Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 292))

  • 111 Accesses

Abstract

Chitosan is a biopolymer derived from natural chitin, which is the principal component of the exoskeletons of crustaceans and insects as well as of the cell walls of some bacteria and fungi. Like cellulose, it is a glucose-based unbranched polysaccharide. Chitosan has been widely employed in various biomedical areas for both therapeutic purposes and delivery of the drugs and vaccines. Yet, the poor water solubility of chitosan limits its application areas and applicable fields. The modification of chitosan has been an important approach to address this issue, which involves, most commonly, the utilization of the free amino and hydroxyl groups of chitosan as reactive functional sites to generate a wide range of chitosan derivatives with improved solubility. The derivatives of chitosan keep the original physicochemical properties of chitosan such as bioadhesivity, biodegradability, and penetration enhancement as well as the bioactive properties such as antimicrobial, wound healing, anti-inflammatory, immunostimulatory, tissue regeneration, etc., while exerting new and/or improved characteristics depending on the nature of additional functions. Due to its chemical characteristics and the technical feasibility of its synthesis and utilization, carboxymethyl chitosan has been widely investigated for drug and vaccine delivery in different forms such as hydrogels, fibers, films, nanoparticulate systems, etc., as well as for its bioactive properties. In this chapter, an overview of chitosan derivatives used for drug and vaccine delivery will be provided, with a special emphasis on carboxymethyl chitosan and its applications in the pharmaceutics field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Şenel S (2020) Current status and future of chitosan in drug and vaccine delivery. React Funct Polym 147:104452. https://doi.org/10.1016/j.reactfunctpolym.2019.104452

    Article  CAS  Google Scholar 

  2. Akıncbay H, Şenel S, Ay ZY (2007) Application of chitosan gel in the treatment of chronic periodontitis. J Biomed Mater Res B Appl Biomater 80(2):290–296. https://doi.org/10.1002/jbm.b.30596

    Article  CAS  Google Scholar 

  3. Netsomboon K, Bernkop-Schnürch A (2016) Mucoadhesive vs. mucopenetrating particulate drug delivery. Eur J Pharm Biopharm 98:76–89. https://doi.org/10.1016/j.ejpb.2015.11.003

    Article  CAS  Google Scholar 

  4. Sandri G, Rossi S, Ferrari F, Bonferoni MC, Muzzarelli C, Caramella C (2004) Assessment of chitosan derivatives as buccal and vaginal penetration enhancers. Eur J Pharm Sci 21(2–3):351–359. https://doi.org/10.1016/j.ejps.2003.10.028

    Article  CAS  Google Scholar 

  5. Timur SS, Yuksel S, Akca G, Şenel S (2019) Localized drug delivery with mono and bilayered mucoadhesive films and wafers for oral mucosal infections. Int J Pharm 559:102–112. https://doi.org/10.1016/j.ijpharm.2019.01.029

    Article  CAS  Google Scholar 

  6. van der Lubben IM, Verhoef JC, Borchard G, Junginger HE (2001) Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14(3):201–207. https://doi.org/10.1016/S0928-0987(01)00172-5

    Article  Google Scholar 

  7. Smith J, Wood E, Dornish M (2004) Effect of chitosan on epithelial cell tight junctions. Pharm Res 21(1):43–49. https://doi.org/10.1023/b:pham.0000012150.60180.e3

    Article  CAS  Google Scholar 

  8. Şenel S (2010) Potential applications of chitosan in oral mucosal delivery. J Drug Deliv Sci Technol 20(1):23–32. https://doi.org/10.1016/S1773-2247(10)50003-0

    Article  Google Scholar 

  9. Sayın B, Şenel S (2008) Chitosan and its derivatives for mucosal immunization. In: Jayakumar R, Prabaharan M (eds) Current research and developments on chitin and chitosan in biomaterials science, vol 1. Research Signpost, Kerala, pp 145–165

    Google Scholar 

  10. Parmaksız S, Şenel S (2021) An overview on chitosan-based adjuvant/vaccine delivery systems. Chitosan for biomaterials IV. Advances in polymer science. Springer, Berlin. https://doi.org/10.1007/12_2021_93

    Book  Google Scholar 

  11. Sonia TA, Sharma CP (2011) Chitosan and its derivatives for drug delivery perspective. Chitosan for biomaterials I. Springer, Berlin. https://doi.org/10.1007/12_2011_117

    Book  Google Scholar 

  12. Zhao D, Yu S, Sun B, Gao S, Guo S, Zhao K (2018) Biomedical applications of chitosan and its derivative nanoparticles. Polymers 10(4):462. https://doi.org/10.3390/polym10040462

    Article  CAS  Google Scholar 

  13. Hasan S, Boddu VM, Viswanath DS, Ghosh TK (2022) Preparation and application of chitosan derivatives. In: Hasan S, Boddu VM, Viswanath DS, Ghosh TK (eds) Chitin and chitosan: science and engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-01229-7_5

    Chapter  Google Scholar 

  14. Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z et al (2020) Chitosan derivatives and their application in biomedicine. Int J Mol Sci 21(2):487. https://doi.org/10.3390/ijms21020487

    Article  CAS  Google Scholar 

  15. Madera-Santana TJ, Herrera-Méndez CH, Rodríguez-Núñez JR (2018) An overview of the chemical modifications of chitosan and their advantages. Green Mater 6(4):131–142. https://doi.org/10.1680/jgrma.18.00053

    Article  Google Scholar 

  16. Aranaz I, Harris R, Heras A (2010) Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem 14(3):308–330. https://doi.org/10.2174/138527210790231919

    Article  CAS  Google Scholar 

  17. Chen Q, Qi Y, Jiang Y, Quan W, Luo H, Wu K et al (2022) Progress in research of chitosan chemical modification technologies and their applications. Mar Drugs 20(8):536. https://doi.org/10.3390/md20080536

    Article  CAS  Google Scholar 

  18. Brasselet C, Pierre G, Dubessay P, Dols-Lafargue M, Coulon J, Maupeu J et al (2019) Modification of chitosan for the generation of functional derivatives. Appl Sci 9(7):1321. https://doi.org/10.3390/app9071321

    Article  CAS  Google Scholar 

  19. Cai J, Dang Q, Liu C, Fan B, Yan J, Xu Y et al (2015) Preparation and characterization of N-benzoyl-O-acetyl-chitosan. Int J Biol Macromol 77:52–58. https://doi.org/10.1016/j.ijbiomac.2015.03.007

    Article  CAS  Google Scholar 

  20. Martin L, Wilson CG, Koosha F, Tetley L, Gray AI, Şenel S et al (2002) The release of model macromolecules may be controlled by the hydrophobicity of palmitoyl glycol chitosan hydrogels. J Control Release 80(1):87–100. https://doi.org/10.1016/S0168-3659(02)00005-6

    Article  CAS  Google Scholar 

  21. Martin L, Wilson CG, Koosha F, Uchegbu IF (2003) Sustained buccal delivery of the hydrophobic drug denbufylline using physically cross-linked palmitoyl glycol chitosan hydrogels. Eur J Pharm Biopharm 55(1):35–45. https://doi.org/10.1016/s0939-6411(02)00118-2

    Article  CAS  Google Scholar 

  22. Li H, Zhang Z, Bao X, Xu G, Yao P (2018) Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery. Colloids Surf B Biointerfaces 170:136–143. https://doi.org/10.1016/j.colsurfb.2018.05.063

    Article  CAS  Google Scholar 

  23. Li J, Xie B, Xia K, Zhao C, Li Y, Li D et al (2018) Facile synthesis and characterization of cross-linked chitosan quaternary ammonium salt membrane for antibacterial coating of piezoelectric sensors. Int J Biol Macromol 120:745–752. https://doi.org/10.1016/j.ijbiomac.2018.08.153

    Article  CAS  Google Scholar 

  24. Liu W, Qin Y, Liu S, Xing R, Yu H, Chen X et al (2018) Synthesis, characterization and antifungal efficacy of chitosan derivatives with triple quaternary ammonium groups. Int J Biol Macromol 114:942–949. https://doi.org/10.1016/j.ijbiomac.2018.03.179

    Article  CAS  Google Scholar 

  25. Kurita Y, Isogai A (2012) N-alkylations of chitosan promoted with sodium hydrogen carbonate under aqueous conditions. Int J Biol Macromol 50(3):741–746. https://doi.org/10.1016/j.ijbiomac.2011.12.004

    Article  CAS  Google Scholar 

  26. Ma G, Yang D, Zhou Y, Xiao M, Kennedy JF, Nie J (2008) Preparation and characterization of water-soluble N-alkylated chitosan. Carbohydr Polym 74(1):121–126. https://doi.org/10.1016/j.carbpol.2008.01.028

    Article  CAS  Google Scholar 

  27. Mateescu MA, Ispas-Szabo P, Assaad E (eds) (2015) Chapter 3 – chitosan and its derivatives as self-assembled systems for drug delivery. Woodhead Publishing

    Google Scholar 

  28. Federer C, Kurpiers M, Bernkop-Schnürch A (2021) Thiolated chitosans: a multi-talented class of polymers for various applications. Biomacromolecules 22(1):24–56. https://doi.org/10.1021/acs.biomac.0c00663

    Article  CAS  Google Scholar 

  29. Dimassi S, Tabary N, Chai F, Blanchemain N, Martel B (2018) Sulfonated and sulfated chitosan derivatives for biomedical applications: a review. Carbohydr Polym 202:382–396. https://doi.org/10.1016/j.carbpol.2018.09.011

    Article  CAS  Google Scholar 

  30. Azuma K, Osaki T, Minami S, Okamoto Y (2015) Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater 6(1):33–49. https://doi.org/10.3390/jfb6010033

    Article  CAS  Google Scholar 

  31. Shakil MS, Mahmud KM, Sayem M, Niloy MS, Halder SK, Hossen MS et al (2021) Using chitosan or chitosan derivatives in cancer therapy. Polysaccharides 2(4):795–816. https://doi.org/10.3390/polysaccharides2040048

    Article  CAS  Google Scholar 

  32. Kim S (2018) Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polym Sci 2018:1708172. https://doi.org/10.1155/2018/1708172

    Article  CAS  Google Scholar 

  33. Jiang Z, Han B, Li H, Yang Y, Liu W (2015) Carboxymethyl chitosan represses tumor angiogenesis in vitro and in vivo. Carbohydr Polym 129:1–8. https://doi.org/10.1016/j.carbpol.2015.04.040

    Article  CAS  Google Scholar 

  34. Zheng M, Han B, Yang Y, Liu W (2011) Synthesis, characterization and biological safety of O-carboxymethyl chitosan used to treat Sarcoma 180 tumor. Carbohydr Polym 86(1):231–238. https://doi.org/10.1016/j.carbpol.2011.04.038

    Article  CAS  Google Scholar 

  35. Jiang Z, Han B, Li H, Li X, Yang Y, Liu W (2015) Preparation and anti-tumor metastasis of carboxymethyl chitosan. Carbohydr Polym 125:53–60. https://doi.org/10.1016/j.carbpol.2015.02.039

    Article  CAS  Google Scholar 

  36. Akca G, Özdemir A, Öner ZG, Şenel S (2018) Comparison of different types and sources of chitosan for the treatment of infections in the oral cavity. Res Chem Intermed 44:4811–4825. https://doi.org/10.1007/s11164-018-3338-8

    Article  CAS  Google Scholar 

  37. Yan D, Li Y, Liu Y, Li N, Zhang X, Yan C (2021) Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules 26(23):7136. https://doi.org/10.3390/molecules26237136

    Article  CAS  Google Scholar 

  38. Ke C-L, Deng F-S, Chuang C-Y, Lin C-H (2021) Antimicrobial actions and applications of chitosan. Polymers 13(6):904. https://doi.org/10.3390/polym13060904

    Article  CAS  Google Scholar 

  39. Khan F, Pham DTN, Oloketuyi SF, Manivasagan P, Oh J, Kim Y-M (2020) Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids Surf B Biointerfaces 185:110627. https://doi.org/10.1016/j.colsurfb.2019.110627

    Article  CAS  Google Scholar 

  40. Tan Y, Ma S, Liu C, Yu W, Han F (2015) Enhancing the stability and antibiofilm activity of DspB by immobilization on carboxymethyl chitosan nanoparticles. Microbiol Res 178:35–41. https://doi.org/10.1016/j.micres.2015.06.001

    Article  CAS  Google Scholar 

  41. Tan Y, Han F, Ma S, Yu W (2011) Carboxymethyl chitosan prevents formation of broad-spectrum biofilm. Carbohydr Polym 84(4):1365–1370. https://doi.org/10.1016/j.carbpol.2011.01.036

    Article  CAS  Google Scholar 

  42. Shariatinia Z (2018) Carboxymethyl chitosan: properties and biomedical applications. Int J Biol Macromol 120:1406–1419. https://doi.org/10.1016/j.ijbiomac.2018.09.131

    Article  CAS  Google Scholar 

  43. Anitha A, Divya Rani VV, Krishna R, Sreeja V, Selvamurugan N, Nair SV et al (2009) Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles. Carbohydr Polym 78(4):672–677. https://doi.org/10.1016/j.carbpol.2009.05.028

    Article  CAS  Google Scholar 

  44. Fei Liu X, Lin Guan Y, Zhi Yang D, Li Z, De Yao K (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79(7):1324–1335. https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L

    Article  Google Scholar 

  45. Seyfarth F, Schliemann S, Elsner P, Hipler UC (2008) Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine against Candida albicans, Candida krusei and Candida glabrata. Int J Pharm 353(1):139–148. https://doi.org/10.1016/j.ijpharm.2007.11.029

    Article  CAS  Google Scholar 

  46. Hao Y, Zhao W, Zhang H, Zheng W, Zhou Q (2022) Carboxymethyl chitosan-based hydrogels containing fibroblast growth factors for triggering diabetic wound healing. Carbohydr Polym 287:119336. https://doi.org/10.1016/j.carbpol.2022.119336

    Article  CAS  Google Scholar 

  47. Kurniasih M, Purwati CT, Dewi RS (2018) Carboxymethyl chitosan as an antifungal agent on gauze. Int J Biol Macromol 119:166–171. https://doi.org/10.1016/j.ijbiomac.2018.07.038

    Article  CAS  Google Scholar 

  48. Venkatrajah B, Malathy VV, Elayarajah B, Rajendran R, Rammohan R (2013) Synthesis of carboxymethyl chitosan and coating on wound dressing gauze for wound healing. Pak J Biol Sci 16(22):1438–1448. https://doi.org/10.3923/pjbs.2013.1438.1448

    Article  CAS  Google Scholar 

  49. Arca HÇ, Şenel S (2008) Chitosan based systems for tissue engineering part I: hard tissues. FABAD J Pharm Sci 33:35–49

    Google Scholar 

  50. Arca HÇ, Şenel S (2008) Chitosan based systems for tissue engineering part II: soft tissues. FABAD J Pharm Sci 33:211–216

    Google Scholar 

  51. Kim I-Y, Seo S-J, Moon H-S, Yoo M-K, Park I-Y, Kim B-C et al (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26(1):1–21. https://doi.org/10.1016/j.biotechadv.2007.07.009

    Article  CAS  Google Scholar 

  52. Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43(5):401–414. https://doi.org/10.1016/j.ijbiomac.2008.09.007

    Article  CAS  Google Scholar 

  53. Upadhyaya L, Singh J, Agarwal V, Tewari RP (2014) The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. J Control Release 186:54–87. https://doi.org/10.1016/j.jconrel.2014.04.043

    Article  CAS  Google Scholar 

  54. Singh R, Shitiz K, Singh A (2017) Chitin and chitosan: biopolymers for wound management. Int Wound J 14(6):1276–1289. https://doi.org/10.1111/iwj.12797

    Article  Google Scholar 

  55. Janvikul W, Uppanan P, Thavornyutikarn B, Krewraing J, Prateepasen R (2006) In vitro comparative hemostatic studies of chitin, chitosan, and their derivatives. J Appl Polym Sci 102(1):445–451. https://doi.org/10.1002/app.24192

    Article  CAS  Google Scholar 

  56. Shivakumar P, Gupta MS, Jayakumar R, Gowda DV (2021) Prospection of chitosan and its derivatives in wound healing: proof of patent analysis (2010–2020). Int J Biol Macromol 184:701–712. https://doi.org/10.1016/j.ijbiomac.2021.06.086

    Article  CAS  Google Scholar 

  57. Yu J, Wang P, Yin M, Zhang K, Wang X, Han B (2022) Carboxymethyl chitosan-grafted polyvinylpyrrolidone-iodine microspheres for promoting the healing of chronic wounds. Bioengineered 13(4):8735–8746. https://doi.org/10.1080/21655979.2022.2054911

    Article  CAS  Google Scholar 

  58. Chen X-G, Wang Z, Liu W-S, Park H-J (2002) The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts. Biomaterials 23(23):4609–4614. https://doi.org/10.1016/S0142-9612(02)00207-7

    Article  CAS  Google Scholar 

  59. Park J, Kim Y-C (2021) Topical delivery of 5-fluorouracil-loaded carboxymethyl chitosan nanoparticles using microneedles for keloid treatment. Drug Deliv Transl Res 11(1):205–213. https://doi.org/10.1007/s13346-020-00781-w

    Article  CAS  Google Scholar 

  60. Gonçalves RC, Signini R, Rosa LM, Dias YSP, Vinaud MC, Lino Junior RS (2021) Carboxymethyl chitosan hydrogel formulations enhance the healing process in experimental partial-thickness (second-degree) burn wound healing. Acta Cir Bras:36. https://doi.org/10.1590/ACB360303

  61. Şenel S (2015) Functionalization of marine materials for drug delivery systems. In: Kim S-K (ed) Functional marine biomaterials. Woodhead-elsevier Publishing, pp 109–121. https://doi.org/10.1016/B978-1-78242-086-6.00007-8

    Chapter  Google Scholar 

  62. Huang G, Liu Y, Chen L (2017) Chitosan and its derivatives as vehicles for drug delivery. Drug Deliv 24(2):108–113. https://doi.org/10.1080/10717544.2017.1399305

    Article  CAS  Google Scholar 

  63. Xie W, Xu P, Wang W, Liu Q (2002) Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydr Polym 50(1):35–40. https://doi.org/10.1016/S0144-8617(01)00370-8

    Article  CAS  Google Scholar 

  64. Sahariah P, Másson M (2017) Antimicrobial chitosan and chitosan derivatives: a review of the structure–activity relationship. Biomacromolecules 18(11):3846–3868. https://doi.org/10.1021/acs.biomac.7b01058

    Article  CAS  Google Scholar 

  65. Osorno LL, Brandley AN, Maldonado DE, Yiantsos A, Mosley RJ, Byrne ME (2021) Review of contemporary self-assembled systems for the controlled delivery of therapeutics in medicine. Nano 11(2):278. https://doi.org/10.3390/nano11020278

    Article  CAS  Google Scholar 

  66. Silva D, Almeida A, Azevedo C, Campana S, Sarmento B (2018) Synthesis and applications of amphiphilic chitosan derivatives for drug delivery applications. In: Neves AR, Reis S (eds) Nanoparticles in life sciences and biomedicine. Jenny Stanford Publishing. https://doi.org/10.1201/9781351207355-3

    Chapter  Google Scholar 

  67. Liu Y, Sun M, Wang T, Chen X, Wang H (2021) Chitosan-based self-assembled nanomaterials: their application in drug delivery. VIEW 2(1):20200069. https://doi.org/10.1002/VIW.20200069

    Article  CAS  Google Scholar 

  68. Şenel S, Kremer MJ, Kaş S, Wertz PW, Hıncal AA, Squier CA (2000) Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials 21(20):2067–2071. https://doi.org/10.1016/S0142-9612(00)00134-4

    Article  Google Scholar 

  69. Kotzé AF, Lueßen HL, de Boer AG, Verhoef JC, Junginger HE (1999) Chitosan for enhanced intestinal permeability: prospects for derivatives soluble in neutral and basic environments. Eur J Pharm Sci 7(2):145–151. https://doi.org/10.1016/S0928-0987(98)00016-5

    Article  Google Scholar 

  70. Thanou M, Nihot MT, Jansen M, Verhoef JC, Junginger HE (2001) Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J Pharm Sci 90(1):38–46. https://doi.org/10.1002/1520-6017(200101)90:1<38::AID-JPS5>3.0.CO;2-3

    Article  CAS  Google Scholar 

  71. Maya S, Indulekha S, Sukhithasri V, Smitha KT, Nair SV, Jayakumar R et al (2012) Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus. Int J Biol Macromol 51(4):392–399. https://doi.org/10.1016/j.ijbiomac.2012.06.009

    Article  CAS  Google Scholar 

  72. Xu S, Zhou Q, Jiang Z, Wang Y, Yang K, Qiu X et al (2020) The effect of doxycycline-containing chitosan/carboxymethyl chitosan nanoparticles on NLRP3 inflammasome in periodontal disease. Carbohydr Polym 237:116163. https://doi.org/10.1016/j.carbpol.2020.116163

    Article  CAS  Google Scholar 

  73. Zhang S, Kang L, Hu S, Hu J, Fu Y, Hu Y et al (2021) Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease. Int J Biol Macromol 167:1598–1612. https://doi.org/10.1016/j.ijbiomac.2020.11.117

    Article  CAS  Google Scholar 

  74. Lin X, Lv J, Wang D, Liu K (2023) Injectable adhesive carboxymethyl chitosan-based hydrogels with self-mending and antimicrobial features for the potential management of periodontal diseases. RSC Adv 13(18):11903–11911. https://doi.org/10.1039/d3ra00904a

    Article  CAS  Google Scholar 

  75. Liu C, Wang J, Huang S, Yu L, Wang Y, Chen H et al (2018) Self-assembled nanoparticles for cellular delivery of peptide nucleic acid using amphiphilic N,N,N-trimethyl-O-alkyl chitosan derivatives. J Mater Sci Mater Med 29(8):114. https://doi.org/10.1007/s10856-018-6120-y

    Article  CAS  Google Scholar 

  76. Singh A, Yadagiri G, Negi M, Kushwaha AK, Singh OP, Sundar S et al (2022) Carboxymethyl chitosan modified lipid nanoformulations as a highly efficacious and biocompatible oral anti-leishmanial drug carrier system. Int J Biol Macromol 204:373–385. https://doi.org/10.1016/j.ijbiomac.2022.02.006

    Article  CAS  Google Scholar 

  77. Wu C, Zhi Z, Duan M, Sun J, Jiang H, Pang J (2023) Insights into the formation of carboxymethyl chitosan-nisin nanogels for sustainable antibacterial activity. Food Chem 402:134260. https://doi.org/10.1016/j.foodchem.2022.134260

    Article  CAS  Google Scholar 

  78. Sun T, Zhan B, Zhang W, Qin D, Xia G, Zhang H et al (2018) Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing. Int J Nanomedicine 13:5771–5786. https://doi.org/10.2147/ijn.S156206

    Article  CAS  Google Scholar 

  79. Sari R, Widyawaruyanti A, Anindita FBT, Astuti SK, Setyawan D (2018) Development of andrographolide-carboxymethyl chitosan nanoparticles: characterization, in vitro release and in vivo antimalarial activity study. Turk J Pharm Sci 15(2):136–141. https://doi.org/10.4274/tjps.53825

    Article  CAS  Google Scholar 

  80. Malik A, Gupta M, Gupta V, Gogoi H, Bhatnagar R (2018) Novel application of trimethyl chitosan as an adjuvant in vaccine delivery. Int J Nanomedicine 13:7959–7970. https://doi.org/10.2147/IJN.S165876

    Article  CAS  Google Scholar 

  81. Dmour I, Islam N (2022) Recent advances on chitosan as an adjuvant for vaccine delivery. Int J Biol Macromol 200:498–519. https://doi.org/10.1016/j.ijbiomac.2021.12.129

    Article  CAS  Google Scholar 

  82. Zhao J, Li J, Jiang Z, Tong R, Duan X, Bai L et al (2020) Chitosan, N,N,N-trimethyl chitosan (TMC) and 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC): The potential immune adjuvants and nano carriers. Int J Biol Macromol 154:339–348. https://doi.org/10.1016/j.ijbiomac.2020.03.065

    Article  CAS  Google Scholar 

  83. Gong X, Gao Y, Shu J, Zhang C, Zhao K (2022) Chitosan-based nanomaterial as immune adjuvant and delivery carrier for vaccines. Vaccine 10(11):1906. https://doi.org/10.3390/vaccines10111906

    Article  CAS  Google Scholar 

  84. Bueter CL, Lee CK, Rathinam VAK, Healy GJ, Taron CH, Specht CA et al (2011) Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis. J Biol Chem 286(41):35447–35455. https://doi.org/10.1074/jbc.m111.274936

    Article  CAS  Google Scholar 

  85. Carroll EC, Jin L, Mori A, Munoz-Wolf N, Oleszycka E, Moran HBT et al (2016) The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44(3):597–608. https://doi.org/10.1016/j.immuni.2016.02.004

    Article  CAS  Google Scholar 

  86. Zhao Z, Peng Y, Shi X, Zhao K (2023) Chitosan derivative composite nanoparticles as adjuvants enhance the cellular immune response via activation of the cGAS-STING pathway. Int J Pharm 636:122847. https://doi.org/10.1016/j.ijpharm.2023.122847

    Article  CAS  Google Scholar 

  87. Singh B, Maharjan S, Cho K-H, Cui L, Park I-K, Choi Y-J et al (2018) Chitosan-based particulate systems for the delivery of mucosal vaccines against infectious diseases. Int J Biol Macromol 110:54–64. https://doi.org/10.1016/j.ijbiomac.2017.10.101

    Article  CAS  Google Scholar 

  88. Jabbal-Gill I, Watts P, Smith A (2012) Chitosan-based delivery systems for mucosal vaccines. Expert Opin Drug Deliv 9(9):1051–1067. https://doi.org/10.1517/17425247.2012.697455

    Article  CAS  Google Scholar 

  89. Sayın B, Somavarapu S, Li XW, Thanou M, Sesardic D, Alpar HO et al (2008) Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm 363(1–2):139–148. https://doi.org/10.1016/j.ijpharm.2008.06.029

    Article  CAS  Google Scholar 

  90. Sayın B, Somavarapu S, Li XW, Sesardic D, Şenel S, Alpar OH (2009) TMC-MCC (N-trimethyl chitosan-mono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccines. Eur J Pharm Sci 38(4):362–369. https://doi.org/10.1016/j.ejps.2009.08.010

    Article  CAS  Google Scholar 

  91. Gomes DCO, Souza BLSC, Schwedersky RP, Covre LP, de Matos Guedes HL, Lopes UG et al (2022) Intranasal immunization with chitosan microparticles enhances LACK-DNA vaccine protection and induces specific long-lasting immunity against visceral leishmaniasis. Microbes Infect 24(2):104884. https://doi.org/10.1016/j.micinf.2021.104884

    Article  CAS  Google Scholar 

  92. Lin Y, Sun B, Jin Z, Zhao K (2022) Enhanced immune responses to mucosa by functionalized chitosan-based composite nanoparticles as a vaccine adjuvant for intranasal delivery. ACS Appl Mater Interfaces 14(47):52691–52701. https://doi.org/10.1021/acsami.2c17627

    Article  CAS  Google Scholar 

  93. Zhao K, Li S, Li W, Yu L, Duan X, Han J et al (2017) Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Deliv 24(1):1574–1586. https://doi.org/10.1080/10717544.2017.1388450

    Article  CAS  Google Scholar 

  94. Zhou M, Qu W, Sun Y, Liang L, Jin Z, Cui S et al (2020) Water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan enhanced the immunogenicity of inactivated porcine parvovirus vaccine vaccination on sows against porcine parvovirus infection. Immunol Lett 223:26–32. https://doi.org/10.1016/j.imlet.2020.04.014

    Article  CAS  Google Scholar 

  95. Yang Y, Xing R, Liu S, Qin Y, Li K, Yu H et al (2020) Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated Newcastle disease vaccine. Carbohydr Polym 229:115423. https://doi.org/10.1016/j.carbpol.2019.115423

    Article  CAS  Google Scholar 

  96. Chuang C-C, Tsai M-H, Yen H-J, Shyu H-F, Cheng K-M, Chen X-A et al (2020) A fucoidan-quaternary chitosan nanoparticle adjuvant for anthrax vaccine as an alternative to CpG oligodeoxynucleotides. Carbohydr Polym 229:115403. https://doi.org/10.1016/j.carbpol.2019.115403

    Article  CAS  Google Scholar 

  97. Zhao K, Gao Y, Hu G, Wang L, Cui S, Jin Z (2021) N-2-hydroxypropyl trimethyl ammonium chloride chitosan as adjuvant enhances the immunogenicity of a VP2 subunit vaccine against porcine parvovirus infection in sows. Vaccines (Basel) 9(9):1027. https://doi.org/10.3390/vaccines9091027

    Article  CAS  Google Scholar 

  98. Gao Y, Gong X, Yu S, Jin Z, Ruan Q, Zhang C et al (2022) Immune enhancement of N-2-Hydroxypropyl trimethyl ammonium chloride chitosan/carboxymethyl chitosan nanoparticles vaccine. Int J Biol Macromol 220:183–192. https://doi.org/10.1016/j.ijbiomac.2022.08.073

    Article  CAS  Google Scholar 

  99. Kim JJ, Nam JP, Nah JW, Jang MK, Yee ST (2014) Immunoadjuvant efficacy of N-carboxymethyl chitosan for vaccination via dendritic cell activation. J Med Food 17(2):268–277. https://doi.org/10.1089/jmf.2013.2921

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevda Şenel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parmaksız, S., Şenel, S. (2023). Carboxymethyl Chitosan for Drug and Vaccine Delivery: An Overview. In: Jayakumar, R. (eds) Multifaceted Carboxymethyl Chitosan Derivatives: Properties and Biomedical Applications. Advances in Polymer Science, vol 292. Springer, Cham. https://doi.org/10.1007/12_2023_156

Download citation

Publish with us

Policies and ethics