Skip to main content

Thermal Properties and Thermodynamics of Poly(l-lactic acid)

  • Chapter
  • First Online:
Synthesis, Structure and Properties of Poly(lactic acid)

Part of the book series: Advances in Polymer Science ((POLYMER,volume 279))

Abstract

Thermal properties and thermodynamics of poly(l-lactic acid) PLLA at nonequilibrium and equilibrium states and during reversing and nonreversing processes are presented, based on the apparent heat-flow and heat capacity (C p ). The experimental, apparent heat capacity results from measurements by adiabatic calorimetry, standard differential scanning calorimetry, and temperature-modulated differential scanning calorimetry are interpreted in terms of microscopic molecular motion in the entire temperature range. The low-temperature, below the glass transition, experimental heat capacity of solid state is linked to the vibrational motion. The heat capacity of the liquid state of PLLA is linked additional to the vibrational, also to the conformational, and anharmonic motions or estimated from an empirical addition scheme based on contributions of the constituent chain-segments of polymers. Once calculated, solid C p (vibration) and liquid C p (liquid) heat capacities are established so they can serve as two reference baselines for the quantitative thermal analysis of nonequilibrium semicrystalline poly(lactic acid). Knowing heat capacities (C p (vibration), C p (liquid)) and transitions parameters, the integral functions such as the enthalpy (H), entropy (S) and free enthalpy (Gibbs function) (G) for equilibrium conditions are calculated and used as a reference for analysis. All recommended results for PLLA, are collected and organized as part of the ATHAS Data Bank. Examples of the qualitative and quantitative thermal analysis of amorphous and semicrystalline poly(lactic acid) are presented to characterize phases and phase transitions such as glass transition, enthalpy relaxation, cold crystallization/cystallization, reorganization and melting, as well as amount of phase: crystallinity, mobile and rigid amorphous fraction on the ATHAS scheme (Advanced Thermal Analysis System).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

A 0 :

Constant of Nernst–Lindemann equation

C p :

Heat capacity at constant pressure

C p (exp):

Experimental heat capacity at constant pressure

\( {C}_p^{\ast}\left(\exp \right) \) :

Apparent experimental heat capacity at constant pressure

C p (liquid):

Heat capacity at constant pressure of the liquid state

C p (semicrystal):

Heat capacity at constant pressure of the semicrystalline polymer

C p (solid):

Heat capacity at constant pressure of the solid state

C p (vibration):

Heat capacity at constant pressure due to vibrational motions

C v :

Heat capacity at constant volume

C v (box):

Heat capacity at constant volume due to frequencies box-like distribution

C V (conf):

Conformational contribution to heat capacity at constant volume

C v (Einstein):

Heat capacity at constant volume in Einstein equation

C v (exp):

Experimental heat capacity at constant volume

C v (group):

Heat capacity at constant volume due to group vibrations

C v (skeletal):

Heat capacity at constant volume due to skeletal vibrations

\( {C}_{v\left(\mathrm{sk}\right)}^{\mathrm{calc}} \) :

Calculated skeletal heat capacity at constant volume

\( {C}_{v\left(\mathrm{sk}\right)}^{\mathrm{exp}} \) :

Experimental skeletal heat capacity at constant volume

D 1 :

One-dimensional Debye function

D 2 :

Two-dimensional Debye function

D 3 :

Three-dimensional Debye function

DSC:

Differential scanning calorimetry

E I :

Total energy in Ising-like model

FSC:

Fast scanning chip calorimetry

G :

Free enthalpy (Gibbs function)

g 1 :

Degeneracy

H :

Enthalpy

h :

Plank’s constant

\( {H}_c^{{}^{\circ}} \) :

Reference enthalpy

k :

Boltzmann constant

L :

Lamellar thickness

m j :

Conformation number

N E :

Number of Einstein modes

N box :

Number of vibrational modes for the frequency box-like distribution

N gr :

Number of group vibrations

N sk :

Number of skeletal vibrations

P :

Pressure

P n :

Number of repeat units in the polymer chain

PDLA:

Poly(d-lactic acid)

PLDLA:

Poly(l,d-lactic acid)

PLLA:

Poly(l-lactic acid)

PPMS:

Physical property measurement system

Q :

Heat

R :

Universal gas constant

S :

Entropy

T :

Temperature

T a :

Annealing temperature (aging temperature)

t a :

Annealing time (aging time)

T c :

Crystallization temperature

T f :

Fictive temperature

T g :

Glass transition temperature

T m :

Melting temperature

\( {T}_m^{{}^{\circ}} \) :

Equilibrium melting temperature

TMDSC:

Temperature-modulated differential scanning calorimetry

T β :

β-transition temperature

V :

Volume

w a :

Mobile amorphous fraction

w c :

Crystal fraction

w RAF :

Rigid amorphous fraction

α :

Coefficient of thermal expansion

β :

Coefficient of compressibility

β KWW :

Stretching parameter

χ 2 :

Chi-square function (weighted sum of squares)

ΔC p :

Variation of heat capacity at T g (w)

Δh m :

Melting enthalpy (heat of fusion)

\( \Delta {h}_m^{{}^{\circ}} \) :

Equilibrium melting enthalpy

Δh r :

Enthalpy recovery

\( \Delta {s}_m^{{}^{\circ}} \) :

Equilibrium melting entropy

Φ :

Heat-flow rate

ϕ(t):

Time decay function

σ e :

Fold surface free energy

σ i :

Standard deviation

ρ :

Density of the crystal phase

τ :

Relaxation time

Γ :

Ratio of degeneracies of the conformational states

Θ Ei :

Einstein frequencies

Θ1, Θ2, Θ3 :

One-, two-, and three-dimensional Debye temperatures

References

  1. ATHAS Data bank. Available from Springer Materials (www.springermaterials.com)

  2. Lide DR (2007) CRC handbook of chemistry and physics, internet version (87th edition). Taylor and Francis, Boca Raton, FL. http:/www.hbcpnetbase.com

    Google Scholar 

  3. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, Berlin

    Google Scholar 

  4. Cheng SZD (2002) Handbook of thermal analysis and calorimetry, vol. 3: applications to polymers and plastics. Elsevier Science, Amsterdam

    Google Scholar 

  5. Reading M (2005) Basic theory and practice for modulated temperature differential scanning calorimetry (MTDSC). Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  6. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta 522:36–45

    Article  CAS  Google Scholar 

  7. Androsch R, Di Lorenzo ML (2013) Kinetics of crystal nucleation of poly(l-lactic acid). Polymer 54:6882–6885

    Article  CAS  Google Scholar 

  8. Androsch R, Iqbal HMN, Schick C (2015) Non-isothermal crystal nucleation of poly(l-lactic acid). Polymer 81:151–158

    Article  CAS  Google Scholar 

  9. Wunderlich B (1980) Macromolecular physics, vol. 3: crystal melting. Academic, New York

    Google Scholar 

  10. Wunderlich B (2003) Reversible crystallization and the rigid–amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28:383–450

    Article  CAS  Google Scholar 

  11. Mathot VBF (1994) Calorimetry and thermal analysis of polymers. Hanser Publishers, Munich

    Google Scholar 

  12. Narayan R (1994) Polymers from agricultural coproducts. In: Fishman ML, Friedman RB, Huang SJ (eds) ACS Symposium Series 575:2–28. American Chemical Society, Washington

    Google Scholar 

  13. Hill VL, Passerni N, Craig DQM, Vickers M, Anwa J, Feely LC (1998) Investigation of progesterone loaded poly(d,l-lactide) microspheres using TMDSC, SEM and PXRD. J Therm Anal Calorim 54:673–685

    Article  CAS  Google Scholar 

  14. Witzke DR (1987) Introduction to properties engineering and prospects of polylactide polymers. UMI Dissertation, Michigan State University, East Lansing

    Google Scholar 

  15. Ikarashi Y, Tsuchiya T, Nakamura A (2000) Effect of heat treatment of poly(l-lactide) on the response of osteoblast-like MC3T3-E1 cells. Biomaterials 21:1259–1267

    Article  CAS  Google Scholar 

  16. Hong K, Park S (2000) Preparation of poly(l-lactide) microcapsules for fragrant fiber and their characteristics. Polymer 41:4567–4572

    Article  CAS  Google Scholar 

  17. Rosilio V, Deyme M, Benoit JP, Madelmont G (1998) Physical aging of progesterone-loaded poly(d,l,-lactide-co-glycolide) microspheres. Pharm Res 15:794–798

    Article  CAS  Google Scholar 

  18. Pyda M, Czerniecka-Kubicka A (2016) Thermodynamic properties of polymers. Encyclopedia of polymer science and technology4th edn. Wiley, New York

    Google Scholar 

  19. Touloukian YS, Ho CY (1970–1979) Thermodynamical properties of matter. New York, The TPRC Data Series, IFI/Plenum

    Google Scholar 

  20. Righetti MC, Gazzano M, Di Lorenzo ML, Androsch R (2015) Enthalpy of melting of α- and α-crystals of poly(l-lactic acid). Eur Polym J 70:215–220

    Article  CAS  Google Scholar 

  21. Pyda M, Bopp RC, Wunderlich B (2004) Heat capacity of poly(lactic acid). J Chem Thermodyn 36:731–742

    Article  CAS  Google Scholar 

  22. Magoń A, Pyda M (2009) Study of crystalline and amorphous phases of biodegradable poly(lactic acid) by advanced thermal analysis. Polymer 50:3967–3973

    Article  Google Scholar 

  23. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  24. Di Lorenzo ML, Androsch R (2016) Stability and reorganization of α-crystals in random l/d-lactide copolymers. Macromol Chem Phys 217:1534–1538

    Article  Google Scholar 

  25. Di Lorenzo ML, Rubino P, Luijkx R, Hélou M (2014) Influence of chain structure on crystal polymorphism of poly(lactic acid). Part 1: effect of optical purity of the monomer. Colloid Polym Sci 292:399–409

    Article  Google Scholar 

  26. Androsch R, Schick C, Di Lorenzo ML (2014) Melting of conformationally disordered crystals (α-phase) of poly(l-lactic acid). Macromol Chem Phys 215:1134–1139

    Article  CAS  Google Scholar 

  27. Androsch R, Zhuravlev E, Schick C (2014) Solid-state reorganization, melting and melt-recrystallization of conformationally disordered crystals (α-phase) of poly(l-lactic acid). Polymer 55:4932

    Article  CAS  Google Scholar 

  28. Malmgren T, Mays J, Pyda M (2006) Characterization of poly(lactic acid) by size exclusion chromatography, differential refractometry, light scattering and thermal analysis. J Therm Anal Calorim 83:35–40

    Article  CAS  Google Scholar 

  29. Yin Y, Song Y, Xiong Z, Zhang X, de Vos S, Wang R, Joziasse CAP, Liu G, Wang D (2016) Effect of the melting temperature on the crystallization behavior of a poly(l-lactide)/poly(d-lactide) equimolar mixture. J Appl Polym Sci 133:43015

    Google Scholar 

  30. Tabi T, Kovacs NK, Sajo IE (2016) Comparison of thermal, mechanical and thermomechanical properties of poly(lactic acid) injection-molded into epoxy-based Rapid Prototyped (PolyJet) and conventional steel mold. J Therm Anal Calorim 123:349–361

    Article  CAS  Google Scholar 

  31. Strobl G (2007) The physics of polymers, concepts for understanding their structures and behavior. Springer, Berlin

    Google Scholar 

  32. Pionteck J, Pyda M (2014) Polymer solids and polymer melts. Part 2: thermodynamic properties-PVT-data and thermal properties. Advanced materials and technologies. Springer, Berlin

    Google Scholar 

  33. Mueller P, Imre B, Bere J (2015) Physical ageing and molecular mobility in PLA blends and composites. J Therm Anal Calorim 122:1423–1433

    Article  Google Scholar 

  34. Hu X, Kaplan D, Cebe P (2006) Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules 39:6161–6170

    Article  CAS  Google Scholar 

  35. Arrnentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747

    Article  Google Scholar 

  36. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Filho RM (2012) Poly-lactic acid synthesis for application in biomedical devices – a review. Biotechnol Adv 30:321–328

    Article  CAS  Google Scholar 

  37. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Maciel R (2010) Biomaterials for application in bone tissue engineering. J Biotechnol 150:S455–S455

    Article  Google Scholar 

  38. Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci B Polym Phys 49:1051–1083

    Article  CAS  Google Scholar 

  39. Pyda M, Van Durme K, Wunderlich B, Van Mele B (2005) Heat capacity of poly(vinyl methyl ether). J Polym Sci B Polym Phys 43:2141–2153

    Article  CAS  Google Scholar 

  40. Wunderlich B (1990) Thermal analysis. Academic, Boston

    Google Scholar 

  41. Wunderlich B (1995) The ATHAS database on heat capacities of polymers. Pure Appl Chem 67:1019–1026

    Article  CAS  Google Scholar 

  42. Pyda M, Bartkowiak M, Wunderlich B (1998) Computation of heat capacities of solids using a general Tarasov equation. J Therm Anal Calorim 52:631–656

    Article  CAS  Google Scholar 

  43. Shi Q, Boerio-Goates J, Woodfield BF (2011) An improved technique for accurate heat capacity measurements on powdered samples using a commercial relaxation calorimeter. J Chem Thermodyn 43:1263–1269

    Article  CAS  Google Scholar 

  44. Einstein A (1907) Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Annalen der Physik 22:180–190

    Article  Google Scholar 

  45. Debye P (1912) Zur Theorie der spezifischen Wärme. Annalen der Physik 39:789–839

    Article  CAS  Google Scholar 

  46. Tarasov VV (1950). Zh Fiz Khim 24:111

    CAS  Google Scholar 

  47. Nernst W, Lindemann FA (1911) Spezifische Wärmen und die Theorie der Energieeinheiten. Z Electrochem 17:817–827

    CAS  Google Scholar 

  48. Pan R, Varma-Nair M, Wunderlich B (1989) On the C p to C v conversion of solid linear macromolecules II. J Therm Anal Calorim 35:955–966

    Article  CAS  Google Scholar 

  49. Baur H, Wunderlich B (1970) Heat capacities of linear high polymers. Adv Polym Sci 7:151–368

    Google Scholar 

  50. Wolfram S (1995) The Mathematica: a system for doing mathematics by compute. Addison-Wesley, Reading

    Google Scholar 

  51. Mandelkern L (1964) Crystallization of polymers. McGraw-Hill, New York

    Google Scholar 

  52. Oishi T, Prausnitz JM (1978) Estimation of solvent activities in polymer solutions using a group-contribution method. Ind Eng Chem Process Des Dev 17:333–339

    Article  CAS  Google Scholar 

  53. Pyda M (2013) Melting. In: Piorkowska E, Rutledge G (eds) Handbook of polymer crystallization, Chapter 9. Wiley, Hoboken, pp 265–286

    Chapter  Google Scholar 

  54. Pyda M, Wunderlich B (1999) Computation of heat capacities of liquid polymers. Macromolecules 32:2044–2050

    Article  CAS  Google Scholar 

  55. Pyda M (2004) Quantitative thermal analysis of carbohydrate-water systems. In: Lorinczy D (ed) The nature of biological systems as revealed by thermal methods. Kluver, Amsterdam, pp 307–332

    Google Scholar 

  56. Pyda M (2002) Conformational heat capacity of interacting systems of polymer and water. Macromolecules 35:4009–4016

    Article  CAS  Google Scholar 

  57. De Gennes PG (1979) Scaling concepts in polymers physics. Cornell University Press, Ithaca

    Google Scholar 

  58. Khongtong S, Ferguson GS (2001) Integration of bulk and interfacial properties in a polymeric system: rubber elasticity at a polybutadiene/water interface. J Am Chem Soc 123:3588–3594

    Article  CAS  Google Scholar 

  59. Flory PJ, Abe A (1964) Statistical thermodynamics of chain molecule liquids. I. An equation of state for normal paraffin hydrocarbons. J Am Chem Soc 86:3507–3514

    Article  CAS  Google Scholar 

  60. Sanchez C, Lacombe RH (1976) An elementary molecular theory of classical fluids. Pure fluids. J Phys Chem 80:2352–2362

    Article  CAS  Google Scholar 

  61. Volkenstein MV (1963) Configurational statistics of polymer chains. Interscience, New York

    Google Scholar 

  62. Pyda M (2001) Conformational contribution to the heat capacity of the starch and water system. J Polym Sci B Polym Phys 39:3038–3054

    Article  CAS  Google Scholar 

  63. Loufakis K, Wunderlich B (1988) Computation of heat capacity of liquid macromolecules based on a statistical mechanical approximation. J Phys Chem 92:4205–4209

    Article  CAS  Google Scholar 

  64. Marand H, Xu J, Srinivas S (1998) Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman-Weeks extrapolations. Macromolecules 31:8219–8229

    Article  CAS  Google Scholar 

  65. Pyda M, Buzin A, Nowak-Pyda E, Wunderlich B (2004) Thermal analysis and morphology of thin films of poly(lactic acid) by calorimetry and AFM. In: Rich MJ (ed) Proceedings of the 32nd NATAS conference, Williamsburg, VA, Oct. 4–6, CD edition, 32, 10 pp

    Google Scholar 

  66. He Y, Fan Z, Hu Y, Wu T, Wei J, Li S (2007) DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly (l-lactide) with different molecular weights. Eur Polym J 43:4431–4439

    Article  CAS  Google Scholar 

  67. Hoffman JD, Weeks JJ (1962) Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand A 66:13–28

    Article  Google Scholar 

  68. Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41:1352–1357

    Article  CAS  Google Scholar 

  69. Vasanthakumari R, Pennings AJ (1983) Crystallization kinetics of poly(l-lactic acid). Polymer 24:175–178

    Article  CAS  Google Scholar 

  70. Kazmierczak T, Galeski A (2002) Transformation of polyethylene crystals by high-pressure annealing. J Appl Polym Sci 86:1337–1350

    Article  CAS  Google Scholar 

  71. Lippits DR, Rastogi S, Talebi S, Bailly C (2006) Formation of entanglements in initially disentangled polymer melts. Macromolecules 39:8882–8885

    Article  CAS  Google Scholar 

  72. Di Lorenzo ML, Cocca M, Malinconico M (2011) Crystal polymorphism of poly(l-lactic acid) and its influence on thermal properties. Thermochim Acta 522:110–117

    Article  Google Scholar 

  73. Righetti MC, Tombari E (2011) Crystalline, mobile amorphous and rigid amorphous fractions in poly(l-lactic acid) by TMDSC. Thermochim Acta 522:118–127

    Article  CAS  Google Scholar 

  74. Pan P, Inoue Y (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34:605–640

    Article  CAS  Google Scholar 

  75. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  CAS  Google Scholar 

  76. Pyda M, Wunderlich B (2005) Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC. Macromolecules 38:10472–10479

    Article  CAS  Google Scholar 

  77. Pyda M (2014) Temperature-modulated differential scanning calorimetry. Encyclopedia of polymer science and technology, pp 1–31

    Google Scholar 

  78. Pyda M (2010) Chapter 15: heat capacity of polymeric systems. In: Wilhelm E, Letcher T (eds) Heat capacities: liquids, solutions and vapours. The Royal Society of Chemistry, London, pp 330–353

    Google Scholar 

  79. Pyda M, Boller A, Grebowicz J, Chuah H, Lebedev BL, Wunderlich B (1998) Heat capacity of poly(trimethylene terephthalate). J Polym Sci B Polym Phys 36:2499–2511

    Article  CAS  Google Scholar 

  80. Kong Y, Hay JN (2003) The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC. Eur Polym J 39:1721–1727

    Article  CAS  Google Scholar 

  81. Kong Y, Hay JN (2002) The measurement of the crystallinity of polymers by DSC. Polymer 43:3873–3878

    Article  CAS  Google Scholar 

  82. Wunderlich B (2007) One hundred years research on supercooling and superheating. Thermochim Acta 461:4–13

    Article  CAS  Google Scholar 

  83. Di Lorenzo ML, Wunderlich B (2003) Melting of polymers by non-isothermal, temperature-modulated calorimetry: analysis of various irreversible latent heat contributions to the reversing heat capacity. Thermochim Acta 405:255–268

    Article  Google Scholar 

  84. Koh YP, Simon SL (2013) Enthalpy recovery of polystyrene: does a long-term aging plateau exist? Macromolecules 46:5815–5821

    Article  CAS  Google Scholar 

  85. Cangialosi D, Alegría A, Colmenero J (2016) Effect of nanostructure on the thermal glass transition and physical aging in polymer materials. Prog Polym Sci 54–55:128–147

    Article  Google Scholar 

  86. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  87. Dorgan JR, Lehermeier H, Mang M (2000) Thermal and rheological properties of commercial-grade poly(lactic acid)s. J Polym Environ 8:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Pyda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pyda, M., Czerniecka-Kubicka, A. (2017). Thermal Properties and Thermodynamics of Poly(l-lactic acid). In: Di Lorenzo, M., Androsch, R. (eds) Synthesis, Structure and Properties of Poly(lactic acid). Advances in Polymer Science, vol 279. Springer, Cham. https://doi.org/10.1007/12_2017_19

Download citation

Publish with us

Policies and ethics