Skip to main content

Crystal Polymorphism and Morphology of Polylactides

  • Chapter
  • First Online:
Book cover Synthesis, Structure and Properties of Poly(lactic acid)

Part of the book series: Advances in Polymer Science ((POLYMER,volume 279))

Abstract

The crystal structures of poly(l-lactic acid) (PLLA), its stereocomplexes, and some features of its crystallization process are reviewed. PLLA exists in different crystal modifications that are based on two different left-handed helix geometries having three units in one turn (31) or ten units in three turns (103). The stable α-phase with a 103 helix exists in two variants: an ordered α-phase produced at high crystallization temperature and a less ordered α′-phase produced at low crystallization temperature. Two structures are based on the 31 helical conformation: an elusive γ-phase, obtained so far only by epitaxial crystallization, and a frustrated trigonal β-phase. The β-phase, first obtained in stretched fibers, could be an intermediate or precursor phase of the low crystallization temperature α′-PLLA variant, which would explain a number of its unusual crystallization features (increased growth rate, thicker lamellae, structural disorder). Stereocomplexes of PLLA and poly(d-lactic acid) (PDLA) are formed through intimate association of left- and right-handed threefold helices. They have remarkably higher melting temperatures than the homopolymers, which is explained by the presence of a dense network of weak CHOC hydrogen bonds. Single crystals of PLLA are obtained both from solution and thin film growth. Spherulites of chiral polylactides are frequently made of twisted lamellae with a large pitch, with the sense of twist depending on the polylactide chirality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this review, PLLA is used as a “generic” designation for the chiral polymers poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) when the chirality distinction is not mandatory.

  2. 2.

    For an extensive list of references see, for example, [18].

  3. 3.

    A parallel can be made with the α- and β-phases of isotactic polypropylene (iPP). The frustrated β-phase growth rate is faster than that of the α-phase in a T c window ranging from about 150 to 100 °C [22]. No crystal–crystal transformation is, however, possible in this case because β-iPP is chiral and α-iPP is made of left- and right-handed helices. A solid-state crystal–crystal transformation would require reversal of helical hand for half of the helices that form the β-iPP crystal.

  4. 4.

    A recent paper [28] considers a lower symmetry space group (P 3) for the form I of iPBu1 than has been used so far. It could therefore also apply for the PLLA/PDLA stereocomplex. However, the differences between the two structures are relatively minor and do not invalidate the argument developed here.

References

  1. De Santis P, Kovacs AJ (1968) Molecular conformation of poly(S-lactic acid). Biopolymers 6:299–306

    Article  Google Scholar 

  2. Wasanasuk K, Tashiro K, Hanesaka M, Ohhara T, Kurihara K, Kuroki R, Tamada T, Ozeki T, Kanamoto T (2011) Crystal structure analysis of poly(l-lactic acid) α form on the basis of the 2-dimensional wide-angle synchrotron X-ray and neutron diffraction measurements. Macromolecules 44:6441–6452

    Article  CAS  Google Scholar 

  3. Hoogsten W, Postema AR, Pennings AJ, Ten Brinke G, Zugenmaier P (1990) Crystal structure, conformation and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 23:634–642

    Article  Google Scholar 

  4. Di Lorenzo ML (2005) Crystallization behavior of poly(l-lactic acid). Eur Polym J 41:569–575

    Article  Google Scholar 

  5. Kawai T, Rahman N, Go M, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuli A, Honma N, Nakajima K, Matsuda M (2007) Crystallization and melting behavior of poly (l-lactic acid). Macromolecules 40:9463–9469

    Article  CAS  Google Scholar 

  6. Sasaki S, Asakura T (2003) Helix distortion and crystal structure of the α-form of poly(l-lactide). Macromolecules 36:8385–8390

    Article  CAS  Google Scholar 

  7. Ruan J, Huang H-Y, Huang Y-F, Lin C, Thierry A, Lotz B, Su A-C (2010) Thickening-induced faceting habit change in solution-grown poly(l-lactic acid) crystals. Macromolecules 43:2382–2388

    Article  CAS  Google Scholar 

  8. Kobayashi J, Asahi T, Ichiki M, Oikawa A, Suzuki H, Watanabe T, Fukada E, Shikinami Y (1995) Structural and optical properties of poly-lactic acids. J Appl Phys 77:2957–2973

    Article  CAS  Google Scholar 

  9. Wasanasuk K, Tashiro K (2011) Structural regularization in the crystallization process from the glass or melt of poly(l-lactic acid) viewed from the temperature-dependent and time-resolved measurements of FTIR and wide-angle/small-angle X-ray scatterings. Macromolecules 44:9650–9660

    Article  CAS  Google Scholar 

  10. Eling B, Gogolewski S, Pennings AJ (1982) Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer 23:1587

    Article  CAS  Google Scholar 

  11. Lotz B, Kopp S, Dorset DL (1994) Sur une structure originale de polymères en conformation helicoïdale 31 ou 32. C R Acad Sci (Paris) 319:187–192

    CAS  Google Scholar 

  12. Puiggali J, Ikada Y, Tsuji H, Cartier L, Okihara T, Lotz B (2000) The frustrated structure of poly(l-lactide). Polymer 41:8921–8930

    Article  CAS  Google Scholar 

  13. Lotz B (2012) Frustration and frustrated crystal structures in polymers and biopolymers. Macromolecules 45:2175–2189

    Article  CAS  Google Scholar 

  14. Lotz B (2015) Single crystals of the frustrated β-phase and genesis of the disordered α′-phase of poly(l-lactic acid). ACS Macro Lett 4:602–605

    Article  CAS  Google Scholar 

  15. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B (2000) Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 41:8909–8919

    Article  CAS  Google Scholar 

  16. Anokhin DV, Neverov VM, Chvalun SN, Bessonova NP, Godovsky YK, Hollmann F, Meier U, Rieger B (2004) Crystal structure of alternating propylene–carbon monoxide copolymers of different stereo- and regioregularities. Polym Sci A 46:52–60

    Google Scholar 

  17. Shao J, Sun J, Bian X, Cui Y, Zhou Y, Li G, Chen X (2013) Modified PLA homochiral crystallites facilitated by the confinement of PLA stereocomplexes. Macromolecules 46:6963–6971

    Article  CAS  Google Scholar 

  18. Wasanasuk K, Tashiro K (2011) Crystal structure and disorder in poly(l-lactic acid) δ form (α′ form) and the phase transition mechanism to the ordered α form. Polymer 52:6097–6109

    Article  CAS  Google Scholar 

  19. Cho T-Y, Strobl G (2006) Temperature dependent variations in the lamellar structure of poly(l-lactide). Polymer 47:1036–1043

    Article  CAS  Google Scholar 

  20. Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Nuovo Cimento 15(S1):40–51

    Article  CAS  Google Scholar 

  21. Corradini P, Guerra G (1992) Polymorphism in polymers. Adv Polym Sci 100:183–217

    Article  Google Scholar 

  22. Nakamura K, Shimizu S, Umemoto S, Thierry A, Lotz B, Okui N (2008) Temperature dependence of crystal growth rate for α and β forms of isotactic polypropylene. Polym J 40:915–922

    Article  CAS  Google Scholar 

  23. Ikada Y, Jamshidi K, Tsuji H, Hyon S-H (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906

    Article  CAS  Google Scholar 

  24. Murdoch JR, Loomis GL (1988) US Patent 4,719,246

    Google Scholar 

  25. Natta G, Corradini P, Bassi IW (1960) Crystal structure of isotactic poly-alpha-butene. Nuovo Cimento 15(S1):52–67

    Article  CAS  Google Scholar 

  26. Natta G, Corradini P, Bassi IW (1960) Crystal structure of isotactic polystyrene. Nuovo Cimento 15(S1):68–82

    Article  CAS  Google Scholar 

  27. Zhang J, Tashiro HT, Domb AJ (2007) Investigation of phase transitional behavior of poly(l-lactide)/poly(d-lactide) blend used to prepare the highly-oriented stereocomplex. Macromolecules 40:1049–1054

    Article  CAS  Google Scholar 

  28. Tashiro K, Hu J, Wang H, Hasenaka M, Saiani A (2016) Refinement of the crystal structures of forms I and II of isotactic polybutene-1 and a proposal of phase transition mechanism between them. Macromolecules 49:1392–1404

    Article  CAS  Google Scholar 

  29. Okihara T, Tsuji M, Kawagushi A, Katayama KI, Tsuji H, Hyon SH, Ikada Y (1991) Crystal structure of stereocomplex of poly(l-lactide) and poly(d-lactide). J Macromol Sci Phys B 30:119

    Article  CAS  Google Scholar 

  30. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

    Article  CAS  Google Scholar 

  31. Serizawa T, Yamashita H, Fujiwara T, Kimura Y, Akashi M (2001) Stepwise assembly of enantiomeric poly(lactide)s on surfaces. Macromolecules 34:1996–2001

    Article  CAS  Google Scholar 

  32. Akagi T, Fujiwara T, Akashi M (2012) Rapid fabrication of polylactide stereocomplex using layer-by-layer deposition by inkjet printing. Angew Chem Int Ed 51:5493–5496

    Article  CAS  Google Scholar 

  33. Fukushima K, Kimura Y (2006) Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym Int 55:626–642

    Article  CAS  Google Scholar 

  34. Desiraju GR (1991) The C–H · · · O hydrogen bond in crystals: what is it? Accts Chem Res 24:290–296

    Article  CAS  Google Scholar 

  35. Bella J, Berman HM (1996) Crystallographic evidence for C–H · · · O = C hydrogen bonds in a collagen triple helix. J Mol Biol 264:734–742

    Article  CAS  Google Scholar 

  36. Sarasua J-R, Lopez Rodrıguez N, Lopez Arraiza A, Meaurio E (2005) Stereoselective crystallization and specific interactions in polylactides. Macromolecules 38:8362–8371

    Article  CAS  Google Scholar 

  37. Zhang J, Sato H, Tsuji H, Noda I, Ozaki Y (2005) Infrared spectroscopic study of CH3 · · · OC interaction during poly(l-lactide)/poly(d-lactide) stereocomplex formation. Macromolecules 38:1822–1828

    Article  CAS  Google Scholar 

  38. Pan P, Yang J, Shan G, Bao Y, Weng Z, Cao A, Yazawa K, Inoue Y (2012) Temperature-variable FTIR and solid-state 13C NMR investigations on crystalline structure and molecular dynamics of polymorphic poly(l-lactide) and poly(l-lactide)/poly(d-lactide) stereocomplex. Macromolecules 45:189–197

    Article  CAS  Google Scholar 

  39. Jiang Z, Boyer MT, Sen A (1995) Chiral and steric recognition in optically active, isotactic, alternating α-olefin-carbon monoxide copolymers. Effect on physical properties and chemical reactivity. J Am Chem Soc 117:7037–7038

    Article  CAS  Google Scholar 

  40. Tsuji H (2016) Poly(lactic acid) stereocomplexes: a decade of progress. Adv Drug Deliv Rev. doi:10.1016/j.addr.2016.04.017

    Google Scholar 

  41. Cartier L, Okihara T, Lotz B (1997) Triangular polymer single crystals: stereocomplexes, twins and frustrated structures. Macromolecules 30:6313–6322

    Article  CAS  Google Scholar 

  42. Wang X, Prud’homme RE (2014) Dendritic crystallization of poly(l-lactide)/poly(d-lactide) stereocomplexes in ultrathin films. Macromolecules 47:668–676

    Article  CAS  Google Scholar 

  43. Keith HD, Padden FJ Jr (1984) Twisting orientation and the role of transient states in polymer crystallization. Polymer 25:28–42

    Article  CAS  Google Scholar 

  44. Saracovan I, Cox JK, Revol JF, St. John Manley R, Brown GR (1999) Optically active polyethers. 3. On the relationship between main-chain chirality and the lamellar morphology of solution-grown single crystals. Macromolecules 32:717–725

    Article  CAS  Google Scholar 

  45. Maillard D, Prud’homme RE (2008) Crystallization of ultrathin films of polylactides: from chain chirality to lamella curvature and twisting. Macromolecules 41:1705–1712

    Article  CAS  Google Scholar 

  46. Woo EM, Lugito G, Tsai J-H, Müller AJ (2016) Hierarchically diminishing chirality effects on lamellar assembly in spherulites comprising chiral polymers. Macromolecules 49:2698–2708

    Article  CAS  Google Scholar 

  47. Gazzano M, Focarete ML, Riekel C, Scandola M (2004) Structural study of poly(l-lactic acid) spherulites. Biomacromolecules 5:553–558

    Article  CAS  Google Scholar 

  48. Lotz B, Cheng SZD (2005) A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer 46:577–610

    Article  CAS  Google Scholar 

  49. Kikkawa Y, Abe H, Fujita M, Iwata T, Inoue Y, Doi Y (2003) Crystal growth in poly(l-lactide) thin film revealed by in situ atomic force microscopy. Macromol Chem Phys 204:1822–1831

    Article  CAS  Google Scholar 

  50. Ninomiya N, Kato K, Fujimori A, Masuko T (2007) Transcrystalline structures of poly(l-lactide). Polymer 48:4874–4882

    Article  CAS  Google Scholar 

  51. Takayanagi M (1957) Kinetics of crystallization in polyesters. Mem Fac Eng Kyushu Univ, pp 112–149

    Google Scholar 

  52. Xu J, Guo B-H, Zhou J-J, Li L, Wu J, Kowalczuk M (2005) Observation of banded spherulites in pure poly(l-lactide) and its miscible blends with amorphous polymers. Polymer 46:9176–9185

    Article  CAS  Google Scholar 

  53. Singfield KL, Hobbs JK, Keller A (1998) Correlation between main chain chirality and “crystal twist” direction in polymer spherulites. J Crystal Growth 183:683–689

    Article  CAS  Google Scholar 

  54. Ye H-M, Xu J, Guo B-H, Iwata T (2009) Left- or right-handed lamellar twists in poly[(R)-3-hydroxyvalerate] banded spherulite: dependence on growth axis. Macromolecules 42(3):694–701

    Article  CAS  Google Scholar 

  55. Fillon B, Lotz B, Thierry A, Wittmann JC (1993) Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci B Polym Phys 31:1395–1405

    Article  CAS  Google Scholar 

  56. Anderson KS, Hillmyer MA (2006) Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 47:2030–2035

    Article  CAS  Google Scholar 

  57. Yamane H, Sasai K (2003) Effect of the addition of poly(d-lactic acid) on the thermal property of poly(l-lactic acid). Polymer 44:2569–2575

    Article  CAS  Google Scholar 

  58. Wittmann JC, Lotz B (1990) Epitaxial crystallization of polymers on organic and polymeric substrates. Prog Polym Sci 15:909–948

    Article  CAS  Google Scholar 

  59. Tan BH, Muiruri JK, Li Z, He C (2016) Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustainable Chem Eng 4:5370–5391. doi:10.1021/acssuschemeng.6b01713

    Article  CAS  Google Scholar 

  60. Wen T, Xiong Z, Liu G, Zhang X, de Vos S, Wang R, Joziasse CAP, Wang F, Wang D (2013) The inexistence of epitaxial relationship between stereocomplex and α crystal of poly(lactic acid): direct experimental evidence. Polymer 54:1923–1929

    Article  CAS  Google Scholar 

  61. Fujita M, Sawayanagi T, Abe H, Tanaka T, Iwata T, Ito K, Fujisawa T, Maeda M (2008) Stereocomplex formation through reorganization of poly(L-lactic acid) and poly(D-lactic acid) crystals. Macromolecules 41:2852–2858

    Article  CAS  Google Scholar 

  62. Xiong Z, Liu G, Zhang X, Wen T, de Vos S, Joziasse C, Wang D (2013) Temperature dependence of crystalline transition of highly-oriented poly(L-lactide)/poly(D-lactide) blend: in-situ synchrotron X-ray scattering study. Polymer 54:964–971

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Lotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lotz, B. (2017). Crystal Polymorphism and Morphology of Polylactides. In: Di Lorenzo, M., Androsch, R. (eds) Synthesis, Structure and Properties of Poly(lactic acid). Advances in Polymer Science, vol 279. Springer, Cham. https://doi.org/10.1007/12_2016_15

Download citation

Publish with us

Policies and ethics