acute pancreatitis and blunts atrial natriuretic factor’s beneficial effect in rats: role of MRP4 (ABCC4). Mol Med Camb Mass 21:58–67. doi:10.2119/molmed.2014.00166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  CAS  PubMed  Google Scholar 

  • Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6:595–601. doi:10.1038/nri1901

    Article  CAS  PubMed  Google Scholar 

  • Wenzel-Seifert K, Kelley MT, Buschauer A, Seifert R (2001) Similar apparent constitutive activity of human histamine H(2)-receptor fused to long and short splice variants of G(salpha). J Pharmacol Exp Ther 299:1013–1020

    CAS  PubMed  Google Scholar 

  • Werner K, Neumann D, Seifert R (2014) Analysis of the histamine H2 -receptor in human monocytes. Biochem Pharmacol 92:369–379

    Article  CAS  PubMed  Google Scholar 

  • Werner K, Käble S, Wolter S et al (2015) Flow cytometric analysis with a fluorescently labeled formyl peptide receptor ligand as a new method to study the pharmacological profile of the histamine H2 receptor. Naunyn Schmiedebergs Arch Pharmacol 388:1039–1052

    Article  CAS  PubMed  Google Scholar 

  • Werner K, Neumann D, Seifert R (2016) High constitutive Akt2 activity in U937 promonocytes: effective reduction of Akt2 phosphorylation by the histamine H2-receptor and the β2-adrenergic receptor. Naunyn Schmiedebergs Arch Pharmacol 389:87–101

    Article  CAS  PubMed  Google Scholar 

  • Xu A-J, Kuramasu A, Maeda K et al (2008) Agonist-induced internalization of histamine H2 receptor and activation of extracellular signal-regulated kinases are dynamin-dependent. J Neurochem 107:208–217. doi:10.1111/j.1471-4159.2008.05608.x

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Zhang J-W, Zhu H-Q et al (2002) Synergic effects of arsenic trioxide and cAMP during acute promyelocytic leukemia cell maturation subtends a novel signaling cross-talk. Blood 99:1014–1022

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Monczor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Monczor, F., Copsel, S., Fernandez, N., Davio, C., Shayo, C. (2016). Histamine H2 Receptor in Blood Cells: A Suitable Target for the Treatment of Acute Myeloid Leukemia. In: Hattori, Y., Seifert, R. (eds) Histamine and Histamine Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 241. Springer, Cham. https://doi.org/10.1007/164_2016_8

Download citation

Publish with us

Policies and ethics