Skip to main content

Synthesis of Monodisperse Polymeric Nano- and Microparticles and Their Application in Bioanalysis

  • Chapter
  • First Online:
Advances in Chemical Bioanalysis

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 1))

Abstract

The production of highly monodisperse polymer particles is very important in different fields, such as research and industry. This interest is due to their wide potential applications, ranging from drug/gene delivery to large scale separation, sensor fabrication and diagnostic applications, due to their special characteristics of uniformity in size, shape and structure. Different methods for the synthesis of monodisperse particles have been reported, but there is a necessity to find new approaches for the synthesis of functionalized monodisperse particles, in order to satisfy growing needs of industry in products with specific characteristics.

This review describes several approaches for fabrication of monodisperse polymer particles with size varying from 1 nm to 1,000 μm, highlighting problems associated with their synthesis and furnishes analysis of present and prospective areas for their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sugimoto T (2001) Monodispersed particles, 1st edn. Elsevier Science, Amsterdam

    Google Scholar 

  2. Gong B, Ren L, Yan C (2007) Preparation of normal-phase HPLC stationary phase based on monodisperse hydrophilic polymeric beads and their application. J Appl Polym Sci 106:2730–2735

    CAS  Google Scholar 

  3. McGrath JG, Bock RD, Cathcart JM, Lyon LA (2007) Self-assembly of “paint-on” colloidal crystals using poly(styrene-co-n-isopropylacrylamide) spheres. Chem Mater 19:1584–1591

    CAS  Google Scholar 

  4. Zhenyu Luo CZ, Syed S, Syarbaini LA, Chen G (2012) Highly monodisperse chemically reactive sub-micrometer particles: polymer colloidal photonic crystals. Colloid Polym Sci 290:141–150

    Google Scholar 

  5. Honda M, Kataoka K, Seki T, Takeoka Y (2009) Confined stimuli-responsive polymer gel in inverse opal polymer membrane for colorimetric glucose sensor. Langmuir 25:8349–8356

    CAS  Google Scholar 

  6. Roy I, Stachowiak MK, Bergey EJ (2008) Nonviral gene transfection nanoparticles: function and applications in the brain. Nanomedicine 4:89–97

    CAS  Google Scholar 

  7. Chen S-L, Yuan G, Hu C-T (2011) Preparation and size determination of monodisperse silica microspheres for particle size certified reference materials. Powder Technol 207:232–237

    CAS  Google Scholar 

  8. Werner ME, Karve S, Sukumar R, Cummings ND, Copp JA, Chen RC, Zhang T, Wang AZ (2011) Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 32:8548–8554

    CAS  Google Scholar 

  9. Sugimoto T (2003) Formation of monodispersed nano- and micro-particles controlled in size, shape, and internal structure. Chem Eng Technol 26:313–321

    CAS  Google Scholar 

  10. Vanderhoff JW, El-Aasser MS, Micale FJ, Sudol ED, Tseng CM, Silwanowicz A, Kornfeld DM, Vicente FA (1984) Preparation of large-particle-size monodisperse latexes in space: polymerization kinetics and process development. J Dispers Sci Technol 5:231–246

    Google Scholar 

  11. Ugelstad J, Mórk PC, Kaggerud KH, Ellingsen T, Berge A (1980) Swelling of oligomer-polymer particles. New methods of preparation. Adv Colloid Interface Sci 13:101–140

    CAS  Google Scholar 

  12. Okubo M, Shiozaki M, Tsujihiro M, Tsukuda Y (1991) Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method. Colloid Polym Sci 269:222–226

    CAS  Google Scholar 

  13. Omi S, Ki K, Yamamoto A, Iso M (1994) Synthesis of polymeric microspheres employing SPG emulsification technique. J Appl Polym Sci 51:1–11

    CAS  Google Scholar 

  14. Chen C-W, Chen C-Y, Lin C-L (2011) Preparation of monodisperse poly(methyl methacrylate) microspheres: effect of reaction parameters on particle formation, and optical performances of its diffusive agent application. J Polym Res 18:587–594

    CAS  Google Scholar 

  15. Esen C, Schweiger G (1996) Preparation of monodisperse polymer particles by photopolymerization. J Colloid Interface Sci 179:276–280

    CAS  Google Scholar 

  16. Kotoulas C, Kiparissides C (2006) A generalized population balance model for the prediction of particle size distribution in suspension polymerization reactors. Chem Eng Sci 61:332–346

    CAS  Google Scholar 

  17. Nilsson H, Mosbach R, Mosbach K (1972) The use of bead polymerization of acrylic monomers for immobilization of enzymes. Biochim Biophys Acta 268:253–256

    CAS  Google Scholar 

  18. Mayes AG, Mosbach K (1996) Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal Chem 68:3769–3774

    CAS  Google Scholar 

  19. Li K, Stöver HDH (1993) Synthesis of monodisperse poly(divinylbenzene) microspheres. J Polym Sci A Polym Chem 31:3257–3263

    CAS  Google Scholar 

  20. Hoshino M, Arishima K (1995) Survey of preparation techniques of monodispersed microspheres of glycidyl methacrylate and its derivatives. J Appl Polym Sci 57:921–930

    CAS  Google Scholar 

  21. Lok KP, Ober CK (1985) Particle size control in dispersion polymerization of polystyrene. Can J Chem 63:209–216

    CAS  Google Scholar 

  22. Yasuda M, Seki H, Yokoyama H, Ogino H, Ishimi K, Ishikawa H (2001) Simulation of a particle formation stage in the dispersion polymerization of styrene. Macromolecules 34:3261–3270

    CAS  Google Scholar 

  23. Casimiro T, Banet-Osuna AM, Ramos AM, da Ponte MN, Aguiar-Ricardo A (2005) Synthesis of highly cross-linked poly(diethylene glycol dimethacrylate) microparticles in supercritical carbon dioxide. Eur Polym J 41:1947–1953

    CAS  Google Scholar 

  24. Brouwer WM (1989) The preparation of small polystyrene latex particles. J Appl Polym Sci 38:1335–1346

    CAS  Google Scholar 

  25. Lowe PJ, Temple CS (1994) Calcitonin and insulin in isobutylcyanoacrylate nanocapsules: protection against proteases and effect on intestinal absorption in rats. J Pharm Pharmacol 46:547–552

    CAS  Google Scholar 

  26. Larpent C, Bernard E, Richard J, Vaslin S (1997) Polymerization in microemulsions with polymerizable cosurfactants: a route to highly functionalized nanoparticles. Macromolecules 30:354–362

    CAS  Google Scholar 

  27. Wei S, Molinelli A, Mizaikoff B (2006) Molecularly imprinted micro and nanospheres for the selective recognition of 17β-estradiol. Biosens Bioelectron 21:1943–1951

    CAS  Google Scholar 

  28. Rosca ID, Watari F, Uo M (2004) Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release 99:271–280

    CAS  Google Scholar 

  29. Blanco D, MaJ A (1998) Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants. Eur J Pharm Biopharm 45:285–294

    CAS  Google Scholar 

  30. Omi S, Ma G-H, Nagai M (2000) Membrane emulsification a versatile tool for the synthesis of polymeric microspheres. Macromol Symp 151:319–330

    CAS  Google Scholar 

  31. Qun W, Shoukuan F, Tongyin Y (1994) Emulsion polymerization. Prog Polym Sci 19:703–753

    Google Scholar 

  32. Raula J, Eerikäinen H, Kauppinen EI (2004) Influence of the solvent composition on the aerosol synthesis of pharmaceutical polymer nanoparticles. Int J Pharm 284:13–21

    CAS  Google Scholar 

  33. Jarmer DJ, Lengsfeld CS, Randolph TW (2003) Manipulation of particle size distribution of poly(l-lactic acid) nanoparticles with a jet-swirl nozzle during precipitation with a compressed antisolvent. J Supercrit Fluids 27:317–336

    CAS  Google Scholar 

  34. Vehring R, Foss WR, Lechuga-Ballesteros D (2007) Particle formation in spray drying. J Aerosol Sci 38:728–746

    CAS  Google Scholar 

  35. Davankov VA, Ilyin MM, Timofeeva GI, Tsyurupa MP, Yaminsky IV (1999) Atomic force microscopy imaging of novel macromolecular species, nanosponges, and their clusters. J Polym Sci A Polym Chem 37:1451–1455

    CAS  Google Scholar 

  36. Koh K, Ohno K, Tsujii Y, Fukuda T (2004) Synthesis of well-defined polymers with protected silanol groups by atom transfer radical polymerization and their use for the fabrication of polymeric nanoparticles. Eur Polym J 40:2665–2670

    CAS  Google Scholar 

  37. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    CAS  Google Scholar 

  38. Saikia PJ, Lee JM, Lee K, Choe S (2008) Reaction parameters in the raft mediated dispersion polymerization of styrene. J Polym Sci A Polym Chem 46:872–885

    CAS  Google Scholar 

  39. Shim SE, Shin Y, Jun JW, Lee K, Jung H, Choe S (2003) Living-free-radical emulsion photopolymerization of methyl methacrylate by a surface active iniferter (suriniferter). Macromolecules 36:7994–8000

    CAS  Google Scholar 

  40. Guerreiro AR, Chianella I, Piletska E, Whitcombe MJ, Piletsky SA (2009) Selection of imprinted nanoparticles by affinity chromatography. Biosens Bioelectron 24:2740–2743

    CAS  Google Scholar 

  41. Aydınlı B, Tincçer T (2001) Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder. Part II: Thermal, FTIR and morphological characterisation. Radiat Phys Chem 62:337–343

    Google Scholar 

  42. Cannizzo C, Amigoni-Gerbier S, Larpent C (2005) Boronic acid-functionalized nanoparticles: synthesis by microemulsion polymerization and application as a re-usable optical nanosensor for carbohydrates. Polymer 46:1269–1276

    CAS  Google Scholar 

  43. Amigoni-Gerbier S, Larpent C (1999) Synthesis and properties of selective metal-complexing nanoparticles. Macromolecules 32:9071–9073

    CAS  Google Scholar 

  44. Gong T, Wang C (2008) Preparation of highly cross-linked monodispersed functional polystyrene particles by utilizing the delayed addition method. J Mater Sci 43:1926–1932

    CAS  Google Scholar 

  45. Bai F, Yang X, Li R, Huang B, Huang W (2006) Monodisperse hydrophilic polymer microspheres having carboxylic acid groups prepared by distillation precipitation polymerization. Polymer 47:5775–5784

    CAS  Google Scholar 

  46. Bai F, Yang X, Huang W (2006) Narrow-disperse or monodisperse crosslinked and functional core–shell polymer particles prepared by two-stage precipitation polymerization. J Appl Polym Sci 100:1776–1784

    CAS  Google Scholar 

  47. Chen C-W, Chen C-Y, Cioul Z-H (2010) Preparation of monodisperse functional poly(styrene-co-acrylamidoxime) microsphere with chelating amidoxime group. Colloid Polym Sci 288:665–672

    CAS  Google Scholar 

  48. Song X-J, Hu J, Wang C-C (2011) Synthesis of highly surface functionalized monodispersed poly(st/dvb/gma) nanospheres with soap-free emulsion polymerization followed by facile “click chemistry” with functionalized alkylthiols. Colloids Surf A Physicochem Eng Asp 380:250–256

    CAS  Google Scholar 

  49. Song J-S, Winnik MA (2005) Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization. Macromolecules 38:8300–8307

    CAS  Google Scholar 

  50. Song J-S, Tronc F, Winnik MA (2006) Monodisperse, controlled micron-size dye-labeled polystyrene particles by two-stage dispersion polymerization. Polymer 47:817–825

    CAS  Google Scholar 

  51. Poma A, Turner APF, Piletsky SA (2010) Advances in the manufacture of mip nanoparticles. Trends Biotechnol 28:629–637

    CAS  Google Scholar 

  52. Piletsky SA, Turner NW, Laitenberger P (2006) Molecularly imprinted polymers in clinical diagnostics—future potential and existing problems. Med Eng Phys 28:971–977

    Google Scholar 

  53. Haginaka J (2008) Monodispersed, molecularly imprinted polymers as affinity-based chromatography media. J Chromatogr B 866:3–13

    CAS  Google Scholar 

  54. Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L (2007) Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications. Anal Chim Acta 584:112–121

    CAS  Google Scholar 

  55. Dvorakova G, Haschick R, Chiad K, Klapper M, Müllen K, Biffis A (2010) Molecularly imprinted nanospheres by nonaqueous emulsion polymerization. Macromol Rapid Commun 31:2035–2040

    CAS  Google Scholar 

  56. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    CAS  Google Scholar 

  57. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine – challenge and perspectives. Angew Chem Int Ed 48:872–897

    CAS  Google Scholar 

  58. Yang Z, Zheng S, Harrison WJ, Harder J, Wen X, Gelovani JG, Qiao A, Li C (2007) Long-circulating near-infrared fluorescence core-cross-linked polymeric micelles: synthesis, characterization, and dual nuclear/optical imaging. Biomacromolecules 8:3422–3428

    CAS  Google Scholar 

  59. Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    CAS  Google Scholar 

  60. Stark WJ (2011) Nanoparticles in biological systems. Angew Chem Int Ed 50:1242–1258

    CAS  Google Scholar 

  61. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86

    CAS  Google Scholar 

  62. Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JAJ, Waggoner AS, Bruchez MP (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18:389–396

    CAS  Google Scholar 

  63. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651

    CAS  Google Scholar 

  64. Sheng Y, Liu C, Yuan Y, Tao X, Yang F, Shan X, Zhou H, Xu F (2009) Long-circulating polymeric nanoparticles bearing a combinatorial coating of peg and water-soluble chitosan. Biomaterials 30:2340–2348

    CAS  Google Scholar 

  65. Liang Z, Susha AS, Caruso F (2002) Metallodielectric opals of layer-by-layer processed coated colloids. Adv Mater 14:1160–1164

    CAS  Google Scholar 

  66. Perez de Vargas-Sansalvador IM, Carvajal MA, Roldan-Munoz OM, Banqueri J, Fernandez-Ramos MD, Capitan-Vallvey LF (2009) Phosphorescent sensing of carbon dioxide based on secondary inner-filter quenching. Anal Chim Acta 655:66–74

    CAS  Google Scholar 

  67. Chu C-S, Lo Y-L (2009) Highly sensitive and linear optical fiber carbon dioxide sensor based on sol–gel matrix doped with silica particles and HPTS. Sens Actuators B Chem 143:205–210

    Google Scholar 

  68. Sung T-W, Lo Y-L (2012) Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection. Sens Actuators B Chem 165:119–125

    CAS  Google Scholar 

  69. Yang H, Zhu Y (2006) Size dependence of SiO2 particles enhanced glucose biosensor. Talanta 68:569–574

    CAS  Google Scholar 

  70. Kitahara K-I, Yoshihama I, Hanada T, Kokuba H, Arai S (2010) Synthesis of monodispersed molecularly imprinted polymer particles for high-performance liquid chromatographic separation of cholesterol using templating polymerization in porous silica gel bound with cholesterol molecules on its surface. J Chromatogr A 1217:7249–7254

    CAS  Google Scholar 

  71. Liu Y, Hoshina K, Haginaka J (2010) Monodispersed, molecularly imprinted polymers for cinchonidine by precipitation polymerization. Talanta 80:1713–1718

    CAS  Google Scholar 

  72. Haginaka J, Miura C, Funaya N, Matsunaga H (2012) Monodispersed molecularly imprinted polymer for creatinine by modified precipitation polymerization. Anal Sci 28:315–315

    CAS  Google Scholar 

  73. Wang J, Cormack PAG, Sherrington DC, Khoshdel E (2003) Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angew Chem Int Ed 42:5336–5338

    CAS  Google Scholar 

  74. Zhou Q, He J, Tang Y, Xu Z, Li H, Kang C, Jiang J (2012) A novel hydroquinidine imprinted microsphere using a chirality-matching n-acryloyl-l-phenylalanine monomer for recognition of cinchona alkaloids. J Chromatogr A 1238:60–67

    CAS  Google Scholar 

  75. Castell OK, Allender CJ, Barrow DA (2006) Novel biphasic separations utilising highly selective molecularly imprinted polymers as biorecognition solvent extraction agents. Biosens Bioelectron 22:526–533

    CAS  Google Scholar 

  76. Ulubayram K, Tunc Y, Baykara E (2007) Molecularly imprinted acrylic-based microspheres for colonic delivery of 5-aminosalicylic acid. J Optoelectron Adv Mater 9:3479–3483

    CAS  Google Scholar 

  77. Pişkin E, Tuncel SA, Ercan MT, Caner BE (1991) Micron-size monodisperse PSPA beads by phase inversion polymerization for biomedical applications: preparation and a case study. Clin Mater 8:159–164

    Google Scholar 

  78. Stanski DR (1983) Radioimmunoassay and related procedures in medicine–1982. Proceedings series; international atomic energy agency. 1983. 823 pp. 15 × 24 cm. J Pharm Sci 72:1234

    Google Scholar 

  79. Nustad KJL, Ugelstad J, Ellingsen T, Berge A (1984) Hydrophilic monodisperse particles as solid-phase material in immunoassays: comparison of shell-and-core particles with compact particles. Eur Surg Res 16:80–87

    CAS  Google Scholar 

  80. Horan PK, Wheeless LL Jr (1977) Quantitative single cell analysis and sorting. Science 198(4313):149–157

    CAS  Google Scholar 

  81. Iannelli D, D’Apice L, Cottone C, Viscardi M, Scala F, Zoina A, Del Sorbo G, Spigno P, Capparelli R (1997) Simultaneous detection of cucumber mosaic virus, tomato mosaic virus and potato virus y by flow cytometry. J Virol Methods 69:137–145

    CAS  Google Scholar 

  82. Anderson GP, Kowtha VA, Taitt CR (2010) Detection of fumonisin B1 and ochratoxin A in grain products using microsphere-based fluid array immunoassays. Toxins 2:297–309

    CAS  Google Scholar 

  83. Czeh A, Mandy F, Feher-Toth S, Torok L, Mike Z, Koszegi B, Lustyik G (2012) A flow cytometry based competitive fluorescent microsphere immunoassay (CFIA) system for detecting up to six mycotoxins. J Immunol Methods 384(1–2):71–80. doi:10.1016/j.jim.2012.07.010

    CAS  Google Scholar 

  84. Horák D, Španová A, Tvrdíková J, Rittich B (2011) Streptavidin-modified magnetic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres for selective isolation of bacterial DNA. Eur Polym J 47:1090–1096

    Google Scholar 

  85. Plotz CM, Singer JM (1956) The latex fixation test. I. Application to the serologic diagnosis of rheumatoid arthritis. Am J Med 21:888–892

    CAS  Google Scholar 

  86. Akutsu T, Watanabe K, Motani H, Iwase H, Sakurada K (2012) Evaluation of latex agglutination tests for fibrin–fibrinogen degradation products in the forensic identification of menstrual blood. Leg Med 14:51–54

    CAS  Google Scholar 

  87. Moraveji M, Hosseini A, Moghaddar N, Namavari MM, Eskandari MH (2012) Development of latex agglutination test with recombinant NcSAG1 for the rapid detection of antibodies to Neospora caninum in cattle. Vet Parasitol 189(2–4):211–217. doi:10.1016/j.vetpar.2012.04.010

    CAS  Google Scholar 

  88. Aoki K, Shikama Y, Yoshida T, Kuroiwa Y (1996) Enzyme-linked immunosorbent assay and latex agglutination inhibition reaction test for cocaine and benzoylecgonine in urine. Forensic Sci Int 77:151–157

    CAS  Google Scholar 

  89. de Assis TS, Braga AS, Pedras MJ, Oliveira E, Barral A, de Siqueira IC, Costa CH, Costa DL, Holanda TA, Soares VY, Biá M, Caldas Ade J, Romero GA, Rabello A (2011) Multi-centric prospective evaluation of rk39 rapid test and direct agglutination test for the diagnosis of visceral leishmaniasis in Brazil. Trans R Soc Trop Med Hyg 105:81–85

    Google Scholar 

  90. Sundar S, Singh RK, Maurya R, Kumar B, Chhabra A, Singh V, Rai M (2006) Serological diagnosis of Indian visceral leishmaniasis: direct agglutination test versus rk39 strip test. Trans R Soc Trop Med Hyg 100:533–537

    CAS  Google Scholar 

  91. Ye Y, Wang P, Zhou Y, Chen F, Wang X (2011) Evaluation of latex agglutination inhibition reaction test for rapid detection of aflatoxin b1. Food Control 22:1072–1077

    CAS  Google Scholar 

  92. Keid LB, Soares RM, Vasconcellos SA, Megid J, Salgado VR, Richtzenhain LJ (2009) Comparison of agar gel immunodiffusion test, rapid slide agglutination test, microbiological culture and pcr for the diagnosis of canine brucellosis. Res Vet Sci 86:22–26

    CAS  Google Scholar 

  93. Horie M, Ogawa H, Yamada K, Hara A, Bui VN, Awad SS, Yoshikawa R, Mase M, Tsukamoto K, Yamaguchi S, Nakamura K, Imai K (2009) A latex agglutination test using a recombinant nucleoprotein for detection of antibodies against avian influenza virus. J Virol Methods 161:259–264

    CAS  Google Scholar 

  94. Jiang T, Gong D, L-a M, Nie H, Zhou Y, Yao B, Zhao J (2008) Evaluation of a recombinant MIC3 based latex agglutination test for the rapid serodiagnosis of toxoplasma gondii infection in swines. Vet Parasitol 158:51–56

    CAS  Google Scholar 

  95. Bhaskar S, Banavaliker JN, Hanif M (2003) Large-scale validation of a latex agglutination test for diagnosis of tuberculosis. FEMS Immunol Med Microbiol 39:235–239

    CAS  Google Scholar 

  96. Nonaka N, Oka M, Kamiya M, Oku Y (2008) A latex agglutination test for the detection of Echinococcus multilocularis coproantigen in the definitive hosts. Vet Parasitol 152:278–283

    Google Scholar 

  97. Piletska EV, Piletsky SA (2010) Size matters: influence of the size of nanoparticles on their interactions with ligands immobilized on the solid surface. Langmuir 26:3783–3785

    CAS  Google Scholar 

  98. Grassian VH (2008) When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J Phys Chem C 112:18303–18313

    CAS  Google Scholar 

  99. Yang Z, Leon J, Martin M, Harder JW, Zhang R, Liang D, Lu W, Tian M, Gelovani JG, Qiao A, Li C (2009) Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles. Nanotechnology 20(16):165101

    Google Scholar 

  100. Gallach D, Recio Sánchez G, Muñoz Noval A, Manso Silván M, Ceccone G, Martín Palma RJ, Torres Costa V, Martínez Duart JM (2010) Functionality of porous silicon particles: surface modification for biomedical applications. Mater Sci Eng B 169:123–127

    CAS  Google Scholar 

  101. Song X, Huang L, Wu B (2008) Bright and monodispersed phosphorescent particles and their applications for biological assays. Anal Chem 80:5501–5507

    CAS  Google Scholar 

  102. Yang W, Zhang CG, Qu HY, Yang HH, Xu JG (2004) Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays. Anal Chim Acta 503:163–169

    CAS  Google Scholar 

  103. Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J Biomed Mater Res A 100(3):728–737

    Google Scholar 

  104. Wolinsky JB, Grinstaff MW (2008) Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 60:1037–1055

    CAS  Google Scholar 

  105. Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects – pros and cons. Environ Health Perspect 114:1818–1825

    CAS  Google Scholar 

  106. Simnick AJ, Amiram M, Liu W, Hanna G, Dewhirst MW, Kontos CD, Chilkoti A (2011) In vivo tumor targeting by a ngr-decorated micelle of a recombinant diblock copolypeptide. J Control Release 155:144–151

    CAS  Google Scholar 

  107. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176

    Google Scholar 

  108. Lee D, Khaja S, Velasquez-Castano JC, Dasari M, Sun C, Petros J, Taylor WR, Murthy N (2007) In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater 6:765–769

    CAS  Google Scholar 

  109. Hu J, Liu S (2010) Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules 43:8315–8330

    CAS  Google Scholar 

  110. Lee I, Hwang O, Yoo D, Khang G, Lee D (2011) Detection of hydrogen peroxide in vitro and in vivo using peroxalate chemiluminescent micelles. Bull Korean Chem Soc 32:2187–2192

    CAS  Google Scholar 

  111. Lee D, Erigala VR, Dasari M, Yu J, Dickson RM, Murthy N (2008) Detection of hydrogen peroxide with chemiluminescent micelles. Int J Nanomedicine 3:471–476

    CAS  Google Scholar 

  112. Cole AJ, Yang VC, David AE (2011) Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol 29:323–332

    CAS  Google Scholar 

  113. Yu SS, Scherer RL, Ortega RA, Bell CS, O’Neil CP, Hubbell JA, Giorgio TD (2011) Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs). J Nanobiotechnology 9:7

    CAS  Google Scholar 

  114. Ye F, Qin J, Toprak MS, Muhammed M (2011) Multifunctional core-shell nanoparticles: superparamagnetic, mesoporous, and thermosensitive. J Nanopart Res 13:6157–6167

    CAS  Google Scholar 

  115. Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27:689–757

    CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Research Executive Agency (REA) of the European Union under Grant Agreement number PITN-GA-2010-264772 (ITN CHEBANA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel M. Perez de Vargas-Sansalvador .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Vargas-Sansalvador, I.M.P., Canfarotta, F., Piletsky, S.A. (2013). Synthesis of Monodisperse Polymeric Nano- and Microparticles and Their Application in Bioanalysis. In: Matysik, FM. (eds) Advances in Chemical Bioanalysis. Bioanalytical Reviews, vol 1. Springer, Cham. https://doi.org/10.1007/11663_2013_4

Download citation

Publish with us

Policies and ethics