Skip to main content

Polymer-Driven Wax Crystal Control Using Partially Crystalline Polymeric Materials

  • Chapter
  • First Online:
Book cover Wax Crystal Control · Nanocomposites · Stimuli-Responsive Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 210))

Abstract

A long term problem confronting the transportation of crude oils and refined middle distillate fuels is the abrupt degradation of the system viscoelastic properties as temperatures fall below ∼0 °C. The prime contributor to this unfavorable event is the phase separation of paraffins (waxes) with carbon contents ranging from C16 to ∼C38. This problem has been addressed, with varying degrees of success, via the use of formulations containing polymeric additives. Additives that have had long use are the ethylene-rich copolymers of ethylene and vinyl acetate (EVA). Although far from being universally successful in their treatment capacity, the EVA materials serve as a prototype wax-crystal modifier in that their structure of alternating amorphous-crystalline segments serves as a model for regarding the composition of other polymeric candidates. A recent candidate is the diblock copolymer consisting of ethylene and ethylene-butene segments. This material thus consists of a semicrystalline block joined to an amorphous counterpart. After a four-year development period it became a commercial item in 2000. In hydrocarbon milieu the polyethylene block will self-assemble as the system temperature decreases to yield plate-like micelles that remain in solution due to the presence of the amorphous “hairs”. Small angle neutron scattering studies have shown that this polymer architecture is quite effective in providing a scaffold for wax nucleation, thus leading to quite effective control of wax crystal size in a variety of fuels. An architectural mimic of EVA is the random copolymer of ethylene and butene. This particular random copolymer was also shown to be highly effective in its capacity as a modifier for wax crystal size control. The mechanism by which this is done was found to be even richer than that shown by the diblock architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Radlinski AP, Barre L, Espinat D (1996) J Mol Cryst 51:383

    Google Scholar 

  2. Claudy P, Letoffe J-M, Bonardi B, Vassiladis D, Damin B (1993) Fuel 72:821

    Article  CAS  Google Scholar 

  3. Coutinho JAP, Dauphin C, Daridon JL (2000) Fuel 79:607

    Article  CAS  Google Scholar 

  4. Abdallah DJ, Sirchio SA, Weiss RG (2000) Langmuir 16:352

    Article  CAS  Google Scholar 

  5. Venkatesan R, Nagarajan NR, Paso K, Yi YB, Sastry AM, Fogler HS (2005) Chem Eng Sci 60:3587

    Article  CAS  Google Scholar 

  6. Denis J (1986) In: Bartz WJ (ed) 5th Intern Colloq Additive für Schmierstoffe, vol 2. Tech Ak, Esslingen

    Google Scholar 

  7. Richter D, Schneiders D, Monkenbusch M, Willner L, Fetters LJ, Huang JS, Lin M, Mortensen K (1997) Macromolecules 30:1053

    Article  CAS  Google Scholar 

  8. Leube W, Monkenbusch M, Schneiders D, Richter D, Adamson D, Fetters LJ, Dounis P, Lovegrove R (2000) Energy Fuels 14:419

    Article  CAS  Google Scholar 

  9. Monkenbusch M, Schneiders D, Richter D, Fetters LJ, Huang JS (1994) Il Nuovo Cimento 16:747

    Article  Google Scholar 

  10. Schwahn D, Richter D, Wright PJ, Symon C, Fetters LJ, Lin M (2002) Macromolecules 35:861

    Article  CAS  Google Scholar 

  11. Schwahn D, Richter D, Lin M, Fetters LJ (2002) Macromolecules 35:3762

    Article  CAS  Google Scholar 

  12. Ashbaugh HS, Radulescu A, Prud'homme RK, Schwahn D, Richter D, Fetters LJ (2002) Macromolecules 35:7044

    Article  CAS  Google Scholar 

  13. Radulescu A, Schwahn D, Richter D, Fetters LJ (2003) J Appl Cryst 36:995

    Article  CAS  Google Scholar 

  14. Radulescu A, Schwahn D, Monkenbusch M, Fetters LJ, Richter D (2004) J Polym Sci B Polym Phys 42:3113

    Article  CAS  Google Scholar 

  15. Radulescu A, Schwahn D, Stellbrink J, Kentzinger E, Heiderich M, Richter D (2006) Macromolecules 39:6142

    Article  CAS  Google Scholar 

  16. Asbaugh HS, Fetters LJ, Adamson DH, Prud'homme RK (2002) J Rheol 46:763

    Article  Google Scholar 

  17. Guo X, Pethica BA, Huang JS, Prud'homme RK, Adamson DA, Fetters LJ (2004) Energy Fuels 18:930

    Article  CAS  Google Scholar 

  18. Ashbaugh HS, Guo X, Schwahn D, Prud'homme RK, Richter D, Fetters LJ (2005) Energy Fuels 19:138

    Article  CAS  Google Scholar 

  19. Halperin A, Tirell M, Lodge TP (1992) Adv Polym Sci 31:100

    Google Scholar 

  20. Gast AP (1990) In: Scientific methods for the study of polymer, colloids and their applications. Kluwer Academic, Dordrecht, p 311

    Google Scholar 

  21. Tuzar Z, Kratochvil P (1976) Adv Colloid Interface Sci 6:201

    Article  CAS  Google Scholar 

  22. Oranli L, Bahadur P, Riess G (1985) Can J Chem 63:2691

    Article  CAS  Google Scholar 

  23. Bahadur P, Sastry NV, Marti S, Riess G (1985) Colloids Surf 16:337

    Article  CAS  Google Scholar 

  24. Gallot Y, Franta P, Rempp P, Benoit HJ (1964) Polym Sci C473:4

    Google Scholar 

  25. Kotaka T, Tanaka T, Hattori M, Inagaki H (1978) Macromolecules 11:138

    Article  CAS  Google Scholar 

  26. Periard J, Riess G (1973) Eur Polym J 9:687

    Article  CAS  Google Scholar 

  27. Selb J, Gallot Y (1980) Makromol Chem 182:1491

    Article  Google Scholar 

  28. Higgins JS, Dawkins JV, Maghami GG, Shakir SA (1986) Polymer 27:931

    Article  CAS  Google Scholar 

  29. Plestil J, Baldrian J (1975) Makromol Chem 176:1009

    Article  CAS  Google Scholar 

  30. Bluhm TL, Malhorta SL, Hong M, Noolandi J (1983) Polym Prepr (Am Chem Soc, Div Polym Chem) 24:405

    Google Scholar 

  31. Greenly RZ (1999) In: Brandup J, Immergut EH, Grulke EA (eds) Polymer handbook, 4th edn. Wiley, New York, p 309

    Google Scholar 

  32. Woffard CH, Hsieh HL (1969) J Pol Sci A1 7:461

    Article  Google Scholar 

  33. Fetters LJ, Graessley WW, Krishnamoorti R, Lohse DJ (1997) Macromolecules 30:4973

    Article  CAS  Google Scholar 

  34. Krisnamoorti R (1994) PhD Thesis, Princeton University, p 49

    Google Scholar 

  35. Hsieh HL, Randall JC (1982) Macromolecules 15:353

    Article  CAS  Google Scholar 

  36. Choi SM, Barker JG, Glinka CJ, Cheng YT, Gammel PL (2000) J Appl Cryst 33:793

    Article  CAS  Google Scholar 

  37. Koizumi S, Iwase H, Suzuki J, Oku T, Motokawa R, Sasao H, Tanaka H, Yamaguchi D, Shimizu HM, Hashimoto T (2006) Physica B 385–386:1000

    Article  Google Scholar 

  38. Alefeld B, Dohmen L, Richter D, Brückel T (2000) Physica B 283:330

    Article  CAS  Google Scholar 

  39. Kentzinger E, Dohmen L, Alefeld B, Rücker U, Stellbrink J, Ioffe A, Richter D, Brückel T (2004) Physica B 350:e779

    Article  CAS  Google Scholar 

  40. Alefeld B, Schwahn D, Springer T (1989) Nucl Instrum Meth A 274:210

    Article  Google Scholar 

  41. Alefeld B, Dohmen L, Richter D, Brückel T (2000) Physica B 276–278:52

    Article  Google Scholar 

  42. Henke B, DuMond JWM (1953) Phys Rev 89:1300

    Article  CAS  Google Scholar 

  43. Aschenbach B (1985) Rep Prog Phys 48:579

    Article  Google Scholar 

  44. Alefeld B, Hayes C, Mezei F, Richter D, Springer T (1997) Physica B 234–236:1052

    Article  Google Scholar 

  45. Debye P (1947) J Phys Colloid Chem 51:18

    Article  CAS  Google Scholar 

  46. Schmidt PW (1991) J Appl Cryst 24:414

    Article  CAS  Google Scholar 

  47. Beaucage G, Schaefer DW (1994) J Non-Cryst Solids 172:797

    Article  Google Scholar 

  48. Porod G (1982) In: Glatter O, Kratky O (eds) Small-angle X-ray scattering. Academic, London, chap 2

    Google Scholar 

  49. Allen AJ (1991) J Appl Cryst 24:624

    Article  CAS  Google Scholar 

  50. Ruland W (1987) Macromolecules 20:87

    Article  CAS  Google Scholar 

  51. Müller G, Schwahn D, Springer T (1997) Phys Rev E 55:7267

    Article  Google Scholar 

  52. Alexander S (1977) J Phys 38:983

    Article  CAS  Google Scholar 

  53. deGennes PG (1980) Macromolecules 13:1069

    Article  CAS  Google Scholar 

  54. Milner ST, Witten TA, Cates ME (1988) Macromolecules 21:2610

    Article  CAS  Google Scholar 

  55. Pedersen JS (2000) J Appl Cryst 33:637

    Article  CAS  Google Scholar 

  56. Dozier WD, Huang JS, Fetters LJ (1991) Macromolecules 24:2810

    Article  CAS  Google Scholar 

  57. Hosemann R, Bagchi SN (1962) Direct analysis of diffraction by matter. North-Holland, Amsterdam

    Google Scholar 

  58. Machado ALC, Lucas EF (1999) Pet Sci Technol 17:1029

    Article  Google Scholar 

  59. daSilva CX, Alvares DRS, Lucas EF (2004) Energy Fuels 18:599

    Article  CAS  Google Scholar 

  60. Letoffe JM, Claudy P, Vassilakis D, Damin B (1995) Fuel 74:1830

    Article  CAS  Google Scholar 

  61. Petinelli JC (1979) Rev Inst Fr Petr 34:791

    Google Scholar 

  62. Qian JW, Qi GR, Xu YL, Yang SL (1996) J Appl Pol Sci 60:1575

    Article  CAS  Google Scholar 

  63. Qian JW, Zhou GH, Yang WY, Xu XL (2002) J Appl Pol Sci 83:815

    Article  CAS  Google Scholar 

  64. Marie E, Chevalier Y, Eydoux F, Germanaud L, Flores P (2005) J Colloid Interface Sci 290:406

    Article  CAS  Google Scholar 

  65. Zhang J, Wu C, Li W, Wang Y, Cao H (2004) Fuel 83:315

    Article  CAS  Google Scholar 

  66. Wu C, Zhang J, Li W, Wu N (2005) Fuel 84:2039

    Article  CAS  Google Scholar 

  67. Holder GA, Winkler J (1965) J Inst Petrol 51:228

    CAS  Google Scholar 

  68. Denis J, Durand J-P (1991) Rev Inst Fr Petr 51:637

    Google Scholar 

  69. Lewtas K, Tack RD, Beiny DHM, Mullin JW (1991) In: Garside J, Davey RJ, Jones AG (eds) Advances in industrial crystallization. Butterworth-Heinemann, London, p 166

    Google Scholar 

  70. Beiny DHM, Mullin JW, Lewtas K (1990) J Crystal Growth 102:801

    Article  CAS  Google Scholar 

  71. Bennema P, Liu XY, Lewtas K, Tack RD, Rijpkema JJM, Roberts KJ (1992) J Cryst Growth 121:679

    Article  CAS  Google Scholar 

  72. Clydesdale G, Roberts KJ, Lewtas K, Docherty R (1994) J Cryst Growth 141:443

    Article  CAS  Google Scholar 

  73. Qian JW, Qi GR, Cheng RS (1997) Eur Polym J 33:1263

    Article  CAS  Google Scholar 

  74. Qian JW, Wang X, Qi GR, Wu C (1997) Macromolecules 30:3283

    Article  CAS  Google Scholar 

  75. Qian JW, Qi GR, Fang ZB, Cheng RS (1998) Eur Polym J 34:445

    Article  CAS  Google Scholar 

  76. Chowdhury F, Haigh JA, Mandelkern L, Alamo RG (1998) Polym Bull 41:463

    Article  CAS  Google Scholar 

  77. Goberdhan DG, Tack RD, Lewtas K, McAleer AM, Fetters LJ, Huang J (1996) Fuel oil additives and compositions, International Patent WO 96/28523

    Google Scholar 

  78. Schneiders D (1996) PhD Thesis, University of Aachen, Aachen, Germany

    Google Scholar 

  79. Monkenbusch M, Schneiders D, Richter D, Willner L, Leube W, Fetters LJ, Huang JS, Lin M (2000) Physica B 276–278:941

    Article  Google Scholar 

  80. Mortensen K, Almdal K, Kleppinger R, Mischenko N, Reynaers H (1997) Physica B 241–243:1025

    Article  Google Scholar 

  81. Takahashi Y, Noda M, Kitade S, Noda I (1999) J Phys Chem Solids 60:1343

    Article  CAS  Google Scholar 

  82. Versmold H, Musa S, Dux Ch, Lindner P (1999) Langmuir 15:5065

    Article  CAS  Google Scholar 

  83. Hamley IW (2000) Curr Opin Coll Interf Sci 5:341

    Article  Google Scholar 

  84. Krisnamoorti R, Silva AS, Modi MA, Hammouda B (2000) Macromolecules 33:3803

    Article  Google Scholar 

  85. Croce V, Cosgrove T, Dreiss CA, King S, Maitland G, Hughes T (2005) Langmuir 21:6762

    Article  CAS  Google Scholar 

  86. Raphael E, deGennes PG (1992) Makromol Chem, Macromol Symp 62:1

    Google Scholar 

  87. deGennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY

    Google Scholar 

  88. Vilgis T, Halperin A (1991) Macromolecules 24:3321

    Google Scholar 

  89. Elias HG (1990) In: Makromoleküle. Hüpf & Wepf, Basel, p 753

    Google Scholar 

  90. Gaucher V, Seguela R (1994) Polymer 35:2049

    Article  CAS  Google Scholar 

  91. Gast AP, Leibler L (1986) Macromolecules 19:686

    Article  CAS  Google Scholar 

  92. Buzza DMA, McLeish TCB (1997) J Phys II France 7:1379

    Article  CAS  Google Scholar 

  93. Radulescu A, Schwahn D, Fetters LJ, Richter D (2002) Appl Phys A 74:s411

    Article  CAS  Google Scholar 

  94. Radulescu A, Schwahn D, Monkenbusch M, Richter D, Fetters LJ (2004) Physica B 350:e927

    Article  CAS  Google Scholar 

  95. Schwahn D, Yoo MH (1986) Springer Proc Phys 10:83

    Article  CAS  Google Scholar 

  96. Brulet A, Lairez D, Lapp A, Cotton J-P (2007) J Appl Cryst 40:165

    Article  CAS  Google Scholar 

  97. Schweins R, Huber K (2004) Macromol Symp 211:25

    Article  CAS  Google Scholar 

  98. Benoit H (1953) J Polym Sci 11:507

    Article  CAS  Google Scholar 

  99. Stellbrink J, Willner L, Jucknischke O, Richter D, Lindner P, Fetters LJ, Huang JS (1998) Macromolecules 31:4189

    Article  CAS  Google Scholar 

  100. Beaucage G (1995) J Appl Cryst 28:717

    Article  CAS  Google Scholar 

  101. Beaucage G (1996) J Appl Cryst 29:134

    Article  CAS  Google Scholar 

  102. Barham PJ (1993) In: Thomas EL (ed) Materials science and technology, vol 12. VCH, Weinheim, p 153

    Google Scholar 

  103. Somani RH, Yang L, Zhu L, Hsiao BS (2005) Polymer 46:8587

    Article  CAS  Google Scholar 

  104. Zwijnenburg A, Van Hutten PF, Pennings AJ, Chanzy HD (1978) Colloid Polym Sci 256:729

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Richter .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radulescu, A., Fetters, L.J., Richter, D. (2007). Polymer-Driven Wax Crystal Control Using Partially Crystalline Polymeric Materials. In: Wax Crystal Control · Nanocomposites · Stimuli-Responsive Polymers. Advances in Polymer Science, vol 210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2007_124

Download citation

Publish with us

Policies and ethics