Skip to main content

Molecular Mechanochemistry: Engineering and Implications of Inherently Strained Architectures

  • Chapter
  • First Online:
Polymer Mechanochemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 369))

Abstract

Mechanical activation of chemical bonds is usually achieved by applying external forces. However, nearly all molecules exhibit inherent strain of their chemical bonds and angles as a result of constraints imposed by covalent bonding and interactions with the surrounding environment. Particularly strong deformation of bonds and angles is observed in hyperbranched macromolecules caused by steric repulsion of densely grafted polymer branches. In addition to the tension amplification, macromolecular architecture allows for accurate control of strain distribution, which enables focusing of the internal mechanical tension to specific chemical bonds and angles. As such, chemically identical bonds in self-strained macromolecules become physically distinct because the difference in bond tension leads to the corresponding difference in the electronic structure and chemical reactivity of individual bonds within the same macromolecule. In this review, we outline different approaches to the design of strained macromolecules along with physical principles of tension management, including generation, amplification, and focusing of mechanical tension at specific chemical bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wiggins KM, Brantley JN, Bielawski CW (2012) Polymer mechanochemistry: force enabled transformations. ACS Marco Lett 1:623

    Article  CAS  Google Scholar 

  2. Bensimon D (1996) Force: a new structural control parameter? Structure 4:885

    Article  CAS  Google Scholar 

  3. Wiita AP, Ainavarapu SRK, Huang HH, Fernandez JM (2006) Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc Natl Acad Sci U S A 103:7222

    Article  CAS  Google Scholar 

  4. Li Y, Nese A, Lebedeva NV, Davis T, Matyjaszewski K, Sheiko SS (2011) Molecular tensile machines: intrinsic acceleration of disulfide reduction by dithiothreitol. J Am Chem Soc 133:17479

    Article  CAS  Google Scholar 

  5. Piermattei A, Karthikeyan S, Sijbesma RP (2009) Activating catalysts with mechanical force. Nat Chem 1:133

    Article  CAS  Google Scholar 

  6. Tennyson AG, Wiggins KM, Bielawski CW (2010) Mechanical activation of catalysts for C–C bond forming and anionic polymerization reactions from a single macromolecular reagent. J Am Chem Soc 132:16631

    Article  CAS  Google Scholar 

  7. Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423

    Article  CAS  Google Scholar 

  8. Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL (2010) Trapping a diradical transition state by mechanochemical polymer extension. Science 329:1057

    Article  CAS  Google Scholar 

  9. Diesendruck CE, Peterson GI, Kulik HJ, Kaitz JA, Mar BD, May PA, White SR, Martínez TJ, Boydston AJ, Moore JS (2014) Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat Chem 6:623

    Article  CAS  Google Scholar 

  10. Klibanov AM, Samokhin GP, Martinek K, Berezin IV (1976) Enzymatic mechanochemistry: a new approach to studying the mechanism of enzyme action. Biochim Biophys Acta 438:1

    Article  CAS  Google Scholar 

  11. Alegre-Cebollada J, Perez-Jimenez R, Kosuri P, Fernandez JM (2010) Single-molecule force spectroscopy approach to enzyme catalysis. J Biol Chem 285:18961

    Article  CAS  Google Scholar 

  12. Camp RJ, Liles M, Beale J, Saeidi N, Flynn BP, Moore E, Murthy SK, Ruberti JW (2011) Molecular mechanochemistry: low force switch slows enzymatic cleavage of human type I collagen monomer. J Am Chem Soc 133:4073

    Article  CAS  Google Scholar 

  13. Golovin YI, Gribanovskii SL, Klyachko NL, Kabanov AV (2014) Nanomechanical control of the activity of enzymes immobilized on single-domain magnetic nanoparticles. Tech Phys 59:932

    Article  CAS  Google Scholar 

  14. Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184

    Article  CAS  Google Scholar 

  15. Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288:88

    Article  CAS  Google Scholar 

  16. Schnitzer MJ, Visscher K, Block SM (2000) Force production by single kinesin motors. Nat Cell Biol 2:718

    Article  CAS  Google Scholar 

  17. Bustamante C, Keller D, Oster G (2001) The physics of molecular motors. Acc Chem Res 34:412

    Article  CAS  Google Scholar 

  18. Carter NJ, Cross RA (2005) Mechanics of the kinesin step. Nature 435:308

    Article  CAS  Google Scholar 

  19. Kolomeisky AB, Fisher ME (2007) Molecular motors: a theorist’s perspective. Annu Rev Phys Chem 58:675

    Article  CAS  Google Scholar 

  20. Bloom K (2008) Beyond the code: the mechanical properties of DNA as they relate to mitosis. Chromosoma 117:103

    Article  Google Scholar 

  21. Stephens AD, Haase J, Vicci L, Taylor RM, Bloom K (2011) Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring. J Cell Biol 193:1167

    Article  CAS  Google Scholar 

  22. Cross RA, McAinsh A (2014) Prime movers: the mechanochemistry of mitotic kinesins. Nat Rev Mol Cell Bio 15:257

    Article  CAS  Google Scholar 

  23. Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853

    CAS  Google Scholar 

  24. Hugel T, Holland NB, Cattani A, Moroder L, Seitz M, Gaub HE (2002) Single-molecule optomechanical cycle. Science 296:1103

    Article  Google Scholar 

  25. Lin J, Beratan DN (2004) Tunneling while pulling: the dependence of tunneling current on end-to-end distance in a flexible molecule. J Phys Chem A 108:5655

    Article  CAS  Google Scholar 

  26. Chang S, He J, Kibel A, Lee M, Sankey O, Zhang P, Lindsay S (2009) Tunnelling readout of hydrogen-bonding-based recognition. Nat Nanotechnol 4:297

    Article  CAS  Google Scholar 

  27. Lafferentz L, Ample F, Yu H, Hecht S, Joachim C, Grill L (2009) Conductance of a single conjugated polymer as a continuous function of its length. Science 323:1193

    Article  CAS  Google Scholar 

  28. Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Neaton JB, Venkataraman L (2009) Mechanically controlled binary conductance switching of a single-molecule junction. Nat Nanotechnol 4:230

    Google Scholar 

  29. Parks JJ, Champagne AR, Costi TA, Shum WW, Pasupathy AN, Neuscamman E, Flores-Torres S, Cornaglia PS, Aligia AA, Balseiro CA, Chan GK-L, Abruña HD, Ralph DC (2010) Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328:1370

    Article  CAS  Google Scholar 

  30. Chen Y, Spiering AJH, KarthikeyanS PGWM, Meijer EW, Sijbesma RP (2012) Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat Chem 4:559

    Article  CAS  Google Scholar 

  31. Ariga K, Mori T, Hill JP (2012) Mechanical control of nanomaterials and nanosystems. Adv Mater 24:158

    Article  CAS  Google Scholar 

  32. Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS (2009) Mechanically-induced chemical changes in polymeric materials. Chem Rev 109:5755

    Article  CAS  Google Scholar 

  33. Black AL, Lenhardt JM, Craig SL (2011) From molecular mechanochemistry to stress-responsive materials. J Mater Chem 21:1655

    Article  CAS  Google Scholar 

  34. Brantley JN, Bailey CB, Wiggins KM, Keatinge-Clay AT, Bielawski CW (2013) Mechanobiochemistry: harnessing biomacromolecules for force-responsive materials. Polym Chem 4:3916

    Article  CAS  Google Scholar 

  35. Groote R, Jakobs RTM, Sijbesma RP (2013) Mechanocatalysis: forcing latent catalysts into action. Polym Chem 4:4846

    Article  CAS  Google Scholar 

  36. Ashkin A, Schutze K, Dziedzic JM, Euteneuer U, Schliwa M (1990) Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348:346

    Article  CAS  Google Scholar 

  37. Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm: a study by means of the magnetic particle method. Part I. Experimental. Exp Cell Res 1:37

    Article  Google Scholar 

  38. Smith S, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122

    Article  CAS  Google Scholar 

  39. Florin E, Moy V, Gaub H (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415

    Article  CAS  Google Scholar 

  40. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) How strong is a covalent bond? Science 283:1727

    Article  CAS  Google Scholar 

  41. Oberhauser AF, Hansma PK, Carrion-Vazquez M, Fernandez JM (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci U S A 98:468

    Article  CAS  Google Scholar 

  42. Kishino A, Yanagida T (1988) Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334:74

    Article  CAS  Google Scholar 

  43. Evans E, Ritchie K, Merkel R (1995) Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J 68:2580

    Article  CAS  Google Scholar 

  44. Yang Q-Z, Huang Z, Kucharski TJ, Khvostichenko D, Chen J, Boulatov R (2009) A molecular force probe. Nat Nanotechnol 4:302

    Article  CAS  Google Scholar 

  45. Park I, Sheiko SS, Nese A, Matyjaszewski K (2009) Molecular tensile testing machines: breaking a specific covalent bond by adsorption-induced tension in brushlike macromolecules. Macromolecules 42:1805

    Article  CAS  Google Scholar 

  46. Lenhardt JM, Black AL, Craig SL (2009) gem-Dichlorocyclopropanes as abundant and efficient mechanophores in polybutadiene copolymers under mechanical stress. J Am Chem Soc 131:10818

    Google Scholar 

  47. Kauzmann W, Eyring H (1940) The viscous flow of large molecules. J Am Chem Soc 62:3113

    Article  CAS  Google Scholar 

  48. Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284

    Article  CAS  Google Scholar 

  49. Zhurkov SN (1965) Int J Fract Mech 1:311

    CAS  Google Scholar 

  50. Bell G (1978) Models for the specific adhesion of cells to cells. Science 200:618

    Article  CAS  Google Scholar 

  51. Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541

    Article  CAS  Google Scholar 

  52. Saitta AM, Soper PD, Wasserman E, Klein ML (1999) Influence of a knot on the strength of a polymer strand. Nature 399:46

    Article  CAS  Google Scholar 

  53. Beyer MK (2000) The mechanical strength of a covalent bond calculated by density functional theory. J Chem Phys 112:7307

    Article  CAS  Google Scholar 

  54. Hummer G, Szabo A (2003) Kinetics from nonequilibrium single-molecule pulling experiments. Biophys J 85:5

    Article  CAS  Google Scholar 

  55. Dudko OK, Hummer G, Szabo A (2006) Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett 96:108101

    Article  CAS  Google Scholar 

  56. Ribas-Arino J, Shiga M, Marx D (2010) Mechanochemical transduction of externally applied forces to mechanophores. J Am Chem Soc 132:10609

    Article  CAS  Google Scholar 

  57. Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112:5412

    Google Scholar 

  58. Huang Z, Boulatov R (2011) Chemomechanics: chemical kinetics for multiscale phenomena. Chem Soc Rev 40:2359

    Article  CAS  Google Scholar 

  59. Jiang D-L, Aida T (1997) Photoisomerization in dendrimers by harvesting of low-energy photons. Nature 388:454

    Article  CAS  Google Scholar 

  60. Larsen MB, Boydston AJ (2013) “Flex-activated” mechanophores: using polymer mechanochemistry to direct bond bending activation. J Am Chem Soc 135:8189

    Article  CAS  Google Scholar 

  61. Larsen MB, Boydston AJ (2014) Successive mechanochemical activation and small molecule release in an elastomeric material. J Am Chem Soc 136:1276

    Article  CAS  Google Scholar 

  62. Gao J, Weiner JH (1990) Bond forces and pressure in diatomic liquids. Mol Phys 70:299

    Article  CAS  Google Scholar 

  63. Weiner JH, Berman DH (1985) Bond forces in long-chain molecules. J Chem Phys 82:548

    Article  CAS  Google Scholar 

  64. Gao J, Weiner JH (1989) Excluded-volume effects in rubber elasticity. 4. Nonhydrostatic contribution to stress. Macromolecules 22:979

    Article  CAS  Google Scholar 

  65. Beiermann BA, Kramer SLB, Moore JS, White SR, Sottos NR (2011) Role of mechanophore orientation in mechanochemical reactions. ACS Marco Lett 1:163

    Article  CAS  Google Scholar 

  66. von Baeyer A (1885) Ber Dtsch Chem Ges 18:2278

    Article  Google Scholar 

  67. Wiberg KB (1986) The concept of strain in organic chemistry. Angew Chem Int Ed 25:312

    Article  Google Scholar 

  68. Liebman JF, Greenberg A (1976) A survey of strained organic molecules. Chem Rev 76:311

    Article  CAS  Google Scholar 

  69. Murray RW (1989) Chemistry of dioxiranes. 12. Dioxiranes. Chem Rev 89:1187

    Article  CAS  Google Scholar 

  70. Tochtermann W, Olsson G (1989) 3-Heteroquadricyclanes in organic synthesis. Chem Rev 89:1203

    Article  CAS  Google Scholar 

  71. Alder RW (1989) Strain effects on amine basicities. Chem Rev 89:1215

    Article  CAS  Google Scholar 

  72. Michl J, Gladysz J (1989) Strained organic compounds: introduction. Chem Rev 89:973

    Article  Google Scholar 

  73. Moszner N, Zeuner F, Völkel T, Rheinberger V (1999) Synthesis and polymerization of vinylcyclopropanes. Macromol Chem Phys 200:2173

    Article  CAS  Google Scholar 

  74. Boileau S, Illy N (2011) Activation in anionic polymerization: why phosphazene bases are very exciting promoters. Prog Polym Sci 36:1132

    Article  CAS  Google Scholar 

  75. Wong HNC, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T (1989) Use of cyclopropanes and their derivatives in organic synthesis. Chem Rev 89:165

    Article  CAS  Google Scholar 

  76. Ferguson LN (1973) Highlights of alicyclic chemistry. Franklin Publishing Co., Palisades

    Google Scholar 

  77. Benson SW (1968) Themraochemical kinetics. Wiley, New York

    Google Scholar 

  78. Bastiansen O, Fritsch FN, Hedberg K (1964) Least-squares refinement of molecular structures from gaseous electron-diffraction sector-microphotometer data. III. Refinement of cyclopropane. Acta Crystallogr 17:538

    Article  CAS  Google Scholar 

  79. Jones WJ, Stoicheff BP (1964) High-resolution Raman spectroscopy of gases: XVIII. Pure rotational spectra of cyclopropane and cyclopropane-d6. Can J Phys 42:2259

    Article  CAS  Google Scholar 

  80. Lide JDR (1960) Microwave spectrum, structure, and dipole moment of propane. J Chem Phys 33:1514

    Article  CAS  Google Scholar 

  81. Seubold JFH (1953) Carbon-carbon bond dissociation energies in the cycloalkanes. J Chem Phys 21:1616

    Article  CAS  Google Scholar 

  82. Cottrell TL (1958) The strengths of chemical bonds. Butterworths, London

    Google Scholar 

  83. Coulson CA, Moffitt WE (1947) Strain in non-tetrahedral carbon atoms. J Chem Phys 15:151

    Article  CAS  Google Scholar 

  84. Coulson CA, Moffitt WE (1949) The properties of certain strained hydrocarbons. Philoso Mag Ser 7 40:1

    Google Scholar 

  85. Coulson CA, Goodwin TH (1962) Bent bonds in cycloalkanes. J Chem Soc (Resumed) 557:2851

    Google Scholar 

  86. Lipscomb WN, Stevens RM, Switkes E, Laws EA (1971) Self-consistent-field studies of the electronic structures of cyclopropane and benzene. J Am Chem Soc 93:2603

    Article  CAS  Google Scholar 

  87. Wu D, Lenhardt JM, Black AL, Akhremitchev BB, Craig SL (2010) Molecular stress relief through a force-induced irreversible extension in polymer contour length. J Am Chem Soc 132:15936

    Article  CAS  Google Scholar 

  88. Klukovich HM, Kouznetsova TB, Kean ZS, Lenhardt JM, Craig SL (2012) A backbone lever-arm effect enhances polymer mechanochemistry. Nat Chem 5:110

    Article  CAS  Google Scholar 

  89. Wang J, Kouznetsova TB, Kean ZS, Fan L, Mar BD, Martínez TJ, Craig SL (2014) A remote stereochemical lever arm effect in polymer mechanochemistry. J Am Chem Soc 136:15162

    Article  CAS  Google Scholar 

  90. Kean ZS, Ramirez ALB, Craig SL (2012) High mechanophore content polyester-acrylate ABA block copolymers: synthesis and sonochemical activation. J Polym Sci Part A Polym Chem 50:3481

    Article  CAS  Google Scholar 

  91. Glynn PAR, Van Der Hoff BME, Reilly PM (1972) A general model for prediction of molecular weight distributions of degraded polymers. development and comparison with ultrasonic degradation experiments. J Macromol Sci Part A Chem 6:1653

    Article  CAS  Google Scholar 

  92. Glynn PAR, van der Hoff BME (1973) Degradation of polystyrene in solution by ultrasonation – a molecular weight distribution study. J Macromol Sci Part A Chem 7:1695

    Article  CAS  Google Scholar 

  93. Koda S, Mori H, Matsumoto K, Nomura H (1994) Ultrasonic degradation of water-soluble polymers. Polymer 35:30

    Article  CAS  Google Scholar 

  94. Diesendruck CE, Steinberg BD, Sugai N, Silberstein MN, Sottos NR, White SR, Braun PV, Moore JS (2012) Proton-coupled mechanochemical transduction: a mechanogenerated acid. J Am Chem Soc 134:12446

    Article  CAS  Google Scholar 

  95. Lenhardt JM, Ogle JW, Ong MT, Choe R, Martinez TJ, Craig SL (2011) Reactive cross-talk between adjacent tension-trapped transition states. J Am Chem Soc 133:3222

    Article  CAS  Google Scholar 

  96. Ramirez ALB, Kean ZS, Orlicki JA, Champhekar M, Elsakr SM, Krause WE, Craig SL (2013) Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat Chem 5:757

    Article  CAS  Google Scholar 

  97. Kean ZS, Craig SL (2012) Mechanochemical remodeling of synthetic polymers. Polymer 53:1035

    Article  CAS  Google Scholar 

  98. Klukovich HM, Kean ZS, Iacono ST, Craig SL (2011) Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers. J Am Chem Soc 133:17882

    Article  CAS  Google Scholar 

  99. Kryger MJ, Munaretto AM, Moore JS (2011) Structure–mechanochemical activity relationships for cyclobutane mechanophores. J Am Chem Soc 133:18992

    Article  CAS  Google Scholar 

  100. Kean ZS, Black Ramirez AL, Yan Y, Craig SL (2012) Bicyclo[3.2.0]heptane mechanophores for the non-scissile and photochemically reversible generation of reactive bis-enones. J Am Chem Soc 134:12939

    Article  CAS  Google Scholar 

  101. Kean ZS, Niu Z, Hewage GB, Rheingold AL, Craig SL (2013) Stress-responsive polymers containing cyclobutane core mechanophores: reactivity and mechanistic insights. J Am Chem Soc 135:13598

    Article  CAS  Google Scholar 

  102. Waldeck DH (1991) Photoisomerization dynamics of stilbenes. Chem Rev 91:415

    Article  CAS  Google Scholar 

  103. Akbulatov S, Tian Y, Boulatov R (2012) Force–reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer. J Am Chem Soc 134:7620

    Article  CAS  Google Scholar 

  104. Lai C, Guo W, Tang X, Zhang G, Pan Q, Pei M (2011) Cross-linking conducting polythiophene with yellow-green light-emitting properties and good thermal stability via free radical polymerization and electropolymerization. Synth Met 161:1886

    Article  CAS  Google Scholar 

  105. Li W, Edwards SA, Lu L, Kubar T, Patil SP, Grubmüller H, Groenhof G, Gräter F (2013) Force distribution analysis of mechanochemically reactive dimethylcyclobutene. ChemPhysChem 14:2687

    Article  CAS  Google Scholar 

  106. Huang Z, Yang Q-Z, Khvostichenko D, Kucharski TJ, Chen J, Boulatov R (2009) Method to derive restoring forces of strained molecules from kinetic measurements. J Am Chem Soc 131:1407

    Article  CAS  Google Scholar 

  107. Kucharski TJ, Huang Z, Yang Q-Z, Tian Y, Rubin NC, Concepcion CD, Boulatov R (2009) Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. Angew Chem Int Ed 48:7040

    Article  CAS  Google Scholar 

  108. Tian Y, Kucharski TJ, Yang Q-Z, Boulatov R (2013) Model studies of force-dependent kinetics of multi-barrier reactions. Nat Commun 2013:4

    Google Scholar 

  109. Kucharski TJ, Yang Q-Z, Tian Y, Boulatov R (2010) Strain-dependent acceleration of a paradigmatic SN2 reaction accurately predicted by the force formalism. J Phys Chem Lett 1:2820

    Article  CAS  Google Scholar 

  110. Akbulatov S, Tian Y, Kapustin E, Boulatov R (2013) Model studies of the kinetics of ester hydrolysis under stretching force. Angew Chem Int Ed 52:6992

    Article  CAS  Google Scholar 

  111. Kean ZS, Akbulatov S, Tian Y, Widenhoefer RA, Boulatov R, Craig SL (2014) Photomechanical actuation of ligand geometry in enantioselective catalysis. Angew Chem 126:14736

    Article  Google Scholar 

  112. Xia F, Bronowska AK, Cheng S, Gräter F (2011) Base-catalyzed peptide hydrolysis is insensitive to mechanical stress. J Phys Chem B 115:10126

    Article  CAS  Google Scholar 

  113. Ayme J-F, Beves JE, Campbell CJ, Leigh DA (2013) Template synthesis of molecular knots. Chem Soc Rev 42:1700

    Article  CAS  Google Scholar 

  114. Bayer RK (1994) Structure transfer from a polymeric melt to the solid state. Part III: influence of knots on structure and mechanical properties of semicrystalline polymers. Colloid Polym Sci 272:910

    Article  CAS  Google Scholar 

  115. Ashley CW (1993) The ashley book of knots. Doubleday, New York

    Google Scholar 

  116. Arai Y, Yasuda R, K-i A, Harada Y, Miyata H, Kinosita K, Itoh H (1999) Tying a molecular knot with optical tweezers. Nature 399:446

    Article  CAS  Google Scholar 

  117. Tsuda Y, Yasutake H, Ishijima A, Yanagida T (1996) Torsional rigidity of single actin filaments and actin–actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proc Natl Acad Sci USA 93:12937

    Article  CAS  Google Scholar 

  118. Saitta AM, Klein ML (2000) First-principles study of bond rupture of entangled polymer chains. J Phys Chem B 104:2197

    Article  CAS  Google Scholar 

  119. Griller D, Barclay LRC, Ingold KU (1975) Kinetic applications of electron paramagnetic resonance spectroscopy. XX. 2,4,6-Tri(tert-butyl)benzyl, -anilino, -phenoxy, and -phenylthiyl radicals. J Am Chem Soc 97:6151

    Article  CAS  Google Scholar 

  120. Schreiner PR, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Schlecht S, Dahl JEP, Carlson RMK, Fokin AA (2011) Overcoming lability of extremely long alkane carbon-carbon bonds through dispersion forces. Nature 477:308

    Article  CAS  Google Scholar 

  121. Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33:759

    Article  CAS  Google Scholar 

  122. Panyukov S, Zhulina EB, Sheiko SS, Randall GC, Brock J, Rubinstein M (2009) Tension amplification in molecular brushes in solutions and on substrates. J Phys Chem B 113:3750

    Article  CAS  Google Scholar 

  123. Milchev A, Paturej J, Rostiashvili VG, Vilgis TA (2011) Thermal degradation of adsorbed bottle-brush macromolecules: a molecular dynamics simulation. Macromolecules 44:3981

    Article  CAS  Google Scholar 

  124. Paturej J, Kuban L, Milchev A, Vilgis TA (2012) Tension enhancement in branched macromolecules upon adhesion on a solid substrate. EPL (Europhys Lett) 97:58003

    Article  CAS  Google Scholar 

  125. Panyukov SV, Sheiko SS, Rubinstein M (2009) Amplification of tension in branched macromolecules. Phys Rev Lett 102:148301

    Article  CAS  Google Scholar 

  126. Sheiko SS, Sun FC, Randall A, Shirvanyants D, Rubinstein M, H-i L, Matyjaszewski K (2006) Adsorption-induced scission of carbon-carbon bonds. Nature 440:191

    Article  CAS  Google Scholar 

  127. Lebedeva NV, Sun FC, H-i L, Matyjaszewski K, Sheiko SS (2008) “Fatal adsorption” of brushlike macromolecules: high sensitivity of C–C bond cleavage rates to substrate surface energy. J Am Chem Soc 130:4228

    Article  CAS  Google Scholar 

  128. Lebedeva NV, Nese A, Sun FC, Matyjaszewski K, Sheiko SS (2012) Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate. Proc Natl Acad Sci U S A 109:9276

    Article  CAS  Google Scholar 

  129. Li Y, Nese A, Matyjaszewski K, Sheiko SS (2013) Molecular tensile machines: anti-Arrhenius cleavage of disulfide bonds. Macromolecules 46:7196

    Article  CAS  Google Scholar 

  130. Li Y, Nese A, Hu X, Lebedeva NV, LaJoie TW, Burdyńska J, Stefan MC, You W, Yang W, Matyjaszewski K, Sheiko SS (2014) Shifting electronic structure by inherent tension in molecular bottlebrushes with polythiophene backbones. ACS Marco Lett 3:738

    Article  CAS  Google Scholar 

  131. Balamurugan SS, Bantchev GB, Yang Y, McCarley RL (2005) Highly water-soluble thermally responsive poly(thiophene)-based brushes. Angew Chem Int Ed 44:4872

    Article  CAS  Google Scholar 

  132. Choi J, Ruiz CR, Nesterov EE (2010) Temperature-induced control of conformation and conjugation length in water-soluble fluorescent polythiophenes. Macromolecules 43:1964

    Article  CAS  Google Scholar 

  133. Wang M, Zou S, Guerin G, Shen L, Deng K, Jones M, Walker GC, Scholes GD, Winnik MA (2008) A water-soluble pH-responsive molecular brush of poly(N,N-dimethylaminoethyl methacrylate) grafted polythiophene. Macromolecules 41:6993

    Article  CAS  Google Scholar 

  134. Burdyńska J, Li Y, Aggarwal AV, Höger S, Sheiko SS, Matyjaszewski K (2014) Synthesis and arm dissociation in molecular stars with a spoked wheel core and bottlebrush arms. J Am Chem Soc 136:12762

    Article  CAS  Google Scholar 

  135. Park I, Nese A, Pietrasik J, Matyjaszewski K, Sheiko SS (2011) Focusing bond tension in bottle-brush macromolecules during spreading. J Mater Chem 21:8448

    Article  CAS  Google Scholar 

  136. Xu H, Sun FC, Shirvanyants DG, Rubinstein M, Shabratov D, Beers KL, Matyjaszewski K, Sheiko SS (2007) Molecular pressure sensors. Adv Mater 19:2930

    Article  CAS  Google Scholar 

  137. Park I, Shirvanyants D, Nese A, Matyjaszewski K, Rubinstein M, Sheiko SS (2010) Spontaneous and specific activation of chemical bonds in macromolecular fluids. J Am Chem Soc 132:12487

    Article  CAS  Google Scholar 

  138. Zheng Z, Müllner M, Ling J, Müller AHE (2013) Surface interactions surpass carbon–carbon bond: understanding and control of the scission behavior of core–shell polymer brushes on surfaces. ACS Nano 7:2284

    Article  CAS  Google Scholar 

  139. Matthews OA, Shipway AN, Stoddart JF (1998) Dendrimers–branching out from curiosities into new technologies. Prog Polym Sci 23:1

    Article  CAS  Google Scholar 

  140. de Gennes PG, Hervet H (1983) J Phys Lett 44:351

    Google Scholar 

  141. Yu H, Schlüter AD, Zhang B (2012) Main-chain scission of a charged fifth-generation dendronized polymer. Helvetica Chim Acta 95:2399

    Article  CAS  Google Scholar 

  142. Deng Y, Zhu XY (2007) A nanotumbleweed: breaking away a covalently tethered polymer molecule by noncovalent interactions. J Am Chem Soc 129:7557

    Article  CAS  Google Scholar 

  143. Milner ST (1991) Polymer brushes. Science 251:905

    Article  CAS  Google Scholar 

  144. Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677

    Article  CAS  Google Scholar 

  145. Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109:5437

    Google Scholar 

  146. Branch DW, Wheeler BC, Brewer GJ, Leckband DE (2001) Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials 22:1035

    Article  CAS  Google Scholar 

  147. Sharma S, Johnson RW, Desai TA (2003) Evaluation of the stability of nonfouling ultrathin poly(ethylene glycol) films for silicon-based microdevices. Langmuir 20:348

    Article  CAS  Google Scholar 

  148. Sheiko SS, Panyukov S, Rubinstein M (2011) Bond tension in tethered macromolecules. Macromolecules 44:4520

    Article  CAS  Google Scholar 

  149. Tugulu S, Klok H-A (2008) Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Biomacromolecules 9:906

    Article  CAS  Google Scholar 

  150. Harris MJ (1992) In: Harris MJ (ed) Poly(ethylene glycol), chemistry, biotechnological and biomedical applications. New York, Plenum

    Chapter  Google Scholar 

  151. Paripovic D, Klok H-A (2011) Improving the stability in aqueous media of polymer brushes grafted from silicon oxide substrates by surface-initiated atom transfer radical polymerization. Macromol Chem Phys 212:950

    Article  CAS  Google Scholar 

  152. Lerum MFZ, Chen W (2009) Acute degradation of surface-bound unsaturated polyolefins in common solvents under ambient conditions. Langmuir 25:11250

    Article  CAS  Google Scholar 

  153. Berron BJ, Payne PA, Jennings GK (2008) Sulfonation of surface-initiated polynorbornene films. Ind Eng Chem Res 47:7707

    Article  CAS  Google Scholar 

  154. Zhang Y, Ja H, Zhu Y, Chen H, Ma H (2011) Directly observed Au-S bond breakage due to swelling of the anchored polyelectrolyte. Chem Commun 47:1190

    Article  CAS  Google Scholar 

  155. Ward MD, Buttry DA (1990) In situ interfacial mass detection with piezoelectric transducers. Science 249:1000

    Article  CAS  Google Scholar 

  156. Zhulina EB, Birshtein TM, Borisov OV (1995) Theory of ionizable polymer brushes. Macromolecules 28:1491

    Article  CAS  Google Scholar 

  157. Biesalski M, Johannsmann D, Ruhe J (2002) Synthesis and swelling behavior of a weak polyacid brush. J Chem Phys 117:4988

    Article  CAS  Google Scholar 

  158. Zhang Y, Lv Be LZ, Ja H, Zhang S, Chen H, Ma H (2011) Predicting Au-S bond breakage from the swelling behavior of surface tethered polyelectrolytes. Soft Matter 7:11496

    Article  CAS  Google Scholar 

  159. Be L, Zhou Y, Cha W, Wu Y, Hu J, Li L, Chi L, Ma H (2014) Molecular composition, grafting density and film area affect the swelling-induced Au–S bond breakage. ACS Appl Mater Inter 6:8313

    Article  CAS  Google Scholar 

  160. Enomoto K, Takahashi S, Iwase T, Yamashita T, Maekawa Y (2011) Degradation manner of polymer grafts chemically attached on thermally stable polymer films: swelling-induced detachment of hydrophilic grafts from hydrophobic polymer substrates in aqueous media. J Mater Chem 21:9343

    Article  CAS  Google Scholar 

  161. Bain ED, Dawes K, Özçam AE, Hu X, Gorman CB, Šrogl J, Genzer J (2012) Surface-initiated polymerization by means of novel, stable, non-ester-based radical initiator. Macromolecules 45:3802

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Foundation (DMR-1122483). YL is grateful to the support from the Army Research Office National Research Council Postdoctoral Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei S. Sheiko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Y., Sheiko, S.S. (2015). Molecular Mechanochemistry: Engineering and Implications of Inherently Strained Architectures. In: Boulatov, R. (eds) Polymer Mechanochemistry. Topics in Current Chemistry, vol 369. Springer, Cham. https://doi.org/10.1007/128_2015_627

Download citation

Publish with us

Policies and ethics