Skip to main content

ecoflex® and ecovio®: Biodegradable, Performance-Enabling Plastics

  • Chapter
  • First Online:
Synthetic Biodegradable and Biobased Polymers

Abstract

In the course of the past two decades, biodegradable polymers have established to serve in form of compostable or soil-biodegradable items as sustainable alternatives to standard plastics in applications where their property of biodegradability adds value. BASF has been a pioneer in this field of action with their commercially available products ecoflex® and ecovio®. Based on continuous research and development at the edge between polymer chemistry and microbiology, not only new developments were realized in the recent past but also a deep understanding about biodegradation under various conditions could be generated. This chapter provides an up-to-date picture about the chemistry and biodegradation, about processing, applications as well as the sustainability contribution of ecoflex® and ecovio®.

This contribution is an update of the article “Ecoflex® and Ecovio®: Biodegradable, Performance-Enabling Plastics” which had been published in the Adv. Polym. Sci. series in 2012 (Siegenthaler KO, Künkel A, Skupin G, Yamamoto M. Adv Polym Sci 245:91–136, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daemmrich A (2010) Co-innovation of materials, standards, and markets: BASF’s development of Ecoflex. Chemical Heritage Foundation, Philadelphia, p 1

    Google Scholar 

  2. Künkel A, Becker J, Börger L, Hamprecht J, Koltzenburg S, Loos R, Schick MB, Schlegel K, Sinkel C, Skupin G, Yamamoto M (2016) “Polymers, biodegradable”, Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Germany

    Google Scholar 

  3. Bastioli C (2005) Handbook of biodegradable polymers. Smithers Rapra Technology, p 5

    Google Scholar 

  4. Kleeberg I, Wetzel K, VandenHeuvel J, Müller RJ, Deckwer WD (2005) Biomacromolecules 6:262–270

    Article  CAS  PubMed  Google Scholar 

  5. Müller RJ (2000) Biologie in unserer Zeit 31:215

    Google Scholar 

  6. Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Müller RJ (2001) Chemosphere 44:289–299

    Article  CAS  PubMed  Google Scholar 

  7. Zumstein MT, Rechsteiner D, Roduner N, Perz V, Ribitsch D, Guebitz GM, Kohler HP, MnNeill K, Sander M (2017) Environ Sci Technol 51:7476–7485

    Article  CAS  PubMed  Google Scholar 

  8. Zumstein MT, Schintlmeister A, Nelson TF, Baumgartner R, Woebken D, Wagner M, Kohler HP, MnNeill K, Sander M (2018) Sci Adv 4(7). https://doi.org/10.1126/sciadv.aas9024

  9. Nelson TF, Remke SC, Kohler HPE, McNeill K, Sander M (2019) Environ Sci Technol 54:266–275

    Article  PubMed  Google Scholar 

  10. Nelson TF, Baumgartner R, Jaggi M, Bernasconi SM, Battagliarin G, Sinkel C, Künkel A, Kohler HP, McNeill K, Sander M (2022) Nat Commun 13:5691–5706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meyer-Cifuentes IE, Werner J, Jehmlich N, Will SE, Neumann-Schaal M, Öztürk B (2020) Nat Commun 11:1–13

    Article  Google Scholar 

  12. Fränzle O, Straskara M (2005) Ullmann Ecol Ecotoxicol 59

    Google Scholar 

  13. EEA Report-No 04/2020; Bio-waste in Europe – turning challenges into opportunities (ISSN 1977-8449)

    Google Scholar 

  14. https://environment.ec.europa.eu/topics/waste-and-recycling/waste-framework-directive_en. Accessed 17 Aug 2022 at 16:51

  15. COM/2018/851, “Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste”, https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1566482964821&uri=CELEX:32018L0851. Accessed 17 Aug 2022 at 17:25

  16. https://www.unep.org/explore-topics/energy/facts-about-methane. Accessed 17 Aug 2022 at 17:09

  17. https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en. Accessed 17 Aug 2022 at 17:15

  18. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en. Accessed 17 Aug 2022 at 17:19

  19. COM/2018/850, “Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the landfill of waste”, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L0850. Accessed 17 Aug 2022 at 17:27

  20. https://www.recycling-magazine.com/2022/06/23/european-parliament-approves-inclusion-of-municipal-incinerators-in-ets/#:~:text=European%20Parliament%20approves%20inclusion%20of%20municipal%20incinerators%20in,pricing%20fossil%20CO2%20emissions%20from%20municipal%20waste%20incinerators. Accessed 17 Aug 2022 at 17:23

  21. Menegat S, Ledo A, Tirado R (2021) PREPRINT (Version 1) available at https://doi.org/10.21203/rs.3.rs-1007419/v1. Accessed 17 Aug 2022 at 17:31

  22. COM/2019/1009, “Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003”, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R1009. Accessed 17 Aug 2022 at 17:39

  23. https://www.carbonbrief.org/restoring-soils-could-remove-up-to-5-5bn-tonnes-of-greenhouse-gases-every-year. Accessed 27 Jan 2023 at 14.52

  24. Petrone P, Vismara D (2014) Müll und Abfall 05/2014:253

    Google Scholar 

  25. https://www.carmen-ev.de/wp-content/uploads/2022/02/Abschlussbericht_Praxistest-Bio-Beutel.pdf. Accessed 27 Jan 2023 at 15.23

  26. https://aplasticplanet.com/inspiring-change/projects/. Accessed 27 Jan 2023 at 15.29

  27. BASF AG, EP2268702B1, 2009 (Witt U, Yamamoto M)

    Google Scholar 

  28. BASF SE (2021) ecoflex® F blend C1200, Product information, Ludwigshafen, Germany

    Google Scholar 

  29. LyondellBasell (2023) Lupolen 2420K, Technical Datasheet

    Google Scholar 

  30. Gan Z, Kuwabara K, Yamamoto M, Abe H, Doi Y (2004) Polym Degrad Stab 83:289

    Article  CAS  Google Scholar 

  31. Pan P, Inoue Y (2009) Prog Polym Sci 34:605

    Article  CAS  Google Scholar 

  32. Cranston E, Marchessault R (2003) Biomacromolecules 4:995

    Article  CAS  PubMed  Google Scholar 

  33. Shi XQ, Kikutani T (2005) Polymer 46:11442

    Article  CAS  Google Scholar 

  34. Chen X, Zhang J (2007) J Appl Polym Sci 104:2643

    Article  CAS  Google Scholar 

  35. Witt U, Mueller RJ, Deckwer WD (1996) MacromolChemPhys 197:1525

    CAS  Google Scholar 

  36. Witt U, Mueller RJ, Deckwer WD (1996) J Environ Polym Degrad 4:9

    Article  CAS  Google Scholar 

  37. Haesslin HW, Droescher M, Wegner G (1980) MakromChem 181:301

    CAS  Google Scholar 

  38. Muenstedt H, Steffl T, Malmberg A (2005) Rheol Acta 45:14

    Article  CAS  Google Scholar 

  39. Swinkels JJM (1995) Starch terminology. AVEBE, Veendam (Netherlands), p 4

    Google Scholar 

  40. Swinkels JJM (1988) Differences between commercial starches. AVEBE, Veendam (Netherlands), pp. 4

    Google Scholar 

  41. Swinkels JJM (1999) Industrial starch chemistry. AVEBE, Veendam (Netherlands), p 28

    Google Scholar 

  42. Wiedmann W (2004) Maschinenkonzepte für biologisch abbaubare Werkstoffe, VDI Aufbereitungstechnik. VDI-Verlag, Düsseldorf, p 10

    Google Scholar 

  43. Bendix D (1998) Polym Degr Stabil 59:129

    Article  CAS  Google Scholar 

  44. Lunt J (1998) Polym Degr Stabil 59:145

    Article  CAS  Google Scholar 

  45. Garlotta D (2001) J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  46. Cargill, US 5357035, 1994 (P. R. Gruber et al.)

    Google Scholar 

  47. Mitsui Taotsu Chemicals, US 5310865, 1994 (K. Enomoto, M. Ajioka, A. Yamaguchi)

    Google Scholar 

  48. Lee SY (1996) Biotechnol Bioeng 49:1

    Article  CAS  PubMed  Google Scholar 

  49. Spinu M, Jackson C, Keating MY, Gardner KH (1996) J Macromol Sci A33:1497

    Article  CAS  Google Scholar 

  50. Kolstad J (1996) J Appl Polym Sci 62:1079

    Article  CAS  Google Scholar 

  51. Conn RE, Kolstad JJ, Borzelleca JF, Dixler DS, Filer LJ, LaDu BN, Pariza MW (1995) Food Chem Toxicol 33:273

    Article  CAS  PubMed  Google Scholar 

  52. Narancic T, O’Connor KE (2018) Environ Sci Technol 52:10441

    Article  CAS  PubMed  Google Scholar 

  53. Lamontagne ND (2018) Plast Eng 2018:26

    Article  Google Scholar 

  54. Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199

    Article  PubMed  Google Scholar 

  55. BASF SE (2016) ecovio® F2332, Product Information, Ludwigshafen, Germany

    Google Scholar 

  56. Ishioka R, Kitaguni E, Ichikawa Y (2002) Aliphatic polyesters: bionolle. In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 4. Wiley-VCH, Weinheim, p 10

    Google Scholar 

  57. Yamamoto M, Witt U, Skupin G, Beimborn D, Müller RJ (2002) Biodegradable aliphatic-aromatic polyesters: ecoflex. In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 4. Wiley-VCH, Weinheim, p 11

    Google Scholar 

  58. Rauwendaal C (2004) Understanding extrusion. Carl Hanser, München, p 75

    Google Scholar 

  59. (1992) Polycarbonate, polyacetale, polyester, celluloseester. In: Becker GW, Braun D, Bottenbruch L (eds) Kunststoff-Handbuch, vol 3/1, Hanser Verlag, München

    Google Scholar 

  60. Basell Holdings BV (2005) Polyethylene film. In: Technical brochure. Basell, Hoofddorp, p 27

    Google Scholar 

  61. BASF SE (2017) ecovio® biologically degradable solutions for extrusion applications. Product Brochure, Ludwigshafen, Germany, pp 12–21

    Google Scholar 

  62. Nentwig J (2006) Kunststofffolien. Carl Hanser, München (Germany), p 195

    Google Scholar 

  63. https://www.basf.com/global/en/media/news-releases/2020/12/p-20-384.html. Accessed 27 Jan 2023 at 16.20

  64. Saechtling HJ (2007) Kunststoff Taschenbuch. Carl Hanser, München, p 256

    Google Scholar 

  65. Rauwendaal C (2004) Understanding extrusion. Carl Hanser, München, p 547

    Google Scholar 

  66. Morris B (2017) The science and technology of flexible packaging. Elsevier, Oxford

    Google Scholar 

  67. Requirements for packaging recoverable through composting and biodegradation, EN 13432:2000, Beuth Verlag, Berlin, Germany

    Google Scholar 

  68. Lotz HG, Kukla R, Sauer P, Steininger G (2007) Latest developments in sputtering thin films for transparent barrier films. Fraunhofer Institut für Verfahrenstechnik und Verpackung, Konferenz ICE 2007, München

    Google Scholar 

  69. https://www.kccpackaging.com/products. Accessed 11 Apr 2022

  70. www.european-bioplastics.org/market/. 2 Feb 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Siegenthaler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siegenthaler, K.O. et al. (2023). ecoflex® and ecovio®: Biodegradable, Performance-Enabling Plastics. In: Künkel, A., Battagliarin, G., Winnacker, M., Rieger, B., Coates, G. (eds) Synthetic Biodegradable and Biobased Polymers. Advances in Polymer Science, vol 293. Springer, Cham. https://doi.org/10.1007/12_2023_151

Download citation

Publish with us

Policies and ethics