Skip to main content

Thermal Diffusion in Polymer Blends: Criticality and Pattern Formation

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 227))

Abstract

We discuss the dynamic critical properties of a binary blend of the two polymers poly(dimethyl siloxane) (PDMS) and poly(ethyl-methyl siloxane) (PEMS), and we have investigated experimentally and theoretically patterning and structure formation processes above and below the spinodal in the case of a spatially varying temperature. Asymptotic critical scaling is found close to T c in the range 6 ×10− 4 ≤ ε ≤ 0. 2 of the reduced temperature ε and a mean field behavior for large values of ε. The thermal diffusion coefficient D T is thermally activated but does not show the critical slowing down of the Fickian diffusion coefficient D, which can be described by crossover functions for D. The Soret coefficient \({S}_{\mathrm{T}} = {D}_{\mathrm{T}}/D\) diverges at the critical point with a critical exponent − 0. 67 and shows a crossover to the exponent − 1 of the structure factor in the classical regime. Thermal activation processes cancel out and do not contribute to S T. The divergence of S T also leads to a very strong coupling of the order parameter to small temperature gradients, which can be utilized for laser patterning of thin polymer films. For a quantitative numerical model all three coefficients D, D T, and S T have been determined within the entire homogeneous phase and are parameterized by a pseudospinodal model. It is shown that equilibrium phase diagrams are no longer globally valid in the presence of a temperature gradient, and systems with an upper critical solution temperature (UCST) can be quenched into phase separation by local heating. Below the spinodal there is competition between the spontaneous spinodal demixing patterns and structures imposed by means of a focused laser beam utilizing the Soret effect. Elongated structures degrade to spherical objects due to surface tension effects leading to pearling instabilities. Grids of parallel lines can be stabilized by enforcing certain boundary conditions. Phase separation phenomena in polymer blends belong to the universality class of pattern forming systems with a conserved order parameter. In such systems, the effects of spatial forcing are rather unexplored and, as described in this work, spatial temperature modulations may cause via the Soret effect (thermal diffusion) a variety of interesting concentration modulations. In the framework of a generalized Cahn–Hilliard model it is shown that coarsening in the two-phase range of phase separating systems can be interrupted by a spatially periodic temperature modulation with a modulation amplitude beyond a critical one, where in addition the concentration modulations are locked to the periodicity of the external forcing. Accordingly, temperature modulations may be a useful future tool for controlled structuring of polymer blends. In the case of a traveling spatially periodic forcing, but with a modulation amplitude below the critical one, the coarsening dynamics can be enhanced. With a model of phase separation, taking into account thermal diffusion, essential features of the spatio-temporal dynamics of phase separation and thermal patterning observed in experiments can be reproduced. With a directional quenching an effective approach is studied to create regular structures during the phase separation process. In addition, it is shown that the wavelength of periodic stripe patterns is uniquely selected by the velocity of a quench interface. With a spatially periodic modulation of the quench interface itself, cellular patterns can also be generated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sengers JV (1976) Ber Bunsenges Phys Chem 76:234

    Google Scholar 

  2. Siggia ED, Halperin BI, Hohenberg PC (1976) Phys Rev B 13:2110

    Article  Google Scholar 

  3. Hohenberg PC, Halperin BI (1977) Rev Mod Phys 49:435

    Article  CAS  Google Scholar 

  4. Binder K (1994) Adv Polym Sci 112:181

    Article  CAS  Google Scholar 

  5. Binder K (1983) J Chem Phys 79:6387

    Article  CAS  Google Scholar 

  6. Sato H, Kuwahara N, Kubota K (1994) Phys Rev E 50:R1752

    Article  CAS  Google Scholar 

  7. Theobald W, Meier G (1995) Phys Rev E 51:5776

    Article  CAS  Google Scholar 

  8. Meier G, Momper B, Fischer EW (1992) J Chem Phys 97:5884

    Article  CAS  Google Scholar 

  9. Mayer W, Hoffmann S, Meier G, Alig I (1997) Phys Rev E 55:3102

    Article  CAS  Google Scholar 

  10. Eckert S, Meier G, Alig I (2002) Phys Chem Chem Phys 4:3743

    Article  CAS  Google Scholar 

  11. Eckert S, Hoffmann S, Meier G, Alig I (2002) Phys Chem Chem Phys 4:2594

    Article  CAS  Google Scholar 

  12. Eckert-Kastner S, Meier G, Alig I (2003) Phys Chem Chem Phys 5:3202

    Article  CAS  Google Scholar 

  13. Mao H, Li C, Zhang Y, Bergbreiter DE, Cremer PS (2003) J Am Chem Soc 125:2850

    Article  CAS  Google Scholar 

  14. Yamamura M, Nakamura S, Kajiwara T, Kage H, Adachi K (2003) Polymer 44:4699

    Article  CAS  Google Scholar 

  15. Jasnow D, Viñals J (1996) Phys Fluids 8:660

    Article  CAS  Google Scholar 

  16. Lee KWD, Chan PK, Feng X (2002) Macromol Theory Simul 11:996

    Article  CAS  Google Scholar 

  17. Lee KWD, Chan PK, Feng X (2003) Macromol Theory Simul 12:413

    Article  CAS  Google Scholar 

  18. Kolodner P, Williams H, Moe C (1988) J Chem Phys 88:6512

    Article  CAS  Google Scholar 

  19. Königer A, Meier B, Köhler W (2009) Philos Mag 89:907

    Article  CAS  Google Scholar 

  20. Debuschewitz C, Köhler W (2001) Phys Rev Lett 87:055901

    Article  CAS  Google Scholar 

  21. Wittko G, Köhler W (2005) J Chem Phys 123:014506

    Article  CAS  Google Scholar 

  22. Artola PA, Rousseau B (2007) Phys Rev Lett 98:125901

    Article  CAS  Google Scholar 

  23. Kita R, Kircher G, Wiegand S (2004) J Chem Phys 121:9140

    Article  CAS  Google Scholar 

  24. Wittko G, Köhler W (2007) Europhys Lett 78:46007

    Article  CAS  Google Scholar 

  25. Iacopini S, Rusconi R, Piazza R (2006) Eur Phys J E 19:59

    Article  CAS  Google Scholar 

  26. Piazza R, Iacopini S, Triulzi B (2004) Phys Chem Chem Phys 6:1616

    Article  CAS  Google Scholar 

  27. Stadelmaier D, Köhler W (2008) Macromolecules 41:6205

    Article  CAS  Google Scholar 

  28. Zhang M, Müller-Plathe F (2006) J Chem Phys 125:124903

    Article  CAS  Google Scholar 

  29. de Gans BJ, Kita R, Wiegand S, Luettmer-Strathmann J (2003) Phys Rev Lett 91:245501

    Article  CAS  Google Scholar 

  30. Schimpf ME, Giddings JC (1989) J Polym Sci B Polym Phys 27:1317

    Article  CAS  Google Scholar 

  31. Rossmanith P, Köhler W (1996) Macromolecules 29:3203

    Article  CAS  Google Scholar 

  32. Ryskin A, Müller HW, Pleiner H (2003) Phys Rev E 67:046302

    Article  CAS  Google Scholar 

  33. Luettmer-Strathmann J (2003) J Chem Phys 119:2892

    Article  CAS  Google Scholar 

  34. Lenglet J, Bourdon A, Bacri JC, Demouchy G (2002) Phys Rev E 65:031408

    Article  CAS  Google Scholar 

  35. Hoffmann B, Köhler W, Krekhova M (2003) J Chem Phys 118:3237

    Article  CAS  Google Scholar 

  36. Piazza R, Guarino A (2002) Phys Rev Lett 88:208302

    Article  CAS  Google Scholar 

  37. Braun D, Libchaber A (2002) Phys Rev Lett 89:188103

    Article  CAS  Google Scholar 

  38. Dhont JKG, Briels WJ (2008) Eur Phys J E 25:61

    Article  CAS  Google Scholar 

  39. Dhont JKG, Wiegand S, Duhr S, Braun D (2007) Langmuir 23:1674

    Article  CAS  Google Scholar 

  40. Dhont JKG (2004) J Chem Phys 120:1642

    Article  CAS  Google Scholar 

  41. Dhont JKG (2004) J Chem Phys 120(3):1632

    Article  CAS  Google Scholar 

  42. Thomaes G (1956) J Chem Phys 25:32

    Article  CAS  Google Scholar 

  43. Giglio M, Vendramini A (1975) Phys Rev Lett 34:561

    Article  CAS  Google Scholar 

  44. Wiegand S, Köhler W (2002) In: Köhler W, Wiegand S (eds) Thermal nonequilibrium phenomena in fluid mixtures. Springer, Heidelberg, p 189

    Chapter  Google Scholar 

  45. Pohl DW (1980) Phys Lett A 77:53

    Article  Google Scholar 

  46. Buil S, Delville JP, Freysz E, Ducasse A (1998) Opt Lett 23:1334

    Article  CAS  Google Scholar 

  47. Delville JP, Lalaude C, Ducasse A (1999) Physica A 262:40

    Article  CAS  Google Scholar 

  48. Cross MC, Hohenberg PC (1993) Rev Mod Phys 65:851

    Article  CAS  Google Scholar 

  49. Bray AJ (1994) Adv Phys 43:357

    Article  Google Scholar 

  50. Vörös J, Blättler T, Textor M (2005) MRS Bull 30:202

    Article  Google Scholar 

  51. Sirringhaus H (2005) Adv Mater 17:2411

    Article  CAS  Google Scholar 

  52. Hashimoto T, Matsuzaka K, Moses E, Onuki A (1996) Phys Rev Lett 74:126

    Article  Google Scholar 

  53. Chen Z, Kornfeld J, Smith S, Grothaus J, Satkowski M (1997) Science 277:1248

    Article  CAS  Google Scholar 

  54. Jayalakshmi Y, Khalil B, Beysens D (1992) Phys Rev Lett 69:3088

    Article  CAS  Google Scholar 

  55. Böltau M, Walheim S, Mlynek J, Krausch G, Steiner U (1998) Nature 391:877

    Article  Google Scholar 

  56. Hashimoto T, Bodycomb J, Funaki Y, Kimishima K (1999) Macromolecules 32:952

    Article  CAS  Google Scholar 

  57. Sigel R, Fytas G, Vainos N, Pispas S, Hadjichristidis N (2002) Science 297:66

    Article  Google Scholar 

  58. Loppinet B, Somma E, Vainos N, Fytas G (2005) J Am Chem Soc 127:9678

    Article  CAS  Google Scholar 

  59. Lee BP, Douglas JF, Glotzer SC (1999) Phys Rev E 60:5812

    Article  CAS  Google Scholar 

  60. Kelly RE, Pal D (1978) J Fluid Mech 86:433

    Article  Google Scholar 

  61. Lowe M, Gollub JP, Lubensky T (1983) Phys Rev Lett 51:786

    Article  CAS  Google Scholar 

  62. Coullet P, Huerre P (1986) Physica D 23:27

    Article  Google Scholar 

  63. Coullet P, Walgraef D (1989) Europhys Lett 10:525

    Article  Google Scholar 

  64. Zimmermann W, Ogawa A, Kai S, Kawasaki K, Kawakatsu T (1993) Europhys Lett 24:217

    Article  CAS  Google Scholar 

  65. Hartung G, Busse FH, Rehberg I (1991) Phys Rev Lett 66:2742

    Article  Google Scholar 

  66. Zimmermann W, Schmitz R (1996) Phys Rev E 53:R1321

    Article  CAS  Google Scholar 

  67. Schmitz R, Zimmermann W (1996) Phys Rev E 53:5993

    Article  CAS  Google Scholar 

  68. Lin AL, Bertram M, Martinez K, Swinney HL, Ardelea A, Carey GF (2000) Phys Rev Lett 84:4240

    Article  CAS  Google Scholar 

  69. Utzny C, Zimmermann W, Bär M (2002) Europhys Lett 57:113

    Article  CAS  Google Scholar 

  70. Miguez DG, Nicola EM, Munuzuri AP, Casademunt J, Sagues F, Kramer L (2004) Phys Rev Lett 93:048303

    Article  CAS  Google Scholar 

  71. Schuler S, Hammele M, Zimmermann W (2004) Eur Phys J B 42:591

    Article  CAS  Google Scholar 

  72. Rüdiger S, Miguez DG, Munuzuri AP, Sagués F, Casademunt J (2003) Phys Rev Lett 90:128301

    Article  CAS  Google Scholar 

  73. Rüdiger S, Nicola EM, Casademunt J, Kramer L (2007) Phys Rep 447:028302

    Article  Google Scholar 

  74. Tanaka H, Sigehuzi T (1995) Phys Rev Lett 75:874

    Article  CAS  Google Scholar 

  75. Kumaki J, Hashimoto T, Granick S (1996) Phys Rev Lett 77:1990

    Article  CAS  Google Scholar 

  76. de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, New York

    Google Scholar 

  77. Landau LD, Lifshitz EM (1987) Fluid mechanics. Pergamon, Oxford

    Google Scholar 

  78. Hartung M (2007) A detailed treatment of the measurement of transport coefficients in transient grating experiments. Ph.D. thesis, University of Bayreuth

    Google Scholar 

  79. Luettmer-Strathmann J (2002) In: Köhler W, Wiegand S (eds) Thermal nonequilibrium phenomena in fluid mixtures. Springer, Heidelberg, p 24

    Chapter  Google Scholar 

  80. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, London

    Google Scholar 

  81. Enge W, Köhler W (2004) Phys Chem Chem Phys 6:2373

    Article  CAS  Google Scholar 

  82. Enge W, Köhler W (2004) Chem Phys Chem 5:393

    Article  CAS  Google Scholar 

  83. Schwahn D, Meier G, Mortensen K, Janßen S (1994) J Phys II France 4:837

    Article  CAS  Google Scholar 

  84. Enders S, Stammer A, Wolf B (1996) Macromol Chem Phys 197:2961

    Article  CAS  Google Scholar 

  85. Thyagarajan K, Lallemand P (1978) Opt Commun 26:54

    Article  CAS  Google Scholar 

  86. Köhler W (1993) J Chem Phys 98:660

    Article  Google Scholar 

  87. Wittko G, Köhler W (2003) Philos Mag 83:1973

    Article  CAS  Google Scholar 

  88. Köhler W, Rossmanith P (1995) J Phys Chem 99:5838

    Article  Google Scholar 

  89. Kador L, Bausinger R, Leopold A, Haarer D, Köhler W (2004) J Phys Chem A 108:1640

    Article  CAS  Google Scholar 

  90. Hartung M, Köhler W (2005) Eur Phys J E 17:165

    Article  CAS  Google Scholar 

  91. Enge W (2004) Thermodiffusion in polymermischungen. Ph.D. thesis, University of Bayreuth

    Google Scholar 

  92. Sato H, Kuwahara N, Kubota K (1996) Phys Rev E 53:3854

    Article  CAS  Google Scholar 

  93. Kawasaki K (1970) Ann Phys 61:1

    Article  CAS  Google Scholar 

  94. Jakob J, Anisimov MA, Sengers JV, Dechabo V, Yudin IK, Gammon RW (2001) Appl Optics 40:4160

    Article  Google Scholar 

  95. Kostko AF, Anisimov MA, Sengers JV (2002) Phys Rev E 66:020803

    Article  CAS  Google Scholar 

  96. Folk R, Moser G (1998) Phys Rev E 58:6246

    Article  CAS  Google Scholar 

  97. Enge W, Köhler W (2004) Eur Phys J E 15:265

    Article  CAS  Google Scholar 

  98. J Rauch, Köhler W (2005) Macromolecules 38:3571

    Article  CAS  Google Scholar 

  99. Nakayama H, Sugihara O, Okamoto N (2006) Appl Phys Lett 71(14):1924

    Article  Google Scholar 

  100. Voit A, Krekhov A, Köhler W (2007) Phys Rev E 76:011808

    Article  CAS  Google Scholar 

  101. Chu B, Schoenes FJ, Fisher ME (1969) Phys Rev 185:219

    Article  CAS  Google Scholar 

  102. Beyer R (1977) Handbuch der Mikroskopie, 2nd edn. VEB Verlag Technik, Berlin

    Google Scholar 

  103. Born M, Wolf E (1998) Principles of optics. Cambridge University Press, New York

    Google Scholar 

  104. Bellair CJ, Curl CL, Allman BE, Harris PJ, Roberts A, Delbridge LMD, Nugent KA (2004) J Microsc 214:62

    Article  CAS  Google Scholar 

  105. Voit A (2007) Photothermische strukturierung binärer Polymermischungen. Ph.D. thesis, University of Bayreuth

    Google Scholar 

  106. Meier G, Vlassopoulos D, Fytas G (1995) Europhys Lett 30:325

    Article  CAS  Google Scholar 

  107. Rauch J, Hartung M, Privalov AF, Köhler W (2007) J Chem Phys 126:214901

    Article  CAS  Google Scholar 

  108. Hartung M, Rauch J, Köhler W (2006) J Chem Phys 125:214904

    Article  CAS  Google Scholar 

  109. Rauch J, Köhler W (2003) J Chem Phys 119:11977

    Article  CAS  Google Scholar 

  110. Rauch J, Köhler W (2002) Phys Rev Lett 88:185901

    Article  CAS  Google Scholar 

  111. Schwaiger, F (2009) unpublished results

    Google Scholar 

  112. Voit A, Krekhov A, Köhler W (2007) Macromolecules 40:9

    Article  CAS  Google Scholar 

  113. Meredith JC, Karim A, Amis EJ (2000) Macromolecules 33:5760

    Article  CAS  Google Scholar 

  114. Krekhov AP, Kramer L (2004) Phys Rev E 70:061801

    Article  CAS  Google Scholar 

  115. Bates FS, Wignall GD, Koehler WC (1985) Phys Rev Lett 55:2425

    Article  CAS  Google Scholar 

  116. de Gennes PG (1980) J Chem Phys 72:4756

    Article  Google Scholar 

  117. Pincus P (1981) J Chem Phys 75:1996

    Article  CAS  Google Scholar 

  118. Guenoun P, Gastaud R, Perrot F, Beysens D (1987) Phys Rev A 36:4876

    Article  CAS  Google Scholar 

  119. Voit A, Krekhov A, Enge W, Kramer L, Köhler W (2005) Phys Rev Lett 94:214501

    Article  CAS  Google Scholar 

  120. Hammele M, Zimmermann W (2006) Phys Rev E 73:066211

    Article  CAS  Google Scholar 

  121. Langer JS (1971) Ann Phys (N.Y.) 65:53

    Article  Google Scholar 

  122. Weith V, Krekhov A, Zimmermann W (2009) Eur Phys J B 67:419

    Article  CAS  Google Scholar 

  123. Gunton JD, San Miguel M, Sahni PS (1983) Phase transitions and critical phenomena, vol. 8. Academic, London

    Google Scholar 

  124. Cahn JW, Hilliard JE (1958) J Chem Phys 28:258

    Article  CAS  Google Scholar 

  125. Cahn JW, Hilliard JE (1959) J Chem Phys 31:688

    Article  CAS  Google Scholar 

  126. Krekhov A (2009) Phys Rev E 79:035302(R)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Meier and I. Alig for inspiring discussions and T. Wagner and G. Meier for providing part of the samples. The theoretical part of this work was originally initiated by L. Kramer ( † ). Essential parts of the work have been performed during the PhD theses of W. Enge, A. Voit, M. Hartung and F. Schwaiger and the diploma theses of S. Frank and V. Weith. The work was supported by the Deutsche Forschungsgemeinschaft via the Collaborative Research Center SFB481.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Köhler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Köhler, W., Krekhov, A., Zimmermann, W. (2009). Thermal Diffusion in Polymer Blends: Criticality and Pattern Formation. In: Müller, A., Schmidt, HW. (eds) Complex Macromolecular Systems I. Advances in Polymer Science, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_33

Download citation

Publish with us

Policies and ethics