Abstract
Reversible cellular automata (RCA) are models of massively parallel computation that preserve information. This paper is a short survey of research on reversible cellular automata over the past fourty plus years. We discuss the classic results by Hedlund, Moore and Myhill that relate injectivity, surjectivity and reversibility with each other. Then we review algorithmic questions and some results on computational universality. Finally we talk about local reversibility vs. global reversibility.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amoroso, S., Patt, Y.: Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures. Journal of Computer and System Sciences 6, 448–464 (1972)
Bennett, C.: Logical reversibility of computation. IBM Journal of Research and Development 6, 525–532 (1973)
Czeizler, E., Kari, J.: A tight linear bound on the neighborhood of inverse cellular automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 410–420. Springer, Heidelberg (2005)
Durand, B.: Global properties of 2D cellular automata. In: Goles, E., Martinez, S. (eds.) Cellular Automata and Complex Systems. Kluwer, Dordrecht (1998)
Durand-Lose, J.: Representing reversible cellular automata with reversible block cellular automata. In: Cori, R., Mazoyer, J., Morvan, M., Mosery, R. (eds.) Discrete Models, Combinatorics, Computation and Geometry, pp. 145–154. Springer, Heidelberg (2001)
Hedlund, G.: Endomorphisms and automorphisms of shift dynamical systems. Math. Systems Theory 3, 320–375 (1969)
Ito, M., Osato, N., Nasu, M.: Linear Cellular Automata over Zm. Journal of Computer and System Sciences 27, 125–140 (1983)
Kari, J.: Reversibility of 2D cellular automata is undecidable. Physica D 45, 379–385 (1990)
Kari, J.: On the Inverse Neighborhoods of Reversible Cellular Automata. In: Rozenberg, G., Salomaa, A. (eds.) Lindenmayer Systems, Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology, pp. 477–495. Springer, Heidelberg (1992)
Kari, J.: Reversibility and surjectivity problems of cellular automata. Journal of Computer and System Sciences 48, 149–182 (1994)
Kari, J.: Representation of reversible cellular automata with block permutations. Mathematical Systems Theory 29, 47–61 (1996)
Kari, J.: On the circuit depth of structurally reversible cellular automata. Fundamenta Informatica 38, 93–107 (1999)
Kari, J.: Linear Cellular Automata with Multiple State Variables. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 110–121. Springer, Heidelberg (2000)
Manzini, G., Margara, L.: Invertible Linear Cellular Automata over Zm: Algorithmic and Dynamical Aspects. Journal of Computer and System Sciences 56, 60–67 (1998)
Margolus, N.: Physics-like models of computation. Physica D 10, 81–95 (1984)
Moore, E.F.: Machine Models of Self-reproduction. In: Proceedings of the Symposium in Applied Mathematics, vol. 14, pp. 17–33 (1962)
Morita, K., Harao, M.: Computation Universality of one.dimensional reversible (injective) cellular automata. IEICE Transactions E72, 758–762 (1989)
Morita, K.: Reversible simulation of one-dimensional irreversible cellular automata. Theoretical Computer Science 148, 157–163 (1995)
Myhill, J.: The Converse to Moore’s Garden-of-Eden Theorem. Proceedings of the American Mathematical Society 14, 685–686 (1963)
Richardson, D.: Tessellations with Local Transformations. Journal of Computer and System Sciences 6, 373–388 (1972)
Sato, T.: Decidability of some problems of linear cellular automata over finite commutative rings. Information Processing Letters 46, 151–155 (1993)
Sutner, K.: De Bruijn graphs and linear cellular automata. Complex Systems 5, 19–31 (1991)
Toffoli, T.: Computation and construction universality of reversible cellular automata. Journal of Computer and System Sciences 15, 213–231 (1977)
Toffoli, T., Margolus, N.: Cellular Automata Machines. MIT Press, Cambridge (1987)
Toffoli, T., Margolus, N.: Invertible cellular automata: a review. Physica D 45, 229–253 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kari, J. (2005). Reversible Cellular Automata. In: De Felice, C., Restivo, A. (eds) Developments in Language Theory. DLT 2005. Lecture Notes in Computer Science, vol 3572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505877_5
Download citation
DOI: https://doi.org/10.1007/11505877_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26546-7
Online ISBN: 978-3-540-31682-4
eBook Packages: Computer ScienceComputer Science (R0)