Skip to main content

Recent Developments in Ring-Opening Polymerization of Lactones

  • Chapter
  • First Online:
Synthetic Biodegradable Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 245))

Abstract

Polylactones are important biodegradable and biocompatible environmentally friendly polyesters widely used for many applications and more particularly for biomedical applications. This review covers recent advances dealing with their synthesis by ring-opening polymerization (ROP). First, lactones polymerized by ROP will be reviewed with special attention paid to the effect of the ring size on polymerizability. Aliphatic polyesters synthesized by the ROP of lactones can also be obtained by polycondensation. The advantages of ROP compared with polycondensation will be highlighted. The second section is devoted to the different mechanisms used to carry out ROP, such as anionic, coordination, cationic, enzymatic, and organocatalytic polymerization. Special attention will be paid to the control imparted to the polymerization by the use of catalysts and initiators. The polymerization of lactones substituted by functional groups will be shown to afford functionalized aliphatic polyesters. The final section will focus on the synthesis of different architectures such as star-shaped, graft, hyperbranched, and macrocyclic polylactones in the frame of macromolecular engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanda F, Endo T (2001) Radical ring-opening polymerization. J Polym Sci A Polym Chem 39:265–276

    CAS  Google Scholar 

  2. Bailey WJ (1985) Free-radical ring-opening polymerization. Polym J 17:85–95

    CAS  Google Scholar 

  3. Agarwal S (2010) Chemistry, chances and limitations of the radical ring-opening polymerization of cyclic ketene acetals for the synthesis of degradable polyesters. Polym Chem 1:953–954

    CAS  Google Scholar 

  4. Bailey WJ, Ni Z, Wu S-R (1982) Synthesis of poly-ε-caprolactone via a free radical mechanism. Free radical ring opening polymerization of 2-methylene-1,3-dioxepane. J Polym Sci A Polym Chem 20:3021–3030

    CAS  Google Scholar 

  5. Undin J, Plikk P, Finne-Wistrand A, Albertsson A-C (2010) Synthesis of amorphous aliphatic polyester-ether homo- and copolymers by radical polymerization of ketene acetals. J Polym Sci A Polym Chem 48:4965–4973

    CAS  Google Scholar 

  6. Jin S, Gonsalves KE (1997) A study of the mechanism of the free-radical ring-opening polymerization of 2-methylene-1,3-dioxepane. Macromolecules 30:3104–3106

    CAS  Google Scholar 

  7. Stridsberg KM, Ryner M, Albertsson A-C (2002) Controlled ring-opening polymerization: polymers with designed macromolecular architecture. Adv Polym Sci 157:42–139

    Google Scholar 

  8. Penczek S, Cypryk M, Duda A, Kubisa P, Slomkowski S (2007) Living ring-opening polymerizations of heterocyclic monomers. Prog Polym Sci 32:247–282

    CAS  Google Scholar 

  9. van Natta FJ, Hill JW, Carothers WH (1934) Studies of polymerization and ring formation. XXIII. ε-caprolactone and its polymers. J Am Chem Soc 56:455–457

    Google Scholar 

  10. Woodruff MA, Hutmacher W (2010) The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    CAS  Google Scholar 

  11. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-ε-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278:1–23

    CAS  Google Scholar 

  12. Carpentier J-F (2010) Discrete metal catalysts for stereoselective ring-opening polymerization of chiral racemic β-lactones. Macromol Rapid Commun 31:1696–1705

    CAS  Google Scholar 

  13. Lu J, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly(hydroxyalkanoates). J Macromol Sci, Part C: Polym Rev 49:226–248

    CAS  Google Scholar 

  14. Duda A, Libiszowski J, Mosnacek J, Penczek S (2005) Copolymerization of cyclic esters at the living polymer-monomer equilibrium. Macromol Symp 226:109–119

    CAS  Google Scholar 

  15. Coulembier O, Degée Ph, Hedrick JL, Dubois Ph (2006) From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(β-malic acid) derivatives. Prog Polym Sci 31:723–747

    CAS  Google Scholar 

  16. Szwarc M (1956) Living polymers. Nature 178:1168–1169

    CAS  Google Scholar 

  17. Lecomte Ph, Jérôme R (2004) Recent developments in controlled/living ring opening polymerization. In: Kroschwitz J (ed) Encyclopedia of polymer science and technology. Wiley, Hoboken, pp 547–565

    Google Scholar 

  18. Hamitou A, Jérôme R, Hubert AJ, Teyssié P (1973) A new catalyst for the ring-opening polymerization of lactones to polyesters. Macromolecules 6:651–652

    CAS  Google Scholar 

  19. Ouhadi T, Hamitou R, Jérôme R, Teyssié P (1976) Soluble bimetallic μ-oxoalkoxides. 8. Structure and kinetic behavior of the catalytic species in unsubstituted lactone ring-opening polymerization. Macromolecules 9:927–931

    CAS  Google Scholar 

  20. Dubois P, Jérôme R, Teyssié P (1989) Macromolecular engineering of polylactones and polylactides. I. End-functionalization of poly-ε-caprolactone. Polym Bull 22:475–482

    CAS  Google Scholar 

  21. Ropson N, Dubois P, Jérôme R, Teyssié P (1995) Macromolecular engineering of polylactones and polylactides. 20. Effect of monomer, solvent, and initiator on the ring-opening polymerization as initiated with aluminum alkoxides. Macromolecules 28:7589–7598

    CAS  Google Scholar 

  22. Duda A, Penczek S (1991) Anionic and pseudoanionic polymerization of ε-caprolactone. Makromol Chem, Macromol Symp 42/43:135–143

    CAS  Google Scholar 

  23. Kricheldorf HR, Stricker A, Langanke D (2001) Polylactones, 50. The reactivity of cyclic and noncyclic dibutyltin bisalkoxides as initiators in the polymerization of lactones. Macromol Chem Phys 202:2525–2534

    CAS  Google Scholar 

  24. Kricheldorf HR, Eggerstedt S (1998) Macrocycles 2. Living macrocyclic polymerization of ε-caprolactone with 2,2-dibutyl-2-stanna-1,3-dioxepane as initiator. Macromol Chem Phys 199:283–290

    CAS  Google Scholar 

  25. Kricheldorf HR (2004) Biodegradable polymers with variable architectures via ring-expansion polymerization. J Polym Sci A Polym Chem 42:4723–4742

    CAS  Google Scholar 

  26. McLain SJ, Drysdale NE (1992) Living ring-opening polymerization of ε-caprolactone by yttrium and lanthanide alkoxides. Polymer Preprints, American Chemical Society 33(1):174–175

    CAS  Google Scholar 

  27. Shen Y, Shen Z, Zhang Y, Yao K (1996) Novel rare earth catalysts for the living polymerization and block copolymerization of ε-caprolactone. Macromolecules 29:8289–8295

    CAS  Google Scholar 

  28. Yamashita M, Takemoto Y, Ihara E, Yasuda H (1996) Organolanthanide-initiated living polymerization of ε-caprolactone, δ-valerolactone, and β-propionolactone. Macromolecules 29:1798–1806

    CAS  Google Scholar 

  29. Stevels WM, Ankoné MJK, Dijkstra PJ, Feijen J (1996) A versatile and highly efficient catalyst system for the preparation of polyesters based on lanthanide tris(2,6-di-tert-butylphenolate)s and various alcohols. Macromolecules 29:3332–3333

    CAS  Google Scholar 

  30. Stevels WM, Ankoné MJK, Dijkstra PJ, Feijen J (1996) Kinetics and mechanism of ε-caprolactone polymerization using yttrium alkoxides as initiators. Macromolecules 29:8296–8303

    CAS  Google Scholar 

  31. Martin E, Dubois P, Jérôme R (2000) Controlled ring-opening polymerization of ε-caprolactone promoted by “in situ” formed yttrium alkoxides. Macromolecules 33:1530–1535

    CAS  Google Scholar 

  32. Martin E, Dubois P, Jérôme R (2003) "In situ" formation of yttrrium alkoxides: a versatile and efficient catalyst for the ROP of ε-caprolactone. Macromolecules 36:5934–5941

    CAS  Google Scholar 

  33. Tortosa K, Hamaide T, Boisson C, Spitz R (2001) Homogeneous and heterogeneous polymerization of ε-caprolactone by neodymium alkoxydes prepared in situ. Macromol Chem Phys 202:1156–1160

    CAS  Google Scholar 

  34. Save M, Schappacher M, Soum A (2002) Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1 general aspects and kinetics. Macromol Chem Phys 203:889–899

    CAS  Google Scholar 

  35. Guillaume SM, Schappacher M, Soum A (2003) Polymerization of ε-caprolactone by Nd(BH4)3(THF)3: synthesis of hydroxytelechelic poly(ε-caprolactone). Macromolecules 36:54–60

    CAS  Google Scholar 

  36. Palard I, Soum A, Guillaume SM (2005) Rare earth metal tris(borohydride) complexes as initiators for ε-caprolactone polymerization: general features and IR investigations of the process. Macromolecules 36:54–60

    Google Scholar 

  37. Kowalski A, Duda A, Penczek S (1998) Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate, 1 Polymerization of ε-caprolactone. Macromol Rapid Commun 19:567–572

    CAS  Google Scholar 

  38. Kowalski A, Duda A, Penczek S (2000) Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate. 3. Polymerization of L,L-dilactide. Macromolecules 33:7359–7370

    CAS  Google Scholar 

  39. Kowalski A, Duda A, Penczek S (2000) Mechanism of cyclic ester polymerization initiated with tin(II) octoate. 2. Macromolecules fitted with tin(II) alkoxide species observed directly in MALDI-TOF spectra. Macromolecules 33:689–695

    CAS  Google Scholar 

  40. Majerska K, Duda A, Penczek S (2000) Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate, 4. Influence of proton trapping agents on the kinetics of ε-caprolactone and L,L-dilatce polymerization. Macromol Rapid Commun 21:1327–1332

    CAS  Google Scholar 

  41. Möller M, Kange R, Hedrick JL (2000) Sn(OTf)2 and Sc(OTf)3: efficient and versatile catalysts for the controlled polymerization of lactones. J Polym Sci A Polym Chem 38:2067–2074

    Google Scholar 

  42. Möller M, Nederberg F, Lim LS, Kange R, Hawker CJ, Hedrick JL, Gu Y, Shah R, Abbott NL (2000) Sn(OTf)2 and Sc(OTf)3: efficient and versatile catalysts for the controlled polymerization of lactones. J Polym Sci A Polym Chem 38:2067–2074

    Google Scholar 

  43. Nomura N, Taira A, Tomioka T, Okada M (2000) A catalytic approach for cationic living polymerization: Sc(OTf)3-catalyzed ring-opening polymerization of lactones. Macromolecules 33:1497–1499

    CAS  Google Scholar 

  44. Libiszowki J, Kowalski A, Duda A, Penczek S (2002) Kinetics and mechanism of cyclic esters polymerization initiated with covalent metal carboxylates, 5. End-group studies in the model ε-caprolactone and L,L-dilactide/tin(II) and zinc octoate/butyl alcohol systems. Macromol Chem Phys 203:1694–1701

    Google Scholar 

  45. Kowalski A, Libiszowski J, Majerska K, Duda A, Penczek S (2007) Kinetics and mechanism of ε-caprolactone and L,L-lactide polymerization coinitiated with zinc octoate or aluminum acetylacetonate: The next proofs for the general alkoxide mechanism and synthetic applications. Polymer 48:3952–3960

    CAS  Google Scholar 

  46. Oshimura M, Takasu A (2010) Controlled ring-opening polymerization of ε-caprolactone catalyzed by rare-earth perfluoroalkanesulfonates and perfluoroalkanesulfonimides. Macromolecules 43:2283–2290

    CAS  Google Scholar 

  47. Stjerndahl A, Wistrand AF, Albertsson A-C (2007) Industrial utilization of tin-initiated resorbable polymers: synthesis on a large scale with a low amount of initiator residue. Biomacromolecules 8:937–940

    CAS  Google Scholar 

  48. Mingotaud A-F, Dargelas F, Cansell F (2000) Cationic and anionic ring-opening polymerization in supercritical CO2. Macromol Symp 153:77–86

    CAS  Google Scholar 

  49. Mingotaud A-F, Cansell F, Gilbert N, Soum A (1999) Cationic and anionic ring-opening polymerization in supercritical CO2. Preliminary results. Polym J 31:406–410

    CAS  Google Scholar 

  50. Stassin F, Halleux O, Jérôme R (2001) Ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules 34:775–781

    CAS  Google Scholar 

  51. Stassin F, Jérôme R (2003) Effect of pressure and temperature upon tin alkoxide-promoted ring-opening polymerisation of ε-caprolactone in supercritical carbon dioxide. Chem Commun:232–233

    Google Scholar 

  52. Bergeot V, Tassaing T, Besnard M, Cansell T, Mingotaud A-F (2004) Anionic ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide: parameters influencing the reactivity. J Supercrit fluids 28:249–261

    CAS  Google Scholar 

  53. Stassin F, Jérôme R (2004) Contribution of supercritical CO2 to the preparation of aliphatic polyesters and materials thereof. Macromol Symp 217:135–146

    CAS  Google Scholar 

  54. Shueh ML, Wang Y-S, Huang B-H, Kuo C-Y, Lin C-C (2004) Reactions of 2,2’-methylenebis(4-chloro-6-isopropyl-3-methylphenol) and 2,2’-ethylenebis(4,6-di-tert-butylphenol)with MgnBr2: efficient catalysts for the ring-opening polymerization of ε-caprolactone and L-lactide. Macromolecules 37:5155–5162

    CAS  Google Scholar 

  55. Yu T-L, Wu C-C, Chen C-C, Huang B-H, Wu J, Lin CC (2005) Catalysts for the ring-opening polymerization of ε-caprolactone and L-lactide and the mechanistic study. Polymer 46:5909–5917

    CAS  Google Scholar 

  56. Zhong Z, Dijkstra PJ, Birg C, Westerhausen M, Feijen J (2001) A novel and versatile calcium-based initiator system for the ring-opening polymerization of cyclic esters. Macromolecules 34:3863–3868

    CAS  Google Scholar 

  57. Westerhausen M, Schneiderbauer S, Kneifel AN, Söltl Y, Mayer P, Nöth H, Zhong Z, Dijkstra PJ, Feijen J (2003) Organocalcium compounds with catalytic activity for the ring-opening polymerization of lactones. Eur J Inorg Chem:3432–3439

    Google Scholar 

  58. Martin E, Dubois P, Jérôme R (2003) Preparation of supported yttrium alkoxides as catalysts for the polymerization of lactones and oxirane. J Polym Sci A Polym Chem 41:569–578

    CAS  Google Scholar 

  59. Martin E, Dubois P, Jérôme R (2003) Polymerization of ε-caprolactone initiated by Y alkoxide grafted onto porous silica. Macromolecules 36:7094–7099

    CAS  Google Scholar 

  60. Miola-Delaite C, Colomb E, Pollet E, Hamaide T (2000) Macromol Symp 153:275–286

    CAS  Google Scholar 

  61. Hofman A, Szymanski R, Slomkowski S, Penczek S (1984) Structure of active species in the cationic polymerization of β-propiolactone and ε-caprolactone. Makromol Chem 185:655–667

    CAS  Google Scholar 

  62. Hoffman A, Szymanski R, Slomkowski S, Penczek S (1984) Structure of active species in the cationic polymerization of β-propiolactone and ε-caprolactone. Makromol Chem 185:655–667

    Google Scholar 

  63. Kricheldorf HR, Jonte JM, Dunsing R (1986) Polylactones. 7. The mechanism of cationic polymerization of β-propionolactone and ε-caprolactone. Makromol Chem 187:771–785

    CAS  Google Scholar 

  64. Slomkowski S, Szymanski R, Hofman A (1985) Formation of the intermediate cyclic six-membered oxonium ion in the cationic polymerization of β-propiolactone initiated with CH3CO+SbF -6 . Makromol Chem 186:2283–2290

    CAS  Google Scholar 

  65. Albertsson A-C, Palmgren R (1996) Cationic Polymerization of 1,5-dioxepan-2-one with Lewis acids in bulk and solution. J Macromol Sci: Pure Appl Chem A33:747–758

    CAS  Google Scholar 

  66. Abraham GA, Gallardo A, Lozano AE, San RJ (2000) ε-caprolactone/ZnCl2 complex formation: characterization and ring-opening polymerization mechanism. J Polym Sci A Polym Chem 38:1355–1365

    CAS  Google Scholar 

  67. Kricheldorf HR, Sumbél MV (1988) Polylactones, 15. Reactions of δ-valerolactone and ε-caprolactone with acidic metal bromides. Makromol Chem 185:317–331

    Google Scholar 

  68. Shibasiki Y, Sanada H, Yokoi M, Sanda F, Endo T (2000) Activated monomer cationic polymerization of lactones and the application to well-defined block copolymer synthesis with seven-membered cyclic carbonate. Macromolecules 33:4316–4320

    Google Scholar 

  69. Lou X, Detrembleur C, Jérôme R (2002) Living cationic polymerization of δ-valerolactone and synthesis of high molecular weight homopolymer and asymmetric telechelic and block copolymer. Macromolecules 35:1190–1195

    CAS  Google Scholar 

  70. Basko M, Kubisa P (2006) Cationic copolymerization of ε-caprolactone and L,L-lactide by an activated monomer mechanism. J Polym Sci A Polym Chem 44:7071–7081

    CAS  Google Scholar 

  71. Gazeau-Bureau S, Delcroix D, Martin-Vaca B, Bourissou D, Navarro C, Magnet S (2008) Organo-catalyzed ROP of ε-caprolactone: methanesulfonic acid competes with trifluoromethanesulfonic acid. Macromolecules 41:3782–3784

    CAS  Google Scholar 

  72. Kakuchi R, Tsuji Y, Chiba K, Fuchise K, Sakai R, Satoh T, Kakuchi T (2010) Controlled/living ring-opening polymerization of δ-valerolactone using triflylimide as an efficient cationic organocatalyst. Macromolecules 43:7090–7094

    CAS  Google Scholar 

  73. Oshimura M, Tang T, Takasu A (2011) Ring-opening polymerization of ε-caprolactone using perfluoroalkanesulfonates and perfuloroalkanesulfonimides as organic catalysts. J Polym Sci A Polym Chem 49:1210–1218

    CAS  Google Scholar 

  74. Casas J, Persson PV, Iversen T, Cordova A (2004) Direct organocatalytic ring-opening polymerizations of lactones. Adv Synth Catal 346:1087–1089

    CAS  Google Scholar 

  75. Persson PV, Casas J, Iversen T, Cordova A (2006) Direct organocatalytic chemoselective synthesis of a dendrimer-like star polyester. Macromolecules 39:2819–2822

    CAS  Google Scholar 

  76. Sanda F, Sanada H, Shibasaki Y, Endo T (2002) Star polymer synthesis from ε-caprolactone utilizing polyol/protonic acid initiator. Macromolecules 35:680–683

    CAS  Google Scholar 

  77. Zeng F, Lee H, Chidiac M, Allen C (2005) Synthesis and characterization of six-arm star poly(δ-valerolactone)-block-methoxy poly(ethylene glycol) copolymers. Biomacromolecules 6:2140–2149

    CAS  Google Scholar 

  78. Wilson BC, Jones CW (2004) A recoverable, metal-free catalyst for the green polymerization of ε-caprolactone. Macromolecules 37:9709–9714

    CAS  Google Scholar 

  79. Liu J, Liu L (2004) Ring-opening polymerization of ε-caprolactone initiated by natural amino acids. Macromolecules 37:2674–2676

    CAS  Google Scholar 

  80. Löfgren A, Albertsson A-C, Dubois P, Jérôme R (1995) Recent advances in ring-opening polymerization of lactones and related compounds. J Macromol Sci, Part C: Rev Macromol Chem Phys 35:379–418

    Google Scholar 

  81. Kricheldorf HR, Garaleh M, Schwarz G (2005) Tertiary amine-initiated zwitterionic polymerization of pivalolactone - a reinvestigation by means of MALDI-TOF mass spectrometry. J Macromol Sci, Part A: Pure Appl Chem 42:139–148

    Google Scholar 

  82. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Organocatalytic ring-opening polymerization. Chem Rev 107:5813–5840

    CAS  Google Scholar 

  83. Kiesewetter MK, Shin EJ, Hedrick JL, Waymouth RM (2010) Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules 43:2093–2107

    CAS  Google Scholar 

  84. Connor EF, Nyce GW, Myers M, Möck A, Hedrick JL (2002) First example of N-heterocyclic carbenes as catalysts for living polymerization: organocatalytic ring-opening polymerization of cyclic esters. J Am Chem Soc 124:914–915

    CAS  Google Scholar 

  85. Nyce GW, Glauser T, Connor EF, Möck A, Waymouth RM, Hedrick JL (2003) In situ generation of carbenes: a general and versatile platform for organocatalytic living polymerization. J Am Chem Soc 125:3046–3056

    CAS  Google Scholar 

  86. Coulembier O, Lohmeijer BGG, Dove AP, Pratt RC, Mespouille L, Culkin DA, Benight SJ, Dubois P, Waymouth RM, Hedrick J (2006) Alcohol adducts of N-heterocyclic carbenes: latent catalysts for the thermally –controlled living polymerization of cyclic esters. Macromolecules 2006:5617–5628

    Google Scholar 

  87. Kamber NE, Jeong W, Gonzales S, Hedrick JL, Waymouth RM (2009) N-Heterocyclic carbenes for the organocatalytic ring-opening polymerization of ε-caprolactone. Macromolecules 42:1634–1639

    CAS  Google Scholar 

  88. Pratt RC, Lohmeijer BGG, Long DA, Waymouth RM, Hedrick JL (2006) Triazabicyclodecene: a simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J Am Chem Soc 128:4556–4557

    CAS  Google Scholar 

  89. Lohmeijer BGG, Pratt RC, Leibfarth F, Logan JW, Long DA, Dove AP, Nederberg F, Choi J, Wade C, Waymouth RM, Hedrick JL (2006) Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules 39:8574–8583

    CAS  Google Scholar 

  90. Zhang L, Nederberg F, Pratt RC, Waymouth RM, Hedrick JL, Wade CG (2007) Phosphazene bases: a new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules 40:4154–4158

    CAS  Google Scholar 

  91. Uyama H, Kobayashi S (1993) Enzymatic ring-opening polymerization of lactones catalyzed by lipase. Chem Lett:1149–1150

    Google Scholar 

  92. Knani D, Gutman AL, Kohn DH (1993) Enzymatic polyesterification in organic media. Enzyme-catalyzed synthesis of linear polyesters. I. Condensation polymerization of linear hydroxyester. II. Ring-opening polymerization of ε-caprolactone. J Polym Sci A Polym Chem 31:1221–1232

    CAS  Google Scholar 

  93. Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109:5288–5353

    CAS  Google Scholar 

  94. Gross RA, Kumar A, Kalra B (2001) Polymer synthesis by in vitro enzyme catalysis. Chem Rev 101:2097–2124

    CAS  Google Scholar 

  95. Varma IK, Albertsson A-C, Rajkhowa R, Srivistava RK (2005) Enzyme catalyzed synthesis of polyesters. Prog Polym Sci 30:949–981

    CAS  Google Scholar 

  96. Albertsson A-C, Srivastava RK (2008) Recent developments in enzyme-catalyzed ring-opening polymerization. Adv Drug Deliv Rev 60:1077–1093

    CAS  Google Scholar 

  97. Takamoto T, Uyama H, Kobayashi S (2001) Lipase-catalyzed synthesis of aliphatic polyesters in supercritical carbon dioxide. e-Polymers no.004

    Google Scholar 

  98. Loeker FC, Duxbury CJ, Kumar R, Gao W, Gross RA, Howdle SM (2004) Enzyme-catalyzed ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules 37:2450–2453

    CAS  Google Scholar 

  99. Duda A, Kowalski A, Penczek S, Uyama H, Kobayashi S (2002) Kinetics of the ring-opening polymerization of 6-, 7-, 9-, 12-, 13-, 16-, and 17-membered lactones. Comparison of chemical and enzymatic polymerizations. Macromolecules 35:4266–4270

    CAS  Google Scholar 

  100. Lou X, Detrembleur C, Jérôme R (2003) Novel aliphatic polyesters based on functional cyclic (di)esters. Macromol Rapid Commun 24:161–172

    CAS  Google Scholar 

  101. Ponsart S, Coudane J, Vert M (2000) A novel route to poly(ε-caprolactone)-based copolymers via anionic derivatization. Biomacromolecules 1:275–281

    CAS  Google Scholar 

  102. Gimenez S, Ponsart S, Coudane J, Vert M (2001) Synthesis, properties and in vitro degradation of carboxyl-bearing PCL. J Bioact Compat Polym 16:32–46

    CAS  Google Scholar 

  103. Ponsart S, Coudane J, Morgat J-L, Vert M (2001) Synthesis of 3H and fluorescence-labelled poly (dl-Lactic acid). J Labelled Comp Radiopharm 44:677–687

    CAS  Google Scholar 

  104. Ponsart S, Coudane J, McGrath J, Vert M (2002) Study of the grafting of bromoacetylated α-hydroxy-ω-methoxypoly(ethyleneglycol) onto anionically activated poly(ε-caprolactone). J Bioact Compat Polym 17:417–432

    CAS  Google Scholar 

  105. Nottelet B, Coudane J, Vert M (2006) Synthesis of an X-ray opaque biodegradable copolyester by chemical modification of poly(ε-caprolactone). Biomaterials 27:4948–4954

    CAS  Google Scholar 

  106. Mathisen T, Albertsson A-C (1989) Polymerization of 1,5-dioxepan-2-one. 1. Synthesis and characterization of the monomer 1,5-dioxepan-2-one and its cyclic dimer 1,5,8,12-tetraoxacyclotetradecane-2,9-dione. Macromolecules 22:3838–3842

    CAS  Google Scholar 

  107. Mathisen T, Masus K, Albertsson A-C (1989) Polymerization of 1,5-dioxepan-2-one. 2. Polymerization of 1,5-dioxepan-2-one and its cyclic dimer, including a new procedure for the synthesis of 1,5-dioxepan-2-one. Macromolecules 22:3842–3846

    CAS  Google Scholar 

  108. Löfgren A, Albertsson A-C, Dubois P, Jérôme R, Teyssié P (1994) Synthesis and characterization of biodegradable homopolymers and block copolymers based on 1,5-dioxepan-2-one. Macromolecules 27:5556–5562

    Google Scholar 

  109. Shirahama H, Mizuma K, Kawaguchi Y, Shomi M, Yasuda H (1993) Development of new biodegradable polymers. Kobunshi Ronbunshu 50:821–835

    CAS  Google Scholar 

  110. Shirahama H, Shomi M, Sakane M, Yasuda H (1996) Biodegradation of novel optically active polyesters synthesized by copolymerization of (R)-MOHEL with lactone. Macromolecules 29:4821–4828

    CAS  Google Scholar 

  111. Raquez J-M, Degée P, Narayan R, Dubois P (2000) “Coordination-insertion” ring-opening polymerization of 1,4-dioxan-2-one and controlled synthesis of diblock copolymers with ε-caprolactone. Macromol Rapid Commun 21:1063–1071

    CAS  Google Scholar 

  112. Raquez J-M, Degée P, Narayan R, Dubois P (2001) Some thermodynamic, kinetic, and mechanistic aspects of the ring-opening polymerization of 1,4-dioxan-2-one initiated by Al(OiPr)3 in bulk. Macromolecules 34:8419–8425

    CAS  Google Scholar 

  113. Kricheldorf HR, Damrau D-O (1998) Zn L-lactate-catalyzed polymerizations of 1,4-dioxan-2-one. Macromol Chem Phys 199:1089–1097

    CAS  Google Scholar 

  114. Trollsas M, Lee VY, Mecerreyes D, Löwenhielm P, Möller M, Miller RD, Hedrick JL (2000) Hydrophilic aliphatic polyesters: design, synthesis, and ring-opening polymerization of functional cyclic esters. Macromolecules 33:4619–4627

    Google Scholar 

  115. Kudoh R, Sudo A, Endo T (2009) Synthesis of eight-membered lactone having tertiary amine moiety by ring-expansion reaction of 1,3-benzoxazine and its anionic ring-opening polymerization behavior. Macromolecules 42:2327–2329

    CAS  Google Scholar 

  116. Feng Y, Knüfermann J, Klee D, Höcker H (1999) Lipase-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromol Chem Phys 200:1506–1514

    CAS  Google Scholar 

  117. Feng Y, Klee D, Keul H, Höcker H (2000) Lipase-catalyzed ring-opening polymerization of morpholine-2,5-dione derivatives: a novel route to the synthesis of poly(ester amide)s. Macromol Chem Phys 201:2670–2675

    CAS  Google Scholar 

  118. Feng Y, Knüfermann J, Klee D, Höcker H (1999) Enzyme-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromol Rapid Commun 20:88–90

    CAS  Google Scholar 

  119. Lou X, Detrembleur C, Lecomte P, Jérôme R (2001) Living ring-opening (co)polymerization of 6,7-dihydro-2(5H)-oxepinone into unsaturated aliphatic polyesters. Macromolecules 34:5806–5811

    CAS  Google Scholar 

  120. Lou X, Detrembleur C, Lecomte P, Jérôme R (2002) Controlled synthesis and chemical modification of unsaturated aliphatic (co)polyesters based on 6,7-dihydro-2(3H)-oxepinone. J Polym Sci A Polym Chem 40:2286–2297

    CAS  Google Scholar 

  121. Lou X, Detrembleur C, Lecomte P, Jérôme R (2002) Novel unsaturated ε-caprolactone polymerizable by ring-opening metathesis mechanisms. e-Polymers no 034

    Google Scholar 

  122. Pentzer EB, Gadzikwa T, Nguyen ST (2008) Substrate encapsulation: an efficient strategy for the RCM synthesis of unsaturated ε-lactones. Org Lett 10:5613–5615

    CAS  Google Scholar 

  123. Latere J-P, Lecomte P, Dubois P, Jérôme R (2002) 2-Oxepane-1,5-dione: a precursor of a novel class of versatile semicrystalline biodegradable (co)polyesters. Macromolecules 21:7857–7859

    Google Scholar 

  124. Lenoir S, Riva R, Lou X, Detrembleur C, Jérôme R, Lecomte P (2004) Ring-opening polymerization of α-chloro-ε-caprolactone and chemical modification of poly(α-chloro-ε-caprolactone) by atom transfer radical processes. Macromolecules 37:4055–4061

    CAS  Google Scholar 

  125. Liu X-Q, Wang M-X, Li Z-C, Li F-M (1999) Synthesis and ring-opening polymerization of α-chloromethyl-α-methyl-β-propiolactone. Macromol Chem Phys 200:468–473

    CAS  Google Scholar 

  126. Liu X-Q, Li Z-C, Du F-S, Li FM (1999) Ring-opening copolymerization of α-chloromethyl-α-methyl-β-propionolactone with ε-caprolactone. Macromol Rapid Commun 20:470–474

    Google Scholar 

  127. Detrembleur C, Mazza M, Halleux O, Lecomte P, Mecerreyes D, Hedrick JL, Jérôme R (2000) Ring-opening polymerization of γ-Bromo-ε-caprolactone: a novel route to functionalized aliphatic polyesters. Macromolecules 33:14–18

    CAS  Google Scholar 

  128. Mecerreyes D, Atthoff B, Boduch KA, Trollsas M, Hedrick JL (1999) Unimolecular combination of an atom transfer radical polymerization initiator and a lactone monomer as a route to new graft copolymers. Macromolecules 16:5175–5182

    Google Scholar 

  129. El Habnouni HS, Darcos V, Coudane J (2009) Synthesis and ring-opening polymerization of a new functional lactone, α-iodo-ε-caprolactone: a novel route to functionalized aliphatic polyesters. Macromol Rapid Commun 30:165–169

    CAS  Google Scholar 

  130. Parrish B, Quansah JK, Emrick T (2002) Functional polyesters prepared by polymerization of α-allyl(valerolactone) and its copolymerization with ε-caprolactone and δ-valerolactone. J Polym Sci A Polym Chem 40:1983–1990

    CAS  Google Scholar 

  131. Mecerreyes D, Miller RD, Hedrick JL, Detrembleur C, Jérôme R (2000) Ring-opening polymerization of 6-hydroxynon-8-enoic acid lactone: novel biodegradable copolymers containing allyl pendent groups. J Polym Sci A Polym Chem 38:870–875

    CAS  Google Scholar 

  132. Mecerreyes D, Humes J, Miller RD, Hedrick JL, Lecomte Ph, Detrembleur C, Jérôme R (2000) First example of an unsymmetrical difunctional monomer polymerizable by two living/controlled methods. Macromol Rapid Commun 21:779–784

    CAS  Google Scholar 

  133. Vaida C, Mela P, Keul H, Möller M (2008) 2D- and 3D-microstructured biodegradable polyester resins. J Polym Sci A Polym Chem 46:6789–6800

    CAS  Google Scholar 

  134. Ajellal N, Thomas CM, Carpentier J-F (2009) Functional syndiotacticpoly(β-hydroxyalkanoate)s via stereoselective ring-opening copolymerization of rac-β-butyrolactone and rac-allyl-β-butyrolactone. J Polym Sci A Polym Chem 47:3177–3189

    CAS  Google Scholar 

  135. Parrish B, Breitenkamp RB, Emrick T (2005) PEG- and peptide-grafted aliphatic polyesters by click chemistry. J Am Chem Soc 127:7404–7410

    CAS  Google Scholar 

  136. Pitt CG, Gu Z-H, Ingram P, Hendren RW (1987) The synthesis of biodegradable polymers with functional side chains. J Polym Sci A Polym Chem 25:955–966

    CAS  Google Scholar 

  137. Stassin F, Halleux O, Dubois P, Detrembleur C, Lecomte P, Jérôme R (2000) Ring-opening copolymerization of ε-caprolactone, γ-(triethylsilyloxy)- ε-caprolactone and γ-ethylene ketal-ε-caprolactone: a route to heterograft copolyesters. Macromol Symp 153:27–39

    CAS  Google Scholar 

  138. Gautier S, D’Aloia V, Halleux O, Mazza M, Lecomte P, Jérôme R (2003) Amphiphilic copolymers of ε-caprolactone and γ-substituted-ε-caprolactone. Synthesis and functionalization of poly(d,l-lactide) nanoparticles. J Biomater Sci Polym Ed 114:63–85

    Google Scholar 

  139. Bizzari R, Chiellini F, Solaro R, Chiellini E, Cammas-Marion S, Guerin P (2002) Synthesis and characterization of new malolactonate polymers and copolymers for biomedical applications. Macromolecules 35:1215–1223

    Google Scholar 

  140. Vert M (1998) Chemical routes to poly( β-malic acid) and potential applications to this water-soluble bioresorbable poly(β-hydroxy alkanoate). Polym Degrad Stab 59:169–175

    CAS  Google Scholar 

  141. Blanquer S, Tailhades J, Darcos V, Amblard M, Martinez J, Nottelet B, Coudane J (2010) Easy synthesis and ring-opening polymerization of 5-Z-Amino-δ-valerolactone: new degradable amino-functionalized (co)polyesters. J Polym Sci A Polym Chem 48:5891–5898

    CAS  Google Scholar 

  142. Flétier I, Le Borgne A, Spassky N (1990) Synthesis of functional polyesters derived from serine. Polym Bull 24:349–353

    Google Scholar 

  143. Yan J, Zhang Y, Xiao Y, Zhang Y, Lang MD (2010) Novel poly(ε-caprolactone)s bearing amino groups: Synthesis, characterization and biotinylation. React Funct Polym 70:400–407

    CAS  Google Scholar 

  144. Mahmud A, Xiong X-B, Lavasanifar A (2006) Novel self-associating poly(ethylene oxide)-block-poly(ε-caprolactone) block copolymers with functional side groups on the polyester block for drug delivery. Macromolecules 39:9414–9428

    Google Scholar 

  145. Mahmud A, Xiong X-B, Lavasanifar A (2006) Novel self-associating poly(ethylene oxide)-block-poly(ε-caprolactone) block copolymers with functional side groups on the polyester block for drug delivery. Macromolecules 39:9419–9428

    CAS  Google Scholar 

  146. Barbaud C, Fay F, Abdillah F, Randriamahefa S, Guérin P (2004) Synthesis of new homopolyester and copolyesters by anionic ring-opening polymerization of α, α', β-trisubstituted β-lactones. Macromol Chem Phys 205:199–207

    CAS  Google Scholar 

  147. De Winter J, Coulembier O, Gerbaux P, Dubois P (2010) High molecular weight poly(α, α', β-trisubstituted β-lactones) as generated by metal-free phosphazene catalysts. Macromolecules 43:10291–10296

    Google Scholar 

  148. Lecomte P, Stassin F, Jérôme R (2004) Recent developments in the ring-opening polymerization of ε-caprolactone and derivatives inititated by tin (IV) alkoxides. Macromol Symp 215:325–338

    CAS  Google Scholar 

  149. Tian D, Dubois P, Grandfils C, Jérôme R (1997) Ring-opening polymerization of 1,4,8-trioxaspiro[4.6]-9-undecanone: A new route to aliphatic polyesters bearing functional pendent groups. Macromolecules 30:406–409

    CAS  Google Scholar 

  150. Veld MJ, Palmans ARA, Meijer EW (2007) Selective polymerization of functional monomers with Novozym 435. J Polym Sci A Polym Chem 45:5968–5978

    CAS  Google Scholar 

  151. Amgoune A, Thomas CM, Ilinca S, Roisnel T, Carpentier J-F (2006) Highly active, productive, and syndiospecific yttrium initiators for the polymerization of racemic β-butyrolactone. Ang Chem Int Ed 45:2782–2784

    CAS  Google Scholar 

  152. Ajellal N, Bouyahyi M, Amgoune A, Thomas CM, Bondon A, Pillin I, Grohens Y, Carpentier J-F (2009) Syndiotactic-enriched Poly(3-hydroxybutyrate)s via stereoselective ring-opening polymerization of racemic β-butyrolactone with discrete yttrium catalysts. Macromolecules 42:987–993

    CAS  Google Scholar 

  153. Al-Azemi TF, Kondaveti L, Bisht KS (2002) Solventless enantioselective ring-opening polymerization of substituted-caprolactones by enzymatic catalysis. Macromolecules 35:3380–3386

    CAS  Google Scholar 

  154. Tian D, Dubois P, Jérôme R, Teyssié P (1994) Macromolecular engineering of polylactones and polylactides. 18. Synthesis of star-branched aliphatic polyesters bearing various functional end-groups. Macromolecules 27:4134–4144

    CAS  Google Scholar 

  155. Kricheldorf HR, Ahrensdorf K, Rost S (2004) Star-shaped homo- and copolyesters derived from ε-caprolactone, L,L-lactide and trimethylene carbonate. Macromol Chem Phys 205:1602–1610

    CAS  Google Scholar 

  156. Choi J, Kim I-K, Kwak C-Y (2005) Synthesis and characterization of a series of star-branched poly(ε-caprolactone)s with the variation in arm numbers and lengths. Polymer 46:9725–9735

    CAS  Google Scholar 

  157. Lang M, Wong RP, Chu C-C (2002) Synthesis and structural analysis of functionalized poly(ε-caprolactone)-based three arm star polymers. J Polym Sci A Polym Chem 40:1127–1141

    CAS  Google Scholar 

  158. Trollsas M, Hawker CJ, Remenar JF, Hedrick JL, Johansson M, Ihre H, Hult A (1998) J Polym Sci A Polym Chem 36:2793–2798

    CAS  Google Scholar 

  159. Kricheldorf HR, Fechner B (2002) Polylactones. 59. Biodegradable networks via ring-expansion polymerization of lactones and lactides. Biomacromolecules 3:691–695

    CAS  Google Scholar 

  160. Li H, Riva R, Kricheldorf HR, Jérôme R, Lecomte P (2008) Synthesis of eight and star-shaped poly(ε-caprolactone)s and their amphiphilic derivatives. Chem Eur J 14:358–368

    CAS  Google Scholar 

  161. Kricheldorf HR, Lee SR (1996) Polylactones. 40. Nanopretzels by macrocyclic polymerization of lactones via a spirocyclic tin initiator derived from pentaerythritol. Macromolecules 29:8669–8695

    Google Scholar 

  162. Riva R, Lazzari W, Billiet L, Du Prez F, Jérôme C, Lecomte P (2011) Preparation of pH-sensitive star-shaped aliphatic poplyesters as precursors of polymersomes. J Polym Sci A Polym Chem 49:1552–1563

    CAS  Google Scholar 

  163. Dai W, Zhu J, Shangguan A, Lang M (2009) Synthesis, characterization and degradability of the comb-type poly(4-hydroxyl-ε-caprolactone-co-ε-caprolactone)-g-poly(l-lactide). Eur Polym J 45:1659–1667

    CAS  Google Scholar 

  164. Liu M, Vladimirov N, Fréchet JMJ (1999) A new approach to hyperbranched polymers by ring-opening polymerization of an AB Monomer: 4-(2-hydroxyethyl)-ε-caprolactone. Macromolecules 32:6881–6884

    CAS  Google Scholar 

  165. Yu X-h, Feng J, Zhuo RX (2005) Preparation of hyperbranched aliphatic polyester derived from functionalized 1,4-dioxan-2-one. Macromolecules 38:6244–6247

    CAS  Google Scholar 

  166. Parzuchowski PG, Grabowska M, Tryznowski M, Rokicki G (2006) Synthesis of glycerol based hyperbranched polyesters with primary hydroxyl groups. Macromolecules 39:7181–7186

    CAS  Google Scholar 

  167. Tasaka F, Ohya Y, Ouchi T (2001) One-pot synthesis of novel branched polylactide through the copolymerization of lactide with mevalolactone. Macromol Rapid Commun 22:820–824

    CAS  Google Scholar 

  168. Trollsas M, Löwenhielm P, Lee VY, Möller M, Miller RD, Hedrick JL (1999) New approach to hyperbranched polyesters: self-condensing cyclic ester polymerization of bis(hydroxymethyl)-substituted ε-caprolactone. Macromolecules 32:9062–9066

    Google Scholar 

  169. Laurent BA, Grayson SM (2009) Synthetic approaches for the preparation of cyclic polymers. Chem Soc Rev 38:2202–2213

    CAS  Google Scholar 

  170. Kricheldorf HR, Lee SR (1995) Polylactones. 35. Macrocyclic and stereoselective polymerization of β-d,l-butyrolactone with cyclic dibutyltin initiators. Macromolecules 28:6718–6725

    CAS  Google Scholar 

  171. Kricheldorf HR, Lee S-R, Schittenhelm N (1998) Macrocyclic polymerization of (thio)lactones – stepwise ring expansion contraction. Macromol Chem Phys 199:273–282

    CAS  Google Scholar 

  172. Li H, Debuigne A, Jérôme R, Lecomte P (2006) Synthesis of macrocyclic poly(ε-caprolactone) by intramolecular cross-linking of unsaturated end groups of chains precyclic by the initiation. Angew Chem Int Ed 45:2264–2267

    CAS  Google Scholar 

  173. Jeong W, Hedrick JL, Waymouth RM (2007) Organic spirocyclic initiators for the ring-expansion polymerization of β-lactones. J Am Chem Soc 129:8414–8415

    CAS  Google Scholar 

  174. Xie M, Shi J, Ding L, Li J, Han H, Zhang Y (2009) Cyclic Poly(ε-caprolactone) synthesized by combination of ring-opening pPolymerization with ring-closing metathesis, ring closing enyne metathesis, or “click” reaction. J Polym Sci A Polym Chem 47:3022–3033

    CAS  Google Scholar 

  175. Misaka H, Kakuchi R, Zhang C, Sakai R, Satoh T, Kakuchi T (2009) Synthesis of well-defined macrocyclic poly(δ-valerolactone) by “click cyclization”. Macromolecules 42:5091–5096

    CAS  Google Scholar 

  176. Hiskins JN, Grayson JM (2009) Synthesis and degradation behavior of cyclic poly(ε-caprolactone). Macromolecules 42:6406–6413

    Google Scholar 

  177. Lendlein A, Schmidt AM, Schroeter M, Langer R (2005) Shape-memory polymer networks from oligo( ε-caprolactone)dimethacrylates. J Polym Sci A Polym Chem 43:1369–1381

    CAS  Google Scholar 

  178. Lowe JR, Tolman WB, Hillmyer MA (2009) Oxidized dihydrocarvone as a renewable multifunctional monomer for the synthesis of shape memory polyesters. Biomacromolecules 10:2003–2008

    CAS  Google Scholar 

  179. Mecerreyes D, Lee V, Hawker CJ, Hedrick JL, Wursch A, Volksen W, Magbitang T, Huang E, Miller RD (2001) A novel approach to functionalized nanoparticles: self-crosslinking of macromolecules in ultradilute solution. Adv Mater 13:204–208

    CAS  Google Scholar 

  180. Riva R, Schmeits S, Jérôme C, Jérôme R, Lecomte P (2007) Combination of ring-opening polymerization and “click chemistry”: toward functionalization and grafting of poly(ε-caprolactone). Macromolecules 40:796–803

    CAS  Google Scholar 

  181. Malberg S, Plikk P, Finne-Wistrand A, Albertsson A-C (2010) Design of elastomeric homo- and copolymer networks of functional aliphatic polyester for use in biomedical applications. Chem Mater 22:3009–3014

    CAS  Google Scholar 

  182. Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, Oh JS, Akaike T, Cho CS (2003) A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 24:801–808

    CAS  Google Scholar 

  183. Turunen MPK, Korhonen H, Tuominen J, Seppälä JV (2001) Synthesis, characterization and crosslinking of functional star-shaped poly(ε-caprolactone). Polym Int 51:92–100

    Google Scholar 

  184. Theiler S, Teske M, Keul H, Sternberg K, Möller M (2010) Synthesis, characterization and in vitro degradation of 3D-microstructured poly(ε-caprolactone) resins. Polym Chem 1:1215–1225

    CAS  Google Scholar 

  185. van Horn BA, Wooley KL (2007) Cross-linked and functionalized polyester materials constructed using ketoxime ether linkages. Soft Matter 3:1032–1040

    Google Scholar 

  186. Zednik J, Riva R, Lussis P, Jérôme C, Jérôme R, Lecomte P (2008) pH-responsive biodegradable amphiphilic networks. Polymer 49:697–702

    CAS  Google Scholar 

  187. Kricheldorf HR, Fechner B (2001) Polylactones. 51. Resorbable networks by combined ring-expansion polymerization and ring-opening polycondensation of ε-caprolactone or DL-lactide. Macromolecules 34:3517–3521

    CAS  Google Scholar 

  188. Palmgren R, Karlsson S, Albertsson A-C (1997) Synthesis of degradable crosslinked polymers based on 1,5-dioxepan-2-one and crosslinker of bis-ε-caprolactone type. J Polym Sci A Polym Chem 35:1635–1649

    CAS  Google Scholar 

  189. Albertsson A-C, Edlund U, Stridsberg K (2000) Controlled ring-opening polymerization of lactones and lactides. Macromol Symp 157:39–46

    CAS  Google Scholar 

  190. Grijpma DW, Kroeze E, Nijenhuis AJ, Pennings AJ (1993) Poly(L-lactide) crosslinked with spiro-bis-dimethylene-carbonate. Polymer 34:1496–1503

    CAS  Google Scholar 

Download references

Acknowledgements

CERM is indebted to the “Belgian Science Policy” for general support in the frame of the “Interuniversity Attraction Poles Programme (IAP 6/27) – Functional Supramolecular Systems.” P.L. is Research Associate funded by the “Fonds National pour la Recherche Scientifique” (FRS-FNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lecomte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lecomte, P., Jérôme, C. (2011). Recent Developments in Ring-Opening Polymerization of Lactones. In: Rieger, B., Künkel, A., Coates, G., Reichardt, R., Dinjus, E., Zevaco, T. (eds) Synthetic Biodegradable Polymers. Advances in Polymer Science, vol 245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_144

Download citation

Publish with us

Policies and ethics