Skip to main content

Divide and Conquer Is Almost Optimal for the Bounded-Hop MST Problem on Random Euclidean Instances

(Extended Abstract)

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3499))

Abstract

The d -Dim h -hops MST problem is defined as follows: Given a set S of points in the d-dimensional Euclidean space and sS, find a minimum-cost spanning tree for S rooted at s with height at most h. We investigate the problem for any constants h and d > 0. We prove the first non trivial lower bound on the solution cost for almost all Euclidean instances (i.e. the lower-bound holds with high probability). Then we introduce an easy-to-implement, very fast divide and conquer heuristic and we prove that its solution cost matches the lower bound.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfandari, L., Paschos, V.T.: Approximating minimum spanning tree of depth 2. Intl. Trans. In Op. Res. 6, 607–622 (1999)

    Article  MathSciNet  Google Scholar 

  2. Althaus, E., Funke, S., Har-Peled, S., Koenemann, J., Ramos, E.A., Skutella, M.: Approximation k-hop minimum-spanning trees. Operations Research Letters 33, 115–120 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-medians and related problems. In: Proc. 30th ACM Symposium on Theory of Computing, pp. 106–113 (1998)

    Google Scholar 

  4. Bala, K., Petropoulos, K., Stern, T.E.: Multicasting in a Linear Lightwave Network. In: Proc. of INFOCOM, pp. 1350–1358 (1993)

    Google Scholar 

  5. Balakrishnan, A., Altinkemer, K.: Using a hop-constrained model to generate alternative communication network design. ORSA Journal of Computing 4, 147–159 (1992)

    Google Scholar 

  6. Bookstein, A., Klein, S.T.: Compression of Correlated Bit-Vectors. Information Systems 16(4), 110–118 (1996)

    Google Scholar 

  7. Chou, R., Johnson, T.: Distributed Operating Systems and Algorithms. Addison-Wesley, Reading (1997)

    Google Scholar 

  8. Chudak, F.A.: Improved approximation algorithms for uncapacitated facility location problem. In: Proc. of the 6th Conference on Integer Programming and Combinatorial Optimization (1998)

    Google Scholar 

  9. Clementi, A.E.F., Di Ianni, M., Monti, A., Rossi, G., Silvestri, R.: Experimental Analysis of Practically Efficient Algorithms for Bounded-Hop Accumulation in Ad-Hoc Wireless Networks. In: Proc. of the IEEE IPDPS-WMAN (2005) (to appear)

    Google Scholar 

  10. Ephremides, A., Nguyen, G.D., Wieselthier, J.E.: On the Construction of Energy-Efficient Broadcast and Multicast Trees in Wireless Networks. In: Proc. of the 19th INFOCOM, pp. 585–594 (2000)

    Google Scholar 

  11. Gouveia, L.: Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning tree problem with hop constraints. Computers and Operations Research 22, 959–970 (1995)

    Article  MATH  Google Scholar 

  12. Gouveia, L.: Multicommodity flow models for spanning trees with hop constraints. European Journal of Operational Research 95, 178–190 (1996)

    Article  MATH  Google Scholar 

  13. Gouveia, L., Requejo, C.: A new relaxation approach for the hop-constrain minimum spanning tree problem. European Journal of Operational Research 132, 539–552 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. Journal of Algorithms 31, 228–248 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Haenggi, M.: Twelve Reasons not to Route over Many Short Hops. In: Proc. IEEE Vehicular Technology Conference (VTC 2004 Fall), Los Angeles, CA (September 2004)

    Google Scholar 

  16. Kortsarz, G., Peleg, D.: Approximating the weight of shallow Steiner trees. Discrete Applied Mathematics 93, 265–285 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a Local Search Heuristic for Facility Location Problems. In: Proc. of the 9th annual ACM-SIAM Symposium on Discrete algorithms, pp. 1–10 (1998)

    Google Scholar 

  18. Mahdian, M., Ye, Y., Zhang, J.: A 1.52-approximation algorithm for the uncapacitated facility location problem. In: Proc. of APPROX 2002. LNCS, vol. 2462, pp. 229–242. Springer, Heidelberg (2002)

    Google Scholar 

  19. McDiarmid, C.J.H.: On the method of bounded differences. In: Siemons, J. (ed.) Surveys in Combinatorics: Invited Papers at the 12th British Combinatorial Conference, London. Mathematical Society Lecture Notes Series, vol. 141, pp. 148–188 (1989)

    Google Scholar 

  20. Raghavan, P., Motwani, R.: Randomized Algorithms. Cambridge Univ. Press, Cambridge (1995)

    MATH  Google Scholar 

  21. Raidl, G.R., Julstrom, B.A.: Greedy Heuristics and an Evolutionary Algorithm for the Bounded-Diameter Minimum Spanning Tree Problem. In: Proc. of the 2003 ACM Symposium on Applied Computing, pp. 747–752 (2003)

    Google Scholar 

  22. Raymond, K.: A Tree-Based Algorithm for Distributed Mutual Exclusion. ACM Transactions on Computer Systems 7(1), 61–77 (1989)

    Article  MathSciNet  Google Scholar 

  23. Shmoys, D.B., Tardos, E., Aardal, K.: Approximation algorithms for facility location problems. In: Proc. of the 29-th Annual ACM Symposium on Theory of Computing, pp. 265–274 (1997)

    Google Scholar 

  24. Voss, S.: The steiner tree problem with hop constraint. Annals of Operations Research 86, 321–345 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clementi, A.E.F., Di Ianni, M., Monti, A., Lauria, M., Rossi, G., Silvestri, R. (2005). Divide and Conquer Is Almost Optimal for the Bounded-Hop MST Problem on Random Euclidean Instances. In: Pelc, A., Raynal, M. (eds) Structural Information and Communication Complexity. SIROCCO 2005. Lecture Notes in Computer Science, vol 3499. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11429647_9

Download citation

  • DOI: https://doi.org/10.1007/11429647_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26052-3

  • Online ISBN: 978-3-540-32073-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics