Skip to main content

Real-World Predictions from Ab Initio Molecular Dynamics Simulations

  • Chapter
  • First Online:
Multiscale Molecular Methods in Applied Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 307))

Abstract

In this review we present the techniques of ab initio molecular dynamics simulation improved to its current stage where the analysis of existing processes and the prediction of further chemical features and real-world processes are feasible. For this reason we describe the relevant developments in ab initio molecular dynamics leading to this stage. Among them, parallel implementations, different basis set functions, density functionals, and van der Waals corrections are reported. The chemical features accessible through AIMD are discussed. These are IR, NMR, as well as EXAFS spectra, sampling methods like metadynamics and others, Wannier functions, dipole moments of molecules in condensed phase, and many other properties. Electrochemical reactions investigated by ab initio molecular dynamics methods in solution, on surfaces as well as complex interfaces, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Au, Ag, Cu, Pt, Ni, Ir, Rh, Co, Ru, Re, W, Mo, and Nb.

  2. 2.

    Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au.

Abbreviations

AIMD:

Ab initio molecular dynamics; molecular dynamics with electronic structure calculations on the fly

ASPC:

Always stable predictor–corrector algorithm

BOMD:

Born–Oppenheimer molecular dynamics; molecular dynamics with electronic structure calculations on the fly, diagonalization in each step

CPMD:

Car–Parrinello molecular dynamics; molecular dynamics with electronic structure calculations on the fly, orthogonalization in each step otherwise the coefficients of the wavefunction are propagated like the nuclear positions

CV:

Collective variables

DFT:

Density functional theory; static quantum chemical method using functionals of the electronic density to account for electron correlation

DVR:

Discrete variable representation

ECP:

Effective core potential also called pseudopotential

FBR:

Finite basis representation

FES:

Free energy surface

FFT:

Fast Fourier transformation

GGA:

Generalized gradient approximation (GGA) functional, a functional that depends on density and its gradient

HF:

Hartree–Fock, static quantum chemical method

IR:

Infrared red

loc:

Local functional depending only on r

MD:

Molecular dynamics, simulation method

MEP:

Minimum energy path

MFEP:

Minimum free energy path

MLWC:

Maximally localized Wannier centers

MLWO:

Maximally localized Wannier orbitals

MTD:

Metadynamics, method to calculate rare events

NAO:

Numerically tabulated atom-centered orbitals

NEMD:

Non-equilibrium molecular dynamics

nl:

Non-local, functional depending not only on r but also on r′

NPT:

NPT ensemble: isothermal-isobaric ensemble; constant particle (N), pressure (P), and temperature (T) simulation

PBC:

Periodic boundary conditions

QM/MM:

Hybrid quantum-mechanical/molecular-mechanical calculations

RPA:

Random phase approximation

SCF:

Self consistent field

vdW:

van der Waals, dispersion forces; usually not well-described in DFT

References

  1. Ehrenfest P (1927) Z Phys A 45:455–457

    Google Scholar 

  2. Dirac PAM (1930) Proc Camb Phil Soc 26:376–385

    CAS  Google Scholar 

  3. Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge

    Google Scholar 

  4. Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474

    CAS  Google Scholar 

  5. Andersen HC (1980) J Chem Phys 72:2384–2393

    CAS  Google Scholar 

  6. Parrinello M, Rahman A (1980) Phys Rev Lett 45:1196–1199

    CAS  Google Scholar 

  7. Niklasson AMN, Tymczak CJ, Challacombe M (2006) Phys Rev Lett 97:123001

    Google Scholar 

  8. Niklasson AMN (2008) Phys Rev Lett 100:123004

    Google Scholar 

  9. Tuckerman ME (2010) Statistical mechanics: theory and molecular simulations. Oxford University Press, Oxford

    Google Scholar 

  10. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  11. Frenkel D, Smit B (2002) Understanding molecular simulation – from algorithms to applications, 2nd edn. Academic, San Diego

    Google Scholar 

  12. Huber H, Dyson AJ, Kirchner B (1999) Chem Soc Rev 28:121–133

    CAS  Google Scholar 

  13. Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover Publications, Inc., Mineola, New York

    Google Scholar 

  14. McQuarrie DA, Simon JD (1997) Physical chemistry: a molecular approach. University Science Books, Saulalito, California

    Google Scholar 

  15. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    CAS  Google Scholar 

  16. Tangney P (2006) J Chem Phys 124:044111

    Google Scholar 

  17. Kolafa J (2004) J Comput Chem 25:335–342

    CAS  Google Scholar 

  18. Niklasson AMN, Steneteg P, Odell A, Bock N, Challacombe M, Tymczak CJ, Holmstroem E, Zheng G, Weber V (2009) J Chem Phys 130:214109

    Google Scholar 

  19. Odell A, Delin A, Johansson B, Bock N, Challacombe M, Niklasson AMN (2009) J Chem Phys 131:244106

    Google Scholar 

  20. Steneteg P, Abrikosov IA, Weber V, Niklasson AMN (2010) Phys Rev B 82:075110

    Google Scholar 

  21. Brommer KD, Larson BE, Needels M, Joannopoulos JD (1993) Comput Phys 7:350–362

    Google Scholar 

  22. Marx D Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. In: Modern methods and algorithms of quantum chemistry. p 301

    Google Scholar 

  23. Gygi F (2006) J Phys Conf Ser 46:268–277

    CAS  Google Scholar 

  24. Hutter J, Curioni A (2005) Parallel Comput 31:1–17

    Google Scholar 

  25. Hutter J, Curioni A (2005) Chem Phys Chem 6:1788–1793

    CAS  Google Scholar 

  26. Giannozzo P, Cavazzoni C (2009) Il Nuovo Cimento 32:49–52

    Google Scholar 

  27. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Comput Phys Commun 167:103–128

    CAS  Google Scholar 

  28. Haynes PD, Skylaris C-K, Mostofi AA, Payne MC (2006) Phys Status Solidi B 243:2489–2499

    CAS  Google Scholar 

  29. Resch M, Bönisch T, Tiyyagura S, Furui T, Seo Y, Bez W (eds) (2007) High performance computing on vector systems 2006. Springer, Berlin

    Google Scholar 

  30. Thar J, Reckien W, Kirchner B (2007) Top Curr Chem 268:133–171

    CAS  Google Scholar 

  31. Fattebert J-L, Gygi F (2006) Phys Rev B 73:115124

    Google Scholar 

  32. Bowler DR, Choudhury R, Gillan MJ, Miyazaki T (2006) Phys Status Solidi B 243:989–1000

    CAS  Google Scholar 

  33. Lee H-S, Tuckerman ME (2006) J Phys Chem A 110:5549–5560

    CAS  Google Scholar 

  34. Hine NDM, Haynes PD, Mostofi AA, Skylaris C-K, Payne M (2009) Comput Phys Commun 180:1041–1053

    CAS  Google Scholar 

  35. Genovese L et al (2008) J Chem Phys 129:014109

    Google Scholar 

  36. Lippert G, Hutter J, Parrinello M (1997) Mol Phys 92:477–488

    CAS  Google Scholar 

  37. Artacho E et al (2008) J Phys Condens Matter 20:064208

    Google Scholar 

  38. Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Comput Phys Commun 180:2175–2196

    CAS  Google Scholar 

  39. Gaigeot M-P, Vuilleumier R, Sprik M, Borgis D (2005) J Chem Theory Comput 1:772–789

    CAS  Google Scholar 

  40. Cohen AJ, Mori-Sánchez P, Yang W (2008) Science 321:792–794

    CAS  Google Scholar 

  41. Heyd J, Scuseria GE, Ernerhof M (2003) J Chem Phys 118:8207–8215

    CAS  Google Scholar 

  42. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    CAS  Google Scholar 

  43. Spencer J, Alavi A (2008) Phys Rev B 77:193110

    Google Scholar 

  44. Guidon M, Hutter J, VandeVondele J (2009) J Chem Theory Comput 5:3010–3021

    CAS  Google Scholar 

  45. Guidon M, Schiffmann F, Hutter J, VandeVondele J (2008) J Chem Phys 128:214104

    Google Scholar 

  46. Paier J, Janesko BG, Henderson TM, Scuseria GE, Grüneis A, Kresse G (2010) J Chem Phys 132:094103

    Google Scholar 

  47. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    CAS  Google Scholar 

  48. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2005) Phys Rev Lett 95:109902(E)

    Google Scholar 

  49. Langreth DC, Dion M, Rydberg H, Schröder E, Hyldgaard P, Lundqvist BI (2005) Int J Quant Chem 101:599–610

    CAS  Google Scholar 

  50. Langreth DC et al (2009) J Phys Condens Matter 21:084203

    CAS  Google Scholar 

  51. Lee K, Murray ED, Kong L, Lundqvist BI, Langreth DC (2010) Phys Rev B 82:081101

    Google Scholar 

  52. von Lilienfeld OA, Tavernelli I, Röthlisberger U, Sebastiani D (2004) Phys Rev Lett 93:153004

    Google Scholar 

  53. Tapavicza E, Lin I-C, von Lilienfeld OA, Tavernelli I, Coutinho-Neto M, Röthlisberger U (2007) J Chem Theory Comput 3:1673–1679

    CAS  Google Scholar 

  54. Grimme S (2004) J Comput Chem 25:1463–1473

    CAS  Google Scholar 

  55. Grimme S (2006) J Comput Chem 27:1787–1799

    CAS  Google Scholar 

  56. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Google Scholar 

  57. Thar J, Kirchner B (2009) J Chem Phys 130:124103

    Google Scholar 

  58. Kühne TD, Krack M, Mohamed FR, Parrinello M (2007) Phys Rev Lett 98:066401

    Google Scholar 

  59. Dai J, Yuan J (2009) Europhys Lett 88:20001

    Google Scholar 

  60. Kühne TD, Krack M, Parrinello M (2009) J Chem Theory Comput 5:235–241

    Google Scholar 

  61. Klimeš J, Bowler DR, Michaelides A (2010) J Phys Condens Matter 22:074203

    Google Scholar 

  62. Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G (2006) J Chem Phys 125:024106

    Google Scholar 

  63. Ren W, Vanden-Eijnden E (2002) Phys Rev B 66:52301

    Google Scholar 

  64. Mills G, Jónsson H, Schenter GK (1995) Surf Sci 324:305–337

    CAS  Google Scholar 

  65. Laio A, Parrinello M (2002) Proc Natl Acad Sci USA 99:12562–12566

    CAS  Google Scholar 

  66. Iannuzzi M, Laio A, Parrinello M (2003) Phys Rev Lett 90:238302

    Google Scholar 

  67. Martonňák R, Laio A, Bernasconi M, Ceriani C, Raiteri P, Zipoli F, Parrinello M (2005) Z Kristallogr 220:489–498

    Google Scholar 

  68. Ensing B, Laio A, Parrinello M, Klein MI (2005) J Phys Chem B 109:6676–6687

    CAS  Google Scholar 

  69. Laio A, Rodriguez-Fortea A, Gervasio FL, Ceccarelli M, Parrinello M (2005) J Phys Chem B 109:6714–6721

    CAS  Google Scholar 

  70. Ensing B, Vivo MD, Liu Z, Moore P, Klein ML (2006) Acc Chem Res 39:73–81

    CAS  Google Scholar 

  71. Cucinotta CS, Ruini A, Catellani A, Stirling A (2006) Chem Phys Chem 7:1229–1234

    CAS  Google Scholar 

  72. Iftimie R, Tuckerman ME (2005) J Chem Phys 122:214508

    Google Scholar 

  73. Kaupp M, Bühl M, Malkin VG (eds) (2004) Calculation of NMR and EPR parameters – theory and application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  74. Sebastiani D, Parrinello M (2001) J Phys Chem A 105:1951–1958

    CAS  Google Scholar 

  75. Ochsenfeld C, Kussmann J, Koziol F (2004) Angew Chem Int Ed 43:4485–4489

    CAS  Google Scholar 

  76. Weber V, Iannuzzi M, Giani S, Hutter J, Declerck R, Waroquier M (2009) J Chem Phys 131:014106

    Google Scholar 

  77. Cavalleri M, Odelius M, Nilsson A, Petterson LGM (2004) J Chem Phys 121:10065–10075

    CAS  Google Scholar 

  78. Cavalleri M, Odelius M, Nordlund D, Nilsson A, Petterson LGM (2005) Phys Chem Chem Phys 7:2854–2858

    CAS  Google Scholar 

  79. Odelius M, Cavalleri M, Nilsson A, Pettersson LGM (2006) Phys Rev B 73:024205

    Google Scholar 

  80. Iannuzzi M, Hutter J (2007) Phys Chem Chem Phys 9:1599–1610

    CAS  Google Scholar 

  81. Iannuzzi M (2008) J Chem Phys 128:204506

    Google Scholar 

  82. Leetmaa M, Ljungberg M, Lyubartsev A, Nilsson A, Pettersson L (2010) J Electron Spectrosc Rel Phenom 177:135–157

    CAS  Google Scholar 

  83. Wannier GH (1937) Phys Rev 52:191–197

    CAS  Google Scholar 

  84. Savin A, Nesper R, Wengert S, Fässler TF (1997) Angew Chem Int Ed 36:1809–1832

    Google Scholar 

  85. Fukui K (1981) Acc Chem Res 14:363–368

    CAS  Google Scholar 

  86. Silvestrelli PL, Marzari N, Vanderbilt D, Parrinello M (1998) Solid State Commun 107:7–11

    CAS  Google Scholar 

  87. Fitzhenry P, Bilek MMM, Mariks NA, Cooper NC, McKenzie DR (2003) J Phys Condens Matter 15:165–173

    CAS  Google Scholar 

  88. Bühl M, Chaumont A, Schurhammer R, Wipff G (2005) J Phys Chem B 109:18591–18599

    Google Scholar 

  89. Kirchner B, Seitsonen AP (2007) Inorg Chem 46:2751–2754

    CAS  Google Scholar 

  90. Kirchner B, Sebastiani D (2004) J Phys Chem A 108:11728–11732

    CAS  Google Scholar 

  91. di Dio PJ, Kirchner B (2011) Stereo-electronic effects from ab initio molecular dynamics simulations. Top Curr Chem. Springer (accepted)

    Google Scholar 

  92. Silvestrelli PL, Parrinello M (1999) Phys Rev Lett 82:3308–3311

    CAS  Google Scholar 

  93. Silvestrelli PL, Parrinello M (1999) J Chem Phys 111:3572–3580

    CAS  Google Scholar 

  94. Kuo I-FW, Mundy CJ (2004) Science 303:658–660

    CAS  Google Scholar 

  95. McGrath MJ, Siepmann JI, Kuo I-FW, Mundy CJ, VandeVondele J, Hutter J, Mohamed F, Krack M (2006) J Phys Chem A 110:640–646

    CAS  Google Scholar 

  96. Handgraaf J-W, van Erp TS, Meijer EJ (2003) Chem Phys Lett 367:617–624

    CAS  Google Scholar 

  97. Whitfield TW, Crain J, Martyna GJ (2006) J Chem Phys 124:094503

    CAS  Google Scholar 

  98. Laasonen K, Sprik M, Parrinello M, Car R (1993) J Chem Phys 99:9080–9089

    CAS  Google Scholar 

  99. Fois ES, Sprik M, Parrinello M (1994) Chem Phys Lett 223:411–415

    CAS  Google Scholar 

  100. Sprik M, Hutter J, Parrinello M (1996) J Chem Phys 105:1142–1152

    CAS  Google Scholar 

  101. Silvestrelli PL, Bernasconi M, Parrinello M (1997) Chem Phys Lett 277:478–482

    CAS  Google Scholar 

  102. Asthagiri D, Pratt LR, Kress JD (2003) Phys Rev E 68:041505

    CAS  Google Scholar 

  103. Sharma M, Wu Y, Car R (2003) Int J Quant Chem 95:821–829

    CAS  Google Scholar 

  104. VandeVondele J, Mohamed F, Krack M, Hutter J, Sprik M, Parrinello M (2005) J Chem Phys 122:014515

    Google Scholar 

  105. Lee H-S, Tuckerman ME (2006) J Chem Phys 125:154507

    Google Scholar 

  106. Schmidt J, VandeVondele J, Kuo I-FW, Sebastiani D, Siepmann JI, Hutter J, Mundy CJ (2009) J Phys Chem B 113:11959–11964

    CAS  Google Scholar 

  107. Lin I-C, Seitsonen AP, Coutinho-Neto MD, Tavernelli I, Röthlisberger U (2009) J Phys Chem B 113:1127–1131

    CAS  Google Scholar 

  108. Rogers RD, Seddon KR (2003) Science 302:792–793

    Google Scholar 

  109. Kirchner B (2009) In: Kirchner B (ed) Ionic liquids. Top Curr Chem, vol 290. Springer, Berlin, pp xi–xiii

    Google Scholar 

  110. Kirchner B (2009) In: Kirchner B (ed) Ionic liquids. Top Curr Chem, vol 290. Springer, Berlin, pp 213–262

    Google Scholar 

  111. Wasserscheid P, Welton T (eds) (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  112. Rogers RD, Seddon KR (eds) (2005) Ionic liquids III A: fundamentals, progress, challenges, and opportunities. ACS Symposium Series, vol 901. American Chemical Society, Washington, DC

    Google Scholar 

  113. Del Pópolo MG, Lynden-Bell RM, Kohanoff J (2005) J Phys Chem B 109:5895–5902

    Google Scholar 

  114. Bhargava B, Balasubramanian S (2006) Chem Phys Lett 417:486–491

    CAS  Google Scholar 

  115. Bhargava BL, Balasubramanian S (2007) J Phys Chem B 111:4477–4487

    CAS  Google Scholar 

  116. Bhargava BL, Balasubramanian S (2008) J Phys Chem B 112:7566–7573

    CAS  Google Scholar 

  117. Thar J, Brehm M, Seitsonen AP, Kirchner B (2009) J Phys Chem B 113:15129–15132

    CAS  Google Scholar 

  118. Zahn S, Thar J, Kirchner B (2010) J Chem Phys 132:124506

    Google Scholar 

  119. Zahn S, Kirchner B (2008) J Phys Chem A 112:8430–8435

    CAS  Google Scholar 

  120. Izgorodina EI, Bernard UL, MacFarlane DR (2009) J Phys Chem A 113:7064–7072

    CAS  Google Scholar 

  121. Diraison M, Martyna GJ, Tuckerman ME (1999) J Chem Phys 111:1096–1103

    CAS  Google Scholar 

  122. Tsuchida E (2004) J Chem Phys 121:4740–4746

    CAS  Google Scholar 

  123. Röthlisberger U, Parrinello M (1997) J Chem Phys 106:4658–4694

    Google Scholar 

  124. Galli G, Hood RQ, Hazi AU, Gygi F (2000) Phys Rev B 61:909–912

    CAS  Google Scholar 

  125. Bonev SA, Militzer B, Galli G (2004) Phys Rev B 69:014101

    Google Scholar 

  126. Galli G, Martin RM, Car R, Parrinello M (1990) Phys Rev B 42:7470–7482

    CAS  Google Scholar 

  127. Marks NA, McKenzie DR, Pailthorpe BA, Bernasconi M, Parrinello M (1996) Phys Rev B 54:9703–9714

    CAS  Google Scholar 

  128. Silvestrelli PL, Parrinello M (1998) J Appl Phys 83:2478–2485

    CAS  Google Scholar 

  129. McCulloch DG, McKenzie DR, Goringe CM (2000) Phys Rev B 61:2349–2355

    CAS  Google Scholar 

  130. Wang X, Scandolo S, Car R (2005) Phys Rev Lett 95:185701

    Google Scholar 

  131. Kirchner B, Seitsonen AP, Hutter J (2006) J Phys Chem B 110:11475–11480

    CAS  Google Scholar 

  132. Senda Y, Shimojo F, Hoshino K (2002) J Phys Condens Matter 14:3715–3723

    CAS  Google Scholar 

  133. Anta JA, Madden PA (1999) J Phys Condens Matter 11:6099–6111

    CAS  Google Scholar 

  134. Foley M, Smargiassi E, Madden PA (1994) J Phys Condens Matter 6:5231–5241

    CAS  Google Scholar 

  135. Ji M, Gong XG (2004) J Phys Condens Matter 16:2507–2514

    CAS  Google Scholar 

  136. Štich I, Car R, Parrinello M (1991) Phys Rev B 44:4262–4274

    Google Scholar 

  137. Sugino O, Car R (1995) Phys Rev Lett 74:1823–1826

    Google Scholar 

  138. Senda Y, Shimojo F, Hoshino K (1999) J Phys Condens Matter 11:5387–5398

    CAS  Google Scholar 

  139. Gu T, Qin J, Xu C, Bian X (2004) Phys Rev B 70:144204

    Google Scholar 

  140. Jakse N, Pasturel A (2004) J Chem Phys 120:6124–6127

    CAS  Google Scholar 

  141. Pasquarello A, Laasonen K, Car R, Lee C, Vanderbilt D (1992) Phys Rev Lett 69:1982–1985

    CAS  Google Scholar 

  142. Godlevsky VV, Derby JJ, Chelikowsky JR (1998) Phys Rev Lett 81:4959–4962

    CAS  Google Scholar 

  143. Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269

    CAS  Google Scholar 

  144. Kulkarni RV, Aulbur WG, Stroud D (1997) Phys Rev B 55:6896–6903

    CAS  Google Scholar 

  145. Chai J-D, Stroud D, Hafner J, Kresse G (2003) Phys Rev B 67:104205

    Google Scholar 

  146. Shimojo F, Munejiri S, Hoshino K, Zempo Y (2000) J Phys Condens Matter 12:6161–6172

    CAS  Google Scholar 

  147. Shimojo F, Hoshino K, Watabe M, Zempo Y (1998) J Phys Condens Matter 10:1199–1210

    CAS  Google Scholar 

  148. Jakse N, Pasturel A (2003) Phys Rev Lett 91:195501

    Google Scholar 

  149. de Wijs GA, Pastore G, Selloni A, van der Lugt W (1994) Europhys Lett 27:667–672

    Google Scholar 

  150. Kresse G, Hafner J (1997) Phys Rev B 55:7539–7548

    CAS  Google Scholar 

  151. Kresse G (1995) J Non-Cryst Solids 193:222–229

    Google Scholar 

  152. Laasonen K, Klein ML (1994) J Am Chem Soc 116:11620–11621

    CAS  Google Scholar 

  153. Kirchner B (2007) Chem Phys Chem 8:41–43

    CAS  Google Scholar 

  154. Marx D (2006) Chem Phys Chem 7:1848–1870

    CAS  Google Scholar 

  155. Marsalek O, Uhlig F, Frigato T, Schmidt B, Jungwirth P (2010) Phys Rev Lett 105:043002

    Google Scholar 

  156. Marsalek O, Uhlig F, Jungwirth P (2010) J Phys Chem C 114:20489–20495

    CAS  Google Scholar 

  157. Marsalek O, Frigato T, VandeVondele J, Bradforth SE, Schmidt B, Schtte C, Jungwirth P (2010) J Phys Chem B 114:915–920

    CAS  Google Scholar 

  158. Frigato T, VandeVondele J, Schmidt B, Schtte C, Jungwirth P (2008) J Phys Chem A 112:6125–6133

    CAS  Google Scholar 

  159. Kirchner B, Hutter J (2004) J Chem Phys 121:5133–5142

    CAS  Google Scholar 

  160. Kirchner B, Reiher M (2002) J Am Chem Soc 124:6206–6215

    CAS  Google Scholar 

  161. Gaigeot M-P, Sprik M (2003) J Phys Chem B 107:10344–10358

    CAS  Google Scholar 

  162. van Erp TS, Meijer EJ (2003) J Chem Phys 118:8831–8840

    Google Scholar 

  163. Kirchner B, Hutter J, Kuo I-FW, Mundy CJ (2004) Int J Mod Phys B 18:1951–1962

    CAS  Google Scholar 

  164. Thar J, Zahn S, Kirchner B (2008) J Phys Chem B 112:1456–1464

    CAS  Google Scholar 

  165. Tuckerman M, Laasonen K, Sprik M, Parrinello M (1995) J Chem Phys 103:150–161

    CAS  Google Scholar 

  166. Yarne DA, Tuckerman ME, Klein ML (2000) Chem Phys 258:163–169

    CAS  Google Scholar 

  167. Kuo I-F, Tobias DJ (2001) J Phys Chem B 105:5827–5832

    CAS  Google Scholar 

  168. Tobias DJ, Jungwirth P, Parrinello M (2001) J Chem Phys 114:7036–7044

    CAS  Google Scholar 

  169. Raugei S, Klein ML (2002) J Chem Phys 116:196–202

    CAS  Google Scholar 

  170. Leung K, Rempe SB (2004) J Am Chem Soc 126:344–351

    CAS  Google Scholar 

  171. Heuft JM, Meijer EJ (2005) J Chem Phys 122:094501

    CAS  Google Scholar 

  172. Heuft JM, Meijer EJ (2005) J Chem Phys 123:094506

    CAS  Google Scholar 

  173. Marx D, Sprik M, Parrinello M (1997) Chem Phys Lett 273:360–366

    CAS  Google Scholar 

  174. Ramaniah LM, Bernasconi M, Parrinello M (1999) J Chem Phys 111:1587–1591

    CAS  Google Scholar 

  175. Lyubartsev AP, Laasonen K, Laaksonen A (2001) J Chem Phys 114:3120–3126

    CAS  Google Scholar 

  176. Lightstone FC, Schwegler E, Hood RQ, Gygi F, Galli G (2001) Chem Phys Lett 343:549–555

    CAS  Google Scholar 

  177. Bakó I, Hutter J, Pálinkás G (2002) J Chem Phys 117:9838–9843

    Google Scholar 

  178. Lightstone FC, Schwegler E, Allesch M, Gygi F, Galli G (2005) Chem Phys Chem 6:1745–1749

    CAS  Google Scholar 

  179. Ikeda T, Hirata M, Kimura T (2005) J Chem Phys 122:024510

    Google Scholar 

  180. Amira S, Spångberg D, Hermansson K (2006) J Chem Phys 124:104501

    Google Scholar 

  181. Sa R, Zhu W, Shen J, Gong Z, Cheng J, Chen K, Jiang H (2006) J Phys Chem B 110:5094–5098

    CAS  Google Scholar 

  182. Moret M-E, Tavernelli I, Chergui M, Rothlisberger U (2010) Chem Eur J 16:5889–5894

    CAS  Google Scholar 

  183. Todorova T, Hünenberger PH, Hutter J (2008) J Chem Theory Comput 4:779–789

    CAS  Google Scholar 

  184. Mallik BS, Siepmann JI (2010) J Phys Chem B 114:12577–12584

    CAS  Google Scholar 

  185. Spickermann C, Thar J, Lehmann SBC, Zahn S, Hunger J, Buchner R, Hunt PA, Welton T, Kirchner B (2008) J Chem Phys 129:104505

    CAS  Google Scholar 

  186. Raugei S, Cardini G, Schettino V (1999) J Chem Phys 111:10887–10894

    CAS  Google Scholar 

  187. Raugei S, Cardini G, Schettino V (2001) J Chem Phys 114:4089–4098

    CAS  Google Scholar 

  188. Pagliai M, Raugei S, Cardini G, Schettino V (2001) Phys Chem Chem Phys 3:4870–4873

    CAS  Google Scholar 

  189. Pagliai M, Raugei S, Cardini G, Schettino V (2003) J Mol Struct (Theochem) 630:141–149

    CAS  Google Scholar 

  190. Mugnai M, Cardini G, Schettino V (2003) J Chem Phys 118:2767–2774

    CAS  Google Scholar 

  191. Ammal SC, Yamataka H, Aida M, Dupuis M (2003) Science 299:1555–1557

    CAS  Google Scholar 

  192. Yang S-Y, Fleurat-Lessard P, Hristov I, Ziegler T (2004) J Phys Chem A 108:9461–9468

    CAS  Google Scholar 

  193. Reiher M, Kirchner B, Hutter J, Sellmann D, Hess BA (2004) Chem Eur J 10:4443–4453

    CAS  Google Scholar 

  194. Kirchner B, Reiher M, Hille A, Hutter J, Hess BA (2005) Chem Eur J 11:574–583

    CAS  Google Scholar 

  195. Schenk S, Kirchner B, Reiher M (2009) Chem Eur J 15:5073–5082

    CAS  Google Scholar 

  196. Urakawa A, Iannuzzi M, Hutter J, Baiker A (2007) Chem Eur J 13:6828–6840

    CAS  Google Scholar 

  197. Michel C, Laio A, Mohammad F, Krack M, Parrinello M, Milet A (2007) Organometallics 26:1241–1249

    CAS  Google Scholar 

  198. Michel C, Milet A (2008) J Mol Struct (Theochem) 852:54–61

    CAS  Google Scholar 

  199. Izvekov S, Mazzolo A, VanOpdorp K, Voth GA (2001) J Chem Phys 114:3248–3257

    CAS  Google Scholar 

  200. Izvekov S, Voth GA (2001) J Chem Phys 115:7196–7206

    CAS  Google Scholar 

  201. Sugino O, Hamada I, Otani M, Morikawa Y, Ikeshoji T, Okamoto Y (2007) Surf Sci 601:5237–5240

    CAS  Google Scholar 

  202. Otani M, Hamada I, Sugino O, Morikawa Y, Okamoto Y, Ikeshoji T (2008) Phys Chem Chem Phys 10:3609–3612

    CAS  Google Scholar 

  203. Blumberger J, Tateyama Y, Sprik M (2005) Comput Phys Commun 169:256–261

    CAS  Google Scholar 

  204. VandeVondele J, Ayala R, Sulpizi M, Sprik M (2007) J Electroanal Chem 607:113–120

    CAS  Google Scholar 

  205. VandeVondele J, Sulpizi M, Sprik M (2007) Chimia 61:155–158

    CAS  Google Scholar 

  206. Lynden-Bell R (2007) Electrochem Commun 9:1857–1861

    CAS  Google Scholar 

  207. Moens J, Seidel R, Geerlings P, Faubel M, Winter B, Blumberger J (2010) J Phys Chem B 114:9173–9182

    CAS  Google Scholar 

  208. Tateyama Y, Blumberger J, Sprik M, Tavernelli I (2005) J Chem Phys 122:234505

    Google Scholar 

  209. Blumberger J, Bernasconi L, Tavernelli I, Vuilleumier R, Sprik M (2004) J Am Chem Soc 126:3928–3938

    CAS  Google Scholar 

  210. Blumberger J, Sprik M (2004) J Phys Chem B 180:6529–6535

    Google Scholar 

  211. Blumberger J (2008) J Am Chem Soc 130:16065–16068

    CAS  Google Scholar 

  212. Blumberger J, Sprik M (2005) J Phys Chem B 109:6793–6804

    CAS  Google Scholar 

  213. Blumberger J, Sprik M (2006) Theor Chem Acc 115:113–126

    CAS  Google Scholar 

  214. Seidel R, Faubel M, Winter B, Blumberger J (2009) J Am Chem Soc 131:16127–16137

    CAS  Google Scholar 

  215. Oberhofer H, Blumberger J (2009) J Chem Phys 131:064101

    Google Scholar 

  216. Ayala R, Sprik M (2006) J Chem Theory Comput 2:1403–1415

    CAS  Google Scholar 

  217. Tateyama Y, Blumberger J, Ohno T, Sprik M (2007) J Chem Phys 126:204506

    Google Scholar 

  218. Blumberger J, Tavernelli I, Klein ML, Sprik M (2006) J Chem Phys 124:064507

    Google Scholar 

  219. VandeVondele J, Lynden-Bell R, Meijer EJ, Sprik M (2006) J Phys Chem B 110:3614–3623

    CAS  Google Scholar 

  220. Cheng J, Sulpizi M, Sprik M (2009) J Chem Phys 131:154504

    Google Scholar 

  221. Sulpizi M, Raugei S, VandeVondele J, Carloni P, Sprik M (2007) J Phys Chem B 111:3969–3976

    CAS  Google Scholar 

  222. Santana JA, Mateo JJ, Ishikawa Y (2010) J Phys Chem C 114:4995–5002

    CAS  Google Scholar 

  223. Skúlason E, Tripkovic V, Björketun ME, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov JK (2010) J Phys Chem C 114:18182–18197

    Google Scholar 

  224. Wang Y, Balbuena PB (2004) J Phys Chem B 108:4376–4384

    CAS  Google Scholar 

  225. Okamoto Y (2008) Appl Surf Sci 255:3434–3441

    CAS  Google Scholar 

  226. Hirunsit P, Balbuena PB (2009) Surf Sci 603:3239–3248

    CAS  Google Scholar 

  227. Ford DC, Nilekar AU, Xu Y, Mavrikakis M (2010) Surf Sci 604:1565–1575

    CAS  Google Scholar 

  228. Santana JA, Ishikawa Y (2010) Electrochim Acta 56:945–952

    CAS  Google Scholar 

  229. Schiffmann F, VandeVondele J, Hutter J, Urakawa A, Wirz R, Baiker A (2010) Proc Natl Acad Sci USA 107:4830–4833

    CAS  Google Scholar 

  230. Schiffmann F, Hutter J, VandeVondele J (2008) J Phys Condens Matter 20:064206

    Google Scholar 

Download references

Acknowledgment

This work was supported by the DFG, in particular by the projects KI-768/4-2, KI-768/5-1, KI-768/5-2, KI-768/5-3, KI-768/6-1 and KI-768/7-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Kirchner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirchner, B., di Dio, P.J., Hutter, J. (2011). Real-World Predictions from Ab Initio Molecular Dynamics Simulations. In: Kirchner, B., Vrabec, J. (eds) Multiscale Molecular Methods in Applied Chemistry. Topics in Current Chemistry, vol 307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_195

Download citation

Publish with us

Policies and ethics