Skip to main content

Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response

  • Chapter
  • First Online:
Polymer Mechanochemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 369))

Abstract

The behavior of chemical bonding under various mechanical loadings is an intriguing mechanochemical property of biological materials, and the property plays a critical role in determining their deformation and failure mechanisms. Because of their astonishing mechanical properties and roles in constituting the basis of a variety of physiologically relevant materials, biological protein materials have been intensively studied. Understanding the relation between chemical bond networks (structures) and their mechanical properties offers great possibilities to enable new materials design in nanotechnology and new medical treatments for human diseases. Here we focus on how the chemical bonds in biological systems affect mechanical properties and how they change during mechanical deformation and failure. Three representative cases of biomaterials related to the human diseases are discussed in case studies, including: amyloids, intermediate filaments, and collagen, each describing mechanochemical features and how they relate to the pathological conditions at multiple scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J et al (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399(6738):761–763

    Article  CAS  Google Scholar 

  2. Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA (2011) Deformation mechanisms in nacre. J Mater Res 16(09):2485–2493

    Article  Google Scholar 

  3. Buehler M, Keten S (2010) Colloquium: failure of molecules, bones, and the Earth itself. Rev Mod Phys 82:1459–1487

    Article  Google Scholar 

  4. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A (2014) OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43:D789–D798

    Article  Google Scholar 

  5. Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S et al (2010) Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci 107(14):6316–6321

    Article  CAS  Google Scholar 

  6. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423(6937):293–298

    Article  CAS  Google Scholar 

  7. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I et al (2003) Lamin A truncation in Hutchinson-Gilford progeria. Science 300(5628):2055

    Article  Google Scholar 

  8. Csoka AB, Cao H, Sammak PJ, Constantinescu D, Schatten GP, Hegele RA (2004) Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J Med Genet 41(4):304–308

    Article  CAS  Google Scholar 

  9. Primorac D, Rowe DW, Mottes M, Barisić I, Anticević D, Mirandola S et al (2001) Osteogenesis imperfecta at the beginning of bone and joint decade. Croat Med J 42(4):393–415

    CAS  Google Scholar 

  10. Prockop JD (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64(1):403–434

    Article  CAS  Google Scholar 

  11. Byers PH, Wallis GA, Willing MC (1991) Osteogenesis imperfecta: translation of mutation to phenotype. J Med Genet 28(7):433–442

    Article  CAS  Google Scholar 

  12. Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado JM et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42(18):7571–7637

    Article  Google Scholar 

  13. Huang YY, Knowles TPJ, Terentjev EM (2009) Strength of nanotubes, filaments, and nanowires from sonication-induced scission. Adv Mater 21(38–39):3945–3948

    Article  CAS  Google Scholar 

  14. Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T (2006) Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci 103(27):10271–10276

    Article  CAS  Google Scholar 

  15. Buehler MJ, Yung YC (2009) Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat Mater 8(3):175–188

    Article  CAS  Google Scholar 

  16. Reches M, Gazit E (2005) Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini-capped diphenylalanine peptide analogues. Isr J Chem 45(3):363–371

    Article  CAS  Google Scholar 

  17. Yemini M, Reches M, Rishpon J, Gazit E (2005) Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett 5(1):183–186

    Article  CAS  Google Scholar 

  18. Cherny I, Gazit E (2008) Amyloids: not only pathological agents but also ordered nanomaterials. Angew Chem Int Ed 47(22):4062–4069

    Article  CAS  Google Scholar 

  19. Paparcone R, Keten S, Buehler MJ (2010) Atomistic simulation of nanomechanical properties of Alzheimer’s Aβ(1-40) amyloid fibrils under compressive and tensile loading. J Biomech 43(6):1196–1201

    Article  Google Scholar 

  20. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75(1):333–366

    Article  CAS  Google Scholar 

  21. Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci 107(8):3487–3492

    Article  CAS  Google Scholar 

  22. Otzen DE, Kristensen O, Oliveberg M (2000) Designed protein tetramer zipped together with a hydrophobic Alzheimer homology: a structural clue to amyloid assembly. Proc Natl Acad Sci 97(18):9907–9912

    Article  CAS  Google Scholar 

  23. Wurth C, Guimard NK, Hecht MH (2002) Mutations that reduce aggregation of the Alzheimer’s Aβ42 peptide: an unbiased search for the sequence determinants of Aβ amyloidogenesis. J Mol Biol 319(5):1279–1290

    Article  CAS  Google Scholar 

  24. Chiti F, Taddei N, Baroni F, Capanni C, Stefani M, Ramponi G et al (2002) Kinetic partitioning of protein folding and aggregation. Nat Struct Biol 9(2):137–143

    Article  CAS  Google Scholar 

  25. Chiti F, Calamai M, Taddei N, Stefani M, Ramponi G, Dobson CM (2002) Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc Natl Acad Sci 99(Suppl 4):16419–16426

    Article  CAS  Google Scholar 

  26. Schmittschmitt JP, Scholtz JM (2003) The role of protein stability, solubility, and net charge in amyloid fibril formation. Protein Sci 12(10):2374–2378

    Article  CAS  Google Scholar 

  27. Jarrett JT, Berger EP, Lansbury PT (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32(18):4693–4697

    Article  CAS  Google Scholar 

  28. Jansen R, Dzwolak W, Winter R (2005) Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy. Biophys J 88(2):1344–1353

    Article  CAS  Google Scholar 

  29. Morris KL, Serpell LC (2012) X-Ray fibre diffraction studies of amyloid fibrils, vol 849, Amyloid proteins. Humana Press, Totowa, pp 121–135

    Google Scholar 

  30. Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F et al (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci 99(26):16742–16747

    Article  CAS  Google Scholar 

  31. Antzutkin ON, Balbach JJ, Leapman RD, Rizzo NW, Reed J, Tycko R (2000) Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci 97(24):13045–13050

    Article  CAS  Google Scholar 

  32. Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s ß-amyloid fibrils. Science 307(5707):262–265

    Article  CAS  Google Scholar 

  33. Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H et al (2005) 3D structure of Alzheimer’s amyloid-β(1-42) fibrils. Proc Natl Acad Sci 102(48):17342–17347

    Article  Google Scholar 

  34. Shulha H, Zhai X, Tsukruk VV (2003) Molecular stiffness of individual hyperbranched macromolecules at solid surfaces. Macromolecules 36(8):2825–2831

    Article  CAS  Google Scholar 

  35. Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5):2798–2810

    Article  CAS  Google Scholar 

  36. Guo S, Akhremitchev BB (2006) Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation. Biomacromolecules 7(5):1630–1636

    Article  CAS  Google Scholar 

  37. del Mercato LL, Maruccio G, Pompa PP, Bochicchio B, Tamburro AM, Cingolani R et al (2008) Amyloid-like fibrils in elastin-related polypeptides: structural characterization and elastic properties. Biomacromolecules 9(3):796–803

    Article  Google Scholar 

  38. Smith JF, Knowles TPJ, Dobson CM, MacPhee CE, Welland ME (2006) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci 103(43):15806–15811

    Article  CAS  Google Scholar 

  39. Kol N, Adler-Abramovich L, Barlam D, Shneck RZ, Gazit E, Rousso I (2005) Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett 5(7):1343–1346

    Article  CAS  Google Scholar 

  40. Xu Z, Paparcone R, Buehler MJ (2010) Alzheimer’s Aβ(1-40) amyloid fibrils feature size-dependent mechanical properties. Biophys J 98(10):2053–2062

    Article  CAS  Google Scholar 

  41. Paparcone R, Buehler MJ (2011) Failure of Aβ(1-40) amyloid fibrils under tensile loading. Biomaterials 32(13):3367–3374

    Article  CAS  Google Scholar 

  42. Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat Mater 9(4):359–367

    Article  CAS  Google Scholar 

  43. Paparcone R, Pires MA, Buehler MJ (2010) Mutations alter the geometry and mechanical properties of Alzheimer’s Aβ(1-40) amyloid fibrils. Biochemistry 49(41):8967–8977

    Article  CAS  Google Scholar 

  44. Kreplak L, Fudge D (2007) Biomechanical properties of intermediate filaments: from tissues to single filaments and back. Bioessays 29(1):26–35

    Article  CAS  Google Scholar 

  45. Wang J, Zohar R, McCulloch CA (2006) Multiple roles of α-smooth muscle actin in mechanotransduction. Exp Cell Res 312(3):205–214

    Article  CAS  Google Scholar 

  46. Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283(5744):249–255

    Article  CAS  Google Scholar 

  47. Hesse M, Magin TM, Weber K (2001) Genes for intermediate filament proteins and the draft sequence of the human genome novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J Cell Sci 114(14):2569–2575

    CAS  Google Scholar 

  48. Strelkov SV, Herrmann H, Aebi U (2003) Molecular architecture of intermediate filaments. Bioessays 25(3):243–251

    Article  CAS  Google Scholar 

  49. Omary MB, Coulombe PA, McLean WHI (2004) Intermediate filament proteins and their associated diseases. N Engl J Med 351(20):2087–2100

    Article  CAS  Google Scholar 

  50. Qin Z, Buehler MJ (2012) Computational and theoretical modeling of intermediate filament networks: structure, mechanics and disease. Acta Mech Sinica 28(4):941–950

    Article  Google Scholar 

  51. Uitto J (2002) Searching for clues to premature aging. Trends Mol Med 8(4):155–157

    Article  Google Scholar 

  52. Vassar R, Coulombe PA, Degenstein L, Albers K, Fuchs E (1991) Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell 64(2):365–380

    Article  CAS  Google Scholar 

  53. Albers K, Fuchs E (1987) The expression of mutant epidermal keratin cDNAs transfected in simple epithelial and squamous cell carcinoma lines. J Cell Biol 105(2):791–806

    Article  CAS  Google Scholar 

  54. Ma L, Yamada S, Wirtz D, Coulombe PA (2001) A ‘hot-spot’ mutation alters the mechanical properties of keratin filament networks. Nat Cell Biol 3(5):503–506

    Article  CAS  Google Scholar 

  55. Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health and disease. Science 279(5350):514–519

    Article  CAS  Google Scholar 

  56. Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8(7):562–573

    Article  CAS  Google Scholar 

  57. Smith TA, Strelkov SV, Burkhard P, Aebi U, Parry DAD (2002) Sequence comparisons of intermediate filament chains: evidence of a unique functional/structural role for coiled-coil segment 1A and linker L1. J Struct Biol 137(1–2):128–145

    Article  CAS  Google Scholar 

  58. Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu Rev Biochem 73(1):749–789

    Article  CAS  Google Scholar 

  59. Wiita AP, Ainavarapu SRK, Huang HH, Fernandez JM (2006) Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc Natl Acad Sci 103(19):7222–7227

    Article  CAS  Google Scholar 

  60. Parbhu AN, Bryson WG, Lal R (1999) Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an AFM. Biochemistry 38(36):11755–11761

    Article  CAS  Google Scholar 

  61. Lin Y-C, Broedersz CP, Rowat AC, Wedig T, Herrmann H, MacKintosh FC et al (2010) Divalent cations crosslink vimentin intermediate filament tail domains to regulate network mechanics. J Mol Biol 399(4):637–644

    Article  CAS  Google Scholar 

  62. Ackbarow T, Sen D, Thaulow C, Buehler MJ (2009) Alpha-helical protein networks are self-protective and flaw-tolerant. PLoS One 4(6):e6015

    Article  Google Scholar 

  63. Strelkov SV, Herrmann H, Geisler N, Lustig A, Ivaninskii S, Zimbelmann R et al (2001) Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments. J Mol Biol 306(4):773–781

    Article  CAS  Google Scholar 

  64. Strelkov SV, Herrmann H, Geisler N, Wedig T, Zimbelmann R, Aebi U et al (2002) Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly. EMBO J 21(6):1255–1266

    Article  CAS  Google Scholar 

  65. Aziz A, Hess JF, Budamagunta MS, Voss JC, Kuzin AP, Huang YJ et al (2012) The structure of vimentin linker 1 and rod 1B domains characterized by site-directed spin-labeling electron paramagnetic resonance (SDSL-EPR) and X-ray crystallography. J Biol Chem 287(34):28349–28361

    Article  CAS  Google Scholar 

  66. Ackbarow T, Buehler MJ (2007) Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies. J Mater Sci 42(21):8771–8787

    Article  CAS  Google Scholar 

  67. Qin Z, Kreplak L, Buehler MJ (2009) Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS One 4(10):e7294

    Article  Google Scholar 

  68. Fudge DS, Gardner KH, Forsyth VT, Riekel C, Gosline JM (2003) The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophys J 85(3):2015–2027

    Article  CAS  Google Scholar 

  69. Kreplak L, Doucet J, Dumas P, Briki F (2004) New aspects of the α-helix to β-sheet transition in stretched hard α-keratin fibers. Biophys J 87(1):640–647

    Article  CAS  Google Scholar 

  70. Panorchan P, Schafer BW, Wirtz D, Tseng Y (2004) Nuclear envelope breakdown requires overcoming the mechanical integrity of the nuclear lamina. J Biol Chem 279(42):43462–43467

    Article  CAS  Google Scholar 

  71. Wilson KL, Zastrow MS, Lee KK (2001) Lamins and disease. Cell 104(5):647–650

    CAS  Google Scholar 

  72. Rowat AC, Lammerding J, Herrmann H, Aebi U (2008) Towards an integrated understanding of the structure and mechanics of the cell nucleus. Bioessays 30(3):226–236

    Article  Google Scholar 

  73. Wilson KL, Berk JM (2010) The nuclear envelope at a glance. J Cell Sci 123(12):1973–1978

    Article  CAS  Google Scholar 

  74. Qin Z, Kalinowski A, Dahl KN, Buehler MJ (2011) Structure and stability of the lamin A tail domain and HGPS mutant. J Struct Biol 175(3):425–433

    Article  CAS  Google Scholar 

  75. Verstraeten VLRM, Ji JY, Cummings KS, Lee RT, Lammerding J (2008) Increased mechanosensitivity and nuclear stiffness in Hutchinson–Gilford progeria cells: effects of farnesyltransferase inhibitors. Aging Cell 7(3):383–393

    Article  CAS  Google Scholar 

  76. Misof K, Landis WJ, Klaushofer K, Fratzl P (1997) Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. J Clin Invest 100(1):40–45

    Article  CAS  Google Scholar 

  77. Orgel JPRO, Irving TC, Miller A, Wess TJ (2006) Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci 103(24):9001–9005

    Article  CAS  Google Scholar 

  78. Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ et al (2007) Bone structure and formation: a new perspective. Mater Sci Eng R Rep 58(3–5):77–116

    Article  Google Scholar 

  79. Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ et al (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009

    Article  CAS  Google Scholar 

  80. Gautieri A, Buehler MJ, Redaelli A (2009) Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. J Mech Behav Biomed Mater 2(2):130–137

    Article  Google Scholar 

  81. Currey JD (1990) Physical characteristics affecting the tensile failure properties of compact bone. J Biomech 23(8):837–844

    Article  CAS  Google Scholar 

  82. Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79(4):1737–1746

    Article  Google Scholar 

  83. Currey J (2001) Sacrificial bonds heal bone. Nature 414:699

    Article  CAS  Google Scholar 

  84. Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci 100(10):5597–5600

    Article  CAS  Google Scholar 

  85. Nair AK, Gautieri A, Chang S-W, Buehler MJ (2013) Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun 4:1724

    Article  Google Scholar 

  86. Gautieri A, Uzel S, Vesentini S, Redaelli A, Buehler MJ (2009) Molecular and mesoscale mechanisms of osteogenesis imperfecta disease in collagen fibrils. Biophys J 97(3):857–865

    Article  CAS  Google Scholar 

  87. Fratzl P, Paris O, Klaushofer K, Landis WJ (1996) Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle X-ray scattering. J Clin Invest 97(2):396–402

    Article  CAS  Google Scholar 

  88. Qin Z, Gautieri A, Nair AK, Inbar H, Buehler MJ (2012) Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface. Langmuir 28(4):1982–1992

    Article  CAS  Google Scholar 

  89. Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48(6):407–413

    Article  CAS  Google Scholar 

  90. Mostafa NY, Brown PW (2007) Computer simulation of stoichiometric hydroxyapatite: structure and substitutions. J Phys Chem Solid 68(3):431–437

    Article  CAS  Google Scholar 

  91. de Leeuw NH, Bowe JR, Rabone JAL (2007) A computational investigation of stoichiometric and calcium-deficient oxy- and hydroxy-apatites. Faraday Discuss 134:195–214

    Article  Google Scholar 

  92. Raiteri P, Gale JD (2010) Water is the key to nonclassical nucleation of amorphous calcium carbonate. J Am Chem Soc 132(49):17623–17634

    Article  CAS  Google Scholar 

  93. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  94. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  95. Paparcone R, Buehler MJ (2010) Failure of Alzheimer’s Aβ(1-40) amyloid nanofibrils under compressive loading. JOM 62(4):64–68

    Article  CAS  Google Scholar 

  96. Deshpande AS, Beniash E (2008) Bioinspired synthesis of mineralized collagen fibrils. Cryst Growth Des 8(8):3084–3090

    Article  CAS  Google Scholar 

  97. Gautieri A, Vesentini S, Redaelli A, Buehler MJ (2012) Osteogenesis imperfecta mutations lead to local tropocollagen unfolding and disruption of H-bond network. RSC Adv 2:3890–3896

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from DOD-PECASE, NSF, and ARO, and additional funding from NIH-U01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jung, G., Qin, Z., Buehler, M.J. (2015). Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response. In: Boulatov, R. (eds) Polymer Mechanochemistry. Topics in Current Chemistry, vol 369. Springer, Cham. https://doi.org/10.1007/128_2015_643

Download citation

Publish with us

Policies and ethics