Skip to main content

Collapsing Recursive Oracles for Relativized Polynomial Hierarchies

  • Conference paper
  • 834 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3623))

Abstract

Certain recursive oracles can force the polynomial hierarchy to collapse to any fixed level. All collections of such oracles associated with each collapsing level form an infinite hierarchy, called the collapsing recursive oracle polynomial (CROP) hierarchy. This CROP hierarchy is a significant part of the extended low hierarchy (note that the assumption P = NP makes the both hierarchies coincide). We prove that all levels of the CROP hierarchy are distinct by showing “strong” types of separation. First, we prove that each level of the hierarchy contains a set that is immune to its lower level. Second, we show that any two adjacent levels of the CROP hierarchy can be separated by another level of the CROBPP hierarchy—a bounded-error probabilistic analogue of the CROP hierarchy. Our proofs extend the circuit lower-bound techniques of Yao, Håstad, and Ko.

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E., Hemachandra, L.: Lower bounds for the low hierarchy. J. ACM 39, 234–251 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baker, T., Gill, J., Solovay, R.: Relativizations of the P=?NP question. SIAM J. Comput. 4, 431–442 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balcázar, J.L., Book, R.V., Schöning, U.: Sparse sets, lowness, and highness. SIAM J. Comput. 15, 739–747 (1986)

    Article  MathSciNet  Google Scholar 

  4. Balcázar, J.L., Book, R.V., Schöning, U.: The polynomial-time hierarchy and sparse oracles. J. ACM 33, 603–617 (1986)

    Article  MATH  Google Scholar 

  5. Bruschi, D.: Strong separations of the polynomial hierarchy with oracles: constructive separations by immune and simple sets. Theoret. Comput. Sci. 102, 215–252 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cai, J., Chakaravarthy, V.T., Hemaspaandra, L.A., Ogihara, M.: Some Karp-Liptontype theorems based on S2. Technical Report (2001)

    Google Scholar 

  7. Håa, J.D.: Computational Limitations for Small-Depth Circuits. Ph.D. dissertation, Massachusetts Institute of Technology (1987)

    Google Scholar 

  8. Heller, H.: Relativized polynomial hierarchies extending two levels. Math. Systems Theory 17, 71–84 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ko, K.: Relativized polynomial time hierarchies having exactly k levels. SIAM J. Comput 18, 392–408 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ko, K.: Separating and collapsing results on the relativized probabilistic polynomial time hierarchy. J. ACM 37, 415–438 (1990)

    Article  MATH  Google Scholar 

  11. Long, T., Selman, A.: Relativizing complexity classes with sparse oracles. J. ACM 33, 618–627 (1986)

    Article  MathSciNet  Google Scholar 

  12. Long, T.J., Sheu, M.: A refinement of the low and high hierarchies. Math. Systems Theory 28, 299–327 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Meyer, A., Stockmeyer, L.: The equivalence problem for regular expression with squaring requires exponential time. In: Proc. 13th IEEE Symposium on Switching and Automata Theory, pp. 125–129 (1972)

    Google Scholar 

  14. Schöning, U.: Complete sets and closeness to complexity classes. Math. Systems Theory 19, 29–41 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schöning, U.: Probabilistic complexity classes and lowness. J. Comput. System Sci. 39, 84–100 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sheu, M., Long, T.J.: The extended low hierarchy is an infinite hierarchy. SIAM J. Comput 23, 488–509 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stockmeyer, L.: On approximation algorithms for #P. SIAM J. Comput. 14, 849–861 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wilber, R.E.: Randomness and the density of hard problems. In: Proc. 24th Annual Symposium on Foundations of Computer Science, pp. 335–342 (1983)

    Google Scholar 

  19. Yamakami, T., Suzuki, T.: Resource bounded immunity and simplify. To appear in Theoret. Comput. Sci. An extended abstract appeared In: Proc. 3rd IFIP Intern. Conf. Theoretical Computer Science (Exploring New Frontiers of Theoretical Informatics), pp. 81–95. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  20. Yao, A.C.: Separating the polynomial-time hierarchy by oracles. In: Proc. 26th IEEE Symposium on Foundations of Computer Science, pp. 1–10 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamakami, T. (2005). Collapsing Recursive Oracles for Relativized Polynomial Hierarchies. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_14

Download citation

  • DOI: https://doi.org/10.1007/11537311_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28193-1

  • Online ISBN: 978-3-540-31873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics