Skip to main content

Shape-Memory Polymer Composites

  • Chapter
  • First Online:
Shape-Memory Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 226))

Abstract

The development of shape-memory polymer composites (SMPCs) enables high recovery stress levels as well as novel functions such as electrical conductivity, magnetism, and biofunctionality. In this review chapter the substantial enhancement in mechanical properties of shape-memory polymers (SMPs) by incorporating small amounts of stiff fillers will be highlighted exemplarily for clay and polyhedral oligomeric silsesquioxanes (POSS). Three different functions resulting from adding functional fillers to SMP-matrices will be introduced and discussed: magnetic SMPCs with different types of magnetic nanoparticles, conductive SMPCs based on carbon nanotubes (CNTs), carbon black (CB), short carbon fiber (SCF), and biofunctional SMPCs containing hydroxyapatite (HA). Indirect induction of the shape-memory effect (SME) was realized for magnetic and conductive SMPCs either by exposure to an alternating magnetic field or by application of electrical current. Major challenges in design and fundamental understanding of polymer composites are the complexity of the composite structure, and the relationship between structural parameters and properties/functions, which is essential for tailoring SMPCs for specific applications. Therefore the novel functions and enhanced properties of SMPCs will be described considering the micro-/nanostructural parameters, such as dimension, shape, distribution, volume fraction, and alignment of fillers as well as interfacial interaction between the polymer matrix and dispersed fillers. Finally, an outlook is given describing the future challenges of this exciting research field as well as potential applications including automotive, aerospace, sensors, and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

β-TCP:

β-Tricalcium phosphate

εm :

Maximum deformation, parameter in cyclic, thermomechanical tests

εu(N):

Free state deformation after cooling

ϕ:

Volume fraction

ϕc :

Critical volume fraction

ρ:

Volume resistivity

σmax :

Maximum stress

BD:

1,4-Butanediol

CB:

Carbon black

CNT:

Carbon nanotube

DMF:

Dimethylformamide

DMTA:

Dynamic mechanical analysis at varied temperatures

DSC:

Differential scanning calorimetry

f :

Frequency

Fe3O4 :

Iron (II,III) oxide

FTIR:

Fourier transform infrared spectroscopy

G :

Shear storage modules determined in dynamic mechanical test

G ′′ :

Shear loss modules determined in dynamic mechanical test

H :

Magnetic field strength

HA:

Hydroxyapatite

LDPE:

Low-density polyethylene

MAI:

Macroazo initiator

MDI:

Methylene bis(p-cyclohexyl isocyanate)

MWCNT:

Multi-walled carbon nanotube

N :

Number of thermomechanical cycle

Na-MMT:

Sodium montmorillonite

Ni 1−x Zn x Fe2O4 :

Nickel zinc ferrite magnetic particles

PBS:

Phosphate buffer saline solution

PCL:

Poly(ε-caprolactone)

PDLLA:

Poly(rac-lactide)

PE:

Polyethylene

PEG:

Poly(ethylene glycol)

PEMA:

Poly(ethyl methacrylate)

POSS:

Polyhedral oligomeric silsesquioxanes

PPDO:

Poly(p-dioxanone)

PS:

Polystyrene

PTMG:

Poly(tetramethylene glycol)

PVA:

Polyvinyl alcohol

R f(N):

Shape fixity rate in cycle number N

R r(N):

Shape recovery rate in cycle number N

SCF:

Short carbon fiber

SEM:

Scanning electron microscopy

SiC:

Silicon carbide

SiO2 :

Silicon oxide

SMAs:

Shape-memory metallic alloys

SME:

Shape-memory effect

SMP:

Shape-memory polymer composites

SMPs:

Shape-memory polymers

SMPU:

Shape-memory polyurethane

SV :

Surface to volume ratio

SWCNT:

Single-walled carbon nanotube

T C :

Curie temperature

T d :

Deformation temperature, parameter in cyclic, thermomechanical tests

TEM:

Transmission electron microscopy

TFX:

Polyetherurethane prepared from MDI, BD, and PTMG

T g :

Glass transition temperature

THF:

Tetrahydrofuran

T high :

High temperature, parameter in cyclic, thermomechanical tests

T low :

Low temperature, parameter in cyclic, thermomechanical tests

T m :

Melting temperature

T progm :

Programming temperature, parameter in cyclic, thermomechanical tests

T σ−max :

Temperature at maximum stress during constraint strain recovery

T trans :

Thermal transition temperature

VSM:

Vibrating sample magnetometry

WAXD:

Wide angle X-ray diffraction

XPS:

X-ray photoelectron spectroscopy

References

  1. Song HM, Kim YJ, Park JH (2008) J Phys Chem C 112:5397

    CAS  Google Scholar 

  2. Satake A, Miyajima Y, Kobuke Y (2005) Chem Mater 17:716

    CAS  Google Scholar 

  3. Huang CM, Wei KH, Jeng US, Sheu HS (2008) Macromolecules 41:6876

    CAS  Google Scholar 

  4. Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, Hahn HT, Chou TW, Itkis ME, Haddon RC (2007) Langmuir 23:3970

    CAS  Google Scholar 

  5. Xu P, Han X, Wang C, Zhou D, Lv Z, Wen A, Wang X, Zhang B (2008) J Phys Chem B 112:10443

    CAS  Google Scholar 

  6. Bellomo EG, Deming TJ (2006) J Am Chem Soc 128:2276

    CAS  Google Scholar 

  7. Sun H, Zhang H, Ju J, Zhang J, Qian G, Wang C, Yang B, Wang ZY (2008) Chem Mater 20:6764

    CAS  Google Scholar 

  8. Chen WF, Wu JS, Kuo PL (2008) Chem Mater 20:5756

    CAS  Google Scholar 

  9. Li YJ, Shimizu H (2007) Polymer 48:2203

    CAS  Google Scholar 

  10. Kharchenko SB, Douglas JF, Obrzut J, Grulke EA, Migler KB (2004) Nat Mater 3:564

    CAS  Google Scholar 

  11. Pegel S, Potschke P, Petzold G, Alig I, Dudkin SM, Lellinger D (2008) Polymer 49:974

    CAS  Google Scholar 

  12. Schaefer DW, Justice RS (2007) Macromolecules 40:8501

    CAS  Google Scholar 

  13. Fornes TD, Paul DR (2004) Macromolecules 37:7698

    CAS  Google Scholar 

  14. Mark JE (2006) Acc Chem Res 39:881

    CAS  Google Scholar 

  15. Lu G, Tang H, Qu Y, Li L, Yang X (2007) Macromolecules 40:6579

    CAS  Google Scholar 

  16. Liu N, Shi MM, Pan XW, Qiu WM, Zhu JH, He HP, Chen HZ, Wang M (2008) J Phys Chem C 112:15865

    CAS  Google Scholar 

  17. Chen Q, Zhao L, Li C, Shi G (2007) J Phys Chem C 111:18392

    CAS  Google Scholar 

  18. Gangopadhyay R, De A (2000) Chem Mater 12:608

    CAS  Google Scholar 

  19. Yang Y, Dudley MCGL, Lawrence RW (2005) Nano Lett 5:2131

    CAS  Google Scholar 

  20. Liu G, Wang H, Yang X (2009) Polymer 50:2578

    CAS  Google Scholar 

  21. Fang FF, Kim JK, Choi HJ (2009) Polymer 50:2290

    CAS  Google Scholar 

  22. Guo F, Zhang Q, Zhang B, Zhang H, Zhang L (2009) Polymer 50:1887

    CAS  Google Scholar 

  23. Ding H, Liu ZM, Wan M, Fu SY (2008) J Phys Chem B 112:9289

    CAS  Google Scholar 

  24. Kommareddi NS, Tata M, John VT, McPherson GL, Lee MF, Akkara CK, Kaplan DL (1996) Chem Mater 8:801

    CAS  Google Scholar 

  25. Xu P, Han X, Wang C, Zhao H, Wang J, Wang X, Zhang B (2008) J Phys Chem B 112:2557

    Google Scholar 

  26. Beecroft LL, Ober CK (1997) Chem Mater 9:1302

    CAS  Google Scholar 

  27. Dennany L, O’Reilly EJ, Innis PC, Wallace GG, Forster RJ (2009) J Phys Chem B 113:7443

    CAS  Google Scholar 

  28. Sainz R, Small WR, Young NA, Vallés C, Benito AM, Maser WK, Panhuis MIH (2006) Macromolecules 39:7324

    CAS  Google Scholar 

  29. Ravindranath R, Ajikumar, Hanafiah NBM, Knoll W, Valiyaveettil S (2006) Chem Mater 18:1213

    Google Scholar 

  30. Costantino U, Bugatti V, Gorrasi G, Montanari F, Nocchetti M, Tammaro L, Vittoria V (2009) Appl Mater Interfaces 1:668

    CAS  Google Scholar 

  31. Chiellini E, Cinelli P, Ilieva VL, Martera M (2008) Biomacromolecules 9:1007

    CAS  Google Scholar 

  32. Zhang D, Kandadai MA, Cech J, Roth S, Curran SA (2006) J Phys Chem B 110:12910

    CAS  Google Scholar 

  33. Urbina MC, Zinoveva S, Miller T, Sabliov CM, Monroe WT, Kumar CSSR (2008) J Phys Chem C 112:11102

    CAS  Google Scholar 

  34. Kelly A (1985) Compos Sci Technol 23:171

    Google Scholar 

  35. Kelley A, Zweben C (2000) Comprehensive composite materials, vols 1–6. Elsevier, Oxford

    Google Scholar 

  36. Thostenson ET, Li C, Chou TW (2005) Compos Sci Technol 65:491

    CAS  Google Scholar 

  37. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) J Compos Mater 40:1511

    CAS  Google Scholar 

  38. Sun H, Zhang H, Zhang J, Ning Y, Yao Y, Bao X, Wang C, Li M, Yang B (2008) J Phys Chem C 112:2317

    CAS  Google Scholar 

  39. Koval’chuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) Macromolecules 41:7536

    Google Scholar 

  40. Iyer S, Schiraldi DA (2007) Macromolecules 40:4942

    CAS  Google Scholar 

  41. Lendlein A, Kelch S (2002) Angew Chem 41:2034

    CAS  Google Scholar 

  42. Bellin I, Kelch S, Langer R, Lendlein A (2006) Proc Natl Acad Sci USA 103:18043

    CAS  Google Scholar 

  43. Jiang H, Kelch S, Lendlein A (2006) Adv Mater 18:1471

    CAS  Google Scholar 

  44. Lendlein A, Jiang H, Juenger O, Langer R (2005) Nature 434:879

    CAS  Google Scholar 

  45. Wilson TS, Small W, Benett WJ, Bearinger JP, Maitland DJ (2005) SPIE-Int Soc Opt Eng 60070R/1–60070R/8

    Google Scholar 

  46. Liu C, Qin H, Mather PT (2007) J Mater Chem 17:1453

    Google Scholar 

  47. Meng QH, Hu JL, Zhu Y, Lu L, Liu Y (2007) Smart Mater Struct 16:1192

    CAS  Google Scholar 

  48. Wache HM, Tartakowska DJ, Hentrich A, Wagner MH (2004) J Mater Sci Mater M 14:109

    Google Scholar 

  49. Wischke C, Neffe AT, Steuer S, Lendlein A (2009) J Control Release 138:243

    CAS  Google Scholar 

  50. Metcalfe A, Desfaits AC, Salazkin I, Yahiab LH, Sokolowskic WM, Raymonda J (2003) Biomaterials 24:491

    CAS  Google Scholar 

  51. Kim BK, Lee SW, Xu M (1996) Polymer 37:5781

    CAS  Google Scholar 

  52. Jin ZX, Pramoda KP, Xu GQ, Goh SH (2001) Chem Phys Lett 337:43

    CAS  Google Scholar 

  53. Madbouly SA, Kratz K, Klein K, Lützow K, Lendlein A (2009) In: Shastri VP, Lendlein A, Gall K (eds) Active polymers. Mater Res Soc Symp Proc, vol 1190, 1190-NN04-04

    Google Scholar 

  54. Rickert D, Moses MA, Lendlein A, Kelch S, Franke RP (2003) Clin Hemorheol Micro 28:175

    CAS  Google Scholar 

  55. Rickert D, Lendlein A, Schmidt AM, Kelch S, Roehlke W, Fuhrmann R, Franke RP (2003) J Biomed Mater Res B Appl Biomater 67B:722

    CAS  Google Scholar 

  56. Neffe AT, Hanh BD, Steuer S, Lendlein A (2009) Adv Mater 21:3394

    CAS  Google Scholar 

  57. Mondal S, Hu JL, Zhu Y (2006) J Memb Sci 280:427

    CAS  Google Scholar 

  58. Mondal S, Hu JL (2006) J Elastomers Plast 38:261

    CAS  Google Scholar 

  59. Wei ZG, Sandstrom R, Miyazaki S (1998) J Mater Sci 33:3743

    CAS  Google Scholar 

  60. Gall K (2002) Acta Mater 50:5115

    CAS  Google Scholar 

  61. Liu Y, Lv H, Lan X, Leng J, Du S (2009) Compos Sci Technol 69:2064

    CAS  Google Scholar 

  62. Ratna D, Karger-Kocsis J (2008) J Mater Sci 43:254

    CAS  Google Scholar 

  63. Gunes IS, Jana SC (2008) J Nanosci Nanotechnol 8:1616

    CAS  Google Scholar 

  64. Mondal S, HU JL (2006) Iran Polym J 15:135

    CAS  Google Scholar 

  65. Gunes IS, Cao F, Jana SC (2008) Polymer 49:2223

    CAS  Google Scholar 

  66. Scarborough SE, Cadogan DP (2006) Applications of inflatable Rigidizable Structures Soc Adv Mater Proc Eng Conference SAMPE 2006, Long Beach, CA, April 30 – May 4, 2006

    Google Scholar 

  67. Biswas M, Sinha RS (2001) Adv Polym Sci 155:167

    CAS  Google Scholar 

  68. Giannelis EP (1998) Appl Organomet Chem 12:675

    CAS  Google Scholar 

  69. Xu R, Manias E, Snyder AJ, Runt J (2001) Macromolecules 34:337

    CAS  Google Scholar 

  70. Gilman JW, Jackson CL, Morgan AB, Harris R (2000) Chem Mater 12:1866

    CAS  Google Scholar 

  71. Sinha RS, Yamada K, Okamoto M, Ueda K (2002) Nano Lett 2:1093

    Google Scholar 

  72. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP (1995) Macromolecules 28:8080

    CAS  Google Scholar 

  73. Ray SS, Okamoto K, Okamoto M (2003) Macromolecules 26:2355

    Google Scholar 

  74. Pinnavaia TJ, Beall GW (2000) Polymer-clay nanocomposites. Wiley, New York

    Google Scholar 

  75. Lietz S, Yang JL, Bosch E, Sandler JKW, Zhang Z, Altsta V (2007) Macromol Mater Eng 292:23

    CAS  Google Scholar 

  76. Yang JL, Zhang Z, Schlarb AK, Friedrich K (2006) Polymer 47:2791

    CAS  Google Scholar 

  77. Cao F, Jana SC (2007) Polymer 48:3790

    CAS  Google Scholar 

  78. Madbouly SA, Otaigbe JU, Nanda AK, Wicks DA (2007) Macromolecules 40:4982

    CAS  Google Scholar 

  79. Nanda AK, Wicks DA, Madbouly SA, Otaigbe JU (2006) Macromolecules 39:7037

    CAS  Google Scholar 

  80. Wicks DA, Nanda AK, Otaigbe JU, Madbouly SA (2008) U.S. Pat. Appl. Publ. 7pp. CODEN: USXXCO US 2008108773 A1 20080508 CAN 148:518339 AN 2008:555910

    Google Scholar 

  81. Pattanayak A, Jana SC (2005) Polymer 46:3275

    CAS  Google Scholar 

  82. Pattanayak A, Jana SC (2005) Polymer 46:3394

    CAS  Google Scholar 

  83. Pattanayak A, Jana SC (2005) Polymer 46:5183

    CAS  Google Scholar 

  84. Pattanayak A, Jana SC (2005) Polym Eng Sci 45:1532

    CAS  Google Scholar 

  85. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Proc Natl Acad Sci USA 103:3540

    CAS  Google Scholar 

  86. Liang C, Rogres CA, Malafeew EJ (1997) J Intell Mater Syst Struct 8:380

    CAS  Google Scholar 

  87. Ohki T, Ni Q, Ohako N, Iwamoto M (2004) Composites A35:1065

    Google Scholar 

  88. Cho JW, Lee SH (2004) Eur Polym J 40:1343

    CAS  Google Scholar 

  89. Hong SJ, Yu WR (2008) Macromol Res 16:644

    Google Scholar 

  90. Kim MS, Jun JK, Jeong HM (2008) Compos Sci Technol 68:1919

    CAS  Google Scholar 

  91. Joshi M, Butola BS (2004) J Macromol Sci Polym Rev C44:389

    CAS  Google Scholar 

  92. Liu B, Ding Q, He Q, Cai J, Hu B, Shen J (2006) J Appl Polym Sci 99:2578

    CAS  Google Scholar 

  93. Teh PL, Ishak ZAM, Hashim AS, Karger-Kocsis J, Ishiaku A (2006) J Appl Polym Sci 100:1083

    CAS  Google Scholar 

  94. Chang Y, Yang Y, Ryu S, Nah C (2002) Polym Int 51:319

    CAS  Google Scholar 

  95. Jeong HM, Ahn BK, Kim BK (2001) Eur Polym J 37:2245

    CAS  Google Scholar 

  96. Jeong HM, Lee SH, Cho KJ, Jeong YT, Kang KK, Oh JK (2002) J Appl Polym Sci 84:1709

    CAS  Google Scholar 

  97. Jeong HM, Song JH, Chi KW, Kim I, Kim KT (2002) Polym Int 51:275

    CAS  Google Scholar 

  98. Kim BK, Lee JS, Lee YM, Shin JH, Park SH (2001) J Macromol Sci Phys B40:1179

    CAS  Google Scholar 

  99. Choi N, Lendlein A (2007) Soft Matter 3:90

    Google Scholar 

  100. Lee HY, Jeong HM, Lee JS, Kim BK (2000) Polym J 32:23

    CAS  Google Scholar 

  101. Choi YJ, Kim BK, Jeong HM (1998) Polymer (Korea) 22:131

    CAS  Google Scholar 

  102. Gopakumar TG, Lee JA, Kontopoulou M, Parent JS (2002) Polymer 43:5483

    CAS  Google Scholar 

  103. Ranade A, Nayak K, Fairbrother D, D’Souza NA (2005) Polymer 46:7323

    CAS  Google Scholar 

  104. Zhang J, Jiang DD, Wilkie CA (2005) Thermochim Acta 430:107

    CAS  Google Scholar 

  105. Rezanejad S, Kokabi M (2007) Eur Polym J 43:2856

    CAS  Google Scholar 

  106. Trznadel M, Pakula T, Kryszewki M (1985) Polymer 26:1019

    CAS  Google Scholar 

  107. POSS is a trademark of hybrid plastics (www.hybridplastics.com)

  108. Lichtenhan JD (1995) Commun Inorg Chem 17:115

    CAS  Google Scholar 

  109. Schwab JJ, Lichtenhan JD (1998) Appl Organomet Chem 32:707

    Google Scholar 

  110. Laine RM, Zhang C, Sellinger A, Viculis L (1998) Appl Organomet Chem 12:715

    CAS  Google Scholar 

  111. Lucke S, Stopperk-Langner K (1999) Appl Surf Sci 145:713

    Google Scholar 

  112. Gao F, Tong Y, Schricker SR, Culbertson BM (2001) Polym Adv Technol 12:355

    CAS  Google Scholar 

  113. Tegou E, Bellas V, Gogolides E, Argitis P (2004) Microelect Eng 73/74:238

    Google Scholar 

  114. Kickelbick G (2002) Prog Polym Sci 28:83

    Google Scholar 

  115. Lichtenhan JD, Vu NQ, Carter JA, Gilman JW, Feher FJ (1993) Macromolecules 36:2141

    Google Scholar 

  116. Lee KM, Knight PT, Chung T, Mather PT (2008) Macromolecules 41:4730

    CAS  Google Scholar 

  117. Knight PT, Lee KM, Qin H, Mather PT (2008) Biomacromolecules 9:2458

    CAS  Google Scholar 

  118. Goldman A (1990) Modern ferrite technology. Van Nostrand Reinhold, New York

    Google Scholar 

  119. Conti S, Lenz M, Rumpf M (2007) J Mech Phys Solids 55:1462

    CAS  Google Scholar 

  120. Goya GF, Berquo TS, Fonseca FC, Morales MP (2003) J Appl Phys 94:3520

    CAS  Google Scholar 

  121. Szabo D, Szeghy G, Mrinyi M (1998) Macromolecules 31:6541

    CAS  Google Scholar 

  122. Rosensweig RE (2002) J Magn Magn Mater 252:370

    CAS  Google Scholar 

  123. Buckley PR, Mckinley GH, Wilson TS, Small W, Benett WJ, Bearinger JP, McElfresh WM, Maitland D (2006) J IEEE Trans Biomed Eng 53:2075

    Google Scholar 

  124. Conti S, Lenz M, Rumpf M (2008) Mater Sci Eng 481:351

    Google Scholar 

  125. Zhang XK, Li YF, Xiao JQ, Wetzel ED (2003) J Appl Phys 93:7124

    CAS  Google Scholar 

  126. Ma M, Wu Y, Zhou J, Sun Y, Zhang Y, Gu N (2004) J Magn Magn Mater 268:33.

    CAS  Google Scholar 

  127. Razzaq MY, Anhalt M, Frormann L, Weidenfeller B (2007) Mater Sci Eng 444:227

    Google Scholar 

  128. Weigel T, Mohr R, Lendlein A (2009) Smart Mater Struct 18:025011

    Google Scholar 

  129. Oshima C, Nagashima A (1997) J Phys - Condens Mat 9:1

    CAS  Google Scholar 

  130. Cohen ML (2001) Mat Sci Eng C 15:1

    Google Scholar 

  131. Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE (1995) J Phys Chem 99:10694

    CAS  Google Scholar 

  132. Harris PJF (2009) Carbon Nanotube Science: Synthesis, Properties and Applications. Cambridge University Press, New York

    Google Scholar 

  133. Reich S, Thomson C, Maultzsch J (2004) Carbon nanotubes: basic concepts and physical properties. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  134. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Nat Mater 3:115

    CAS  Google Scholar 

  135. Taya M, Kim WJ, Ono K (1998) Mech Mater 28:53

    Google Scholar 

  136. Koerner H (2003) ACS New Orleans, 23–27 March 2003, MTLS-017

    Google Scholar 

  137. Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) J Phys Chem B 106:5852

    CAS  Google Scholar 

  138. Cho JW, Kim JW, Jung YC, Goo NS (2005) Macromol Rapid Commun 26:412

    CAS  Google Scholar 

  139. Grunlan JC, Mehrabi AR, Bannon MV, Bahr JL (2004) Adv Mater 16:150

    CAS  Google Scholar 

  140. Allaoui A, Bai S, Cheng HM, Bai JB (2002) Compos Sci Technol 62:1993

    CAS  Google Scholar 

  141. Paik H, Goo NS, Jung YC, Cho JW (2006) Smart Mater Struct 15:1476

    CAS  Google Scholar 

  142. Meng Q, Hu J, Zhu Y (2007) J Appl Polym Sci 106:837

    CAS  Google Scholar 

  143. Miaudet P, Derre A, Maugey M, Zakri C, Piccione PM, Inoubli R, Poulin P (2007) Science 318:1294

    CAS  Google Scholar 

  144. Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM (2003) Chem Mater 15:4470

    CAS  Google Scholar 

  145. Geng H, Rosen R, Zheng B, Shimoda H, Fleming L, Liu J, Zhou O (2002) Adv Mater 14:1387

    CAS  Google Scholar 

  146. Lin Y, Zhou B, Fernando KAS, Liu P, Allard LF, Sun YP (2003) Macromolecules 36:7199

    CAS  Google Scholar 

  147. Huang W, Fernando S, Allard LF, Sun YP (2003) Nano Lett 3:565

    CAS  Google Scholar 

  148. Dalton B et al. (2003) Nature 423:703

    CAS  Google Scholar 

  149. Miaudet P et al. (2005) Nano Lett 5:2212

    CAS  Google Scholar 

  150. Vigolo B et al. (2000) Science 290:1331

    CAS  Google Scholar 

  151. Miyamoto Y, Fukao K, Yamao H, Sekimoto K (2002) Phys Rev Lett 88:225504

    Google Scholar 

  152. Gall K et al. (2005) J Biomed Mater Res A 73:339

    Google Scholar 

  153. Humbeeck JV et al. (2001) Adv Eng Mater 3:837

    Google Scholar 

  154. Kornbluh RD et al. (2002) Proc SPIE 4698:254

    CAS  Google Scholar 

  155. Patoor E, Lagoudas DC, Entchev PB, Brinson LC, Gao X (2006) Mech Mater 38:391

    Google Scholar 

  156. Lagoudas DC et al. (2006) Mech Mater 38:430

    Google Scholar 

  157. Leng J, Lv H, Liu Y, Du S (2008) J Appl Phys 104:104917

    Google Scholar 

  158. Leng J, Huang W, Lan X, Liu Y, Du S (2008) Appl Phys Lett 92:204101

    Google Scholar 

  159. Leng J, Lan X, Liu Y, Du S, Huang W, Liu N, Phee S, Yuan Q (2008) Appl Phys Lett 92:014104

    Google Scholar 

  160. Beloshenko VA, Beygelzimer YE, Borzenko AP, Varyukhin VN (2002) Compos Part A 33:1001

    Google Scholar 

  161. Yaroshenko OP, Shapranov VV, Savoskin MV, Popov AF (1997) Ukraine Patent No. 18065

    Google Scholar 

  162. Jarcho M (1981) Clin Orthop 157:259

    CAS  Google Scholar 

  163. Legeros RZ (1981) Progr Cryst Growth Char Mater 4:1

    CAS  Google Scholar 

  164. Steendam R, van Steenbergen MJ, Hennink WE, Frijlink HW, Lerk CF (2001) J Control Release 70:71

    CAS  Google Scholar 

  165. Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) J Biomed Mater Res 4:433

    CAS  Google Scholar 

  166. Bonfield W (1988) Ann NY Acad Sci 523:173

    CAS  Google Scholar 

  167. Labella R, Braden M, Deb S (1994) Biomaterials 15:1197

    CAS  Google Scholar 

  168. De Groot K, De Putter C, Smitt P, Driessen A (1981) Sci Ceram 1:433

    Google Scholar 

  169. Zheng X, Zhou S, Li X, Weng J (2006) Biomaterials 27:4288

    CAS  Google Scholar 

  170. Zhou S, Zheng X, Yu X, Wang J, Weng J, Li X, Feng B, Yin M (2007) Chem Mater 19:247

    CAS  Google Scholar 

  171. Hench LL, Polak JM (2000) Science 295:1014

    Google Scholar 

  172. Niemela T (2005) Polym Degrad Stab 89:492

    Google Scholar 

  173. Stamboulis A, Hench LL, Boccaccini AR (2002) J Mater Sci Mater Med 13:843

    CAS  Google Scholar 

  174. Zheng X, Zhou S, Yu X, Li X, Feng B, Qu S, Weng J (2008) J Biomed Mater Res B Appl Biomater 86B:170

    CAS  Google Scholar 

  175. Choi D, Kumta PN (2007) Mater Sci Eng C 27:377

    CAS  Google Scholar 

  176. Yang B, Huang WM, Li C, Chor JH (2005) Eur Polym J 41:1123

    CAS  Google Scholar 

  177. Prokop A, Jubel A, Hahn U (2005) Biomaterials 26:4129

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Madbouly, S.A., Lendlein, A. (2009). Shape-Memory Polymer Composites. In: Lendlein, A. (eds) Shape-Memory Polymers. Advances in Polymer Science, vol 226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_28

Download citation

Publish with us

Policies and ethics