Skip to main content

Role of pH Regulatory Proteins and Dysregulation of pH in Prostate Cancer

  • Chapter
  • First Online:
From Malignant Transformation to Metastasis

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 182))

Abstract

Prostate cancer is the fourth most commonly diagnosed cancer, and although it is often a slow-growing malignancy, it is the second leading cause of cancer-associated deaths in men and the first in Europe and North America. In many forms of cancer, when the disease is a solid tumor confined to one organ, it is often readily treated. However, when the cancer becomes an invasive metastatic carcinoma, it is more often fatal. It is therefore of great interest to identify mechanisms that contribute to the invasion of cells to identify possible targets for therapy. During prostate cancer progression, the epithelial cells undergo epithelial-mesenchymal transition that is characterized by morphological changes, a loss of cell-cell adhesion, and invasiveness. Dysregulation of pH has emerged as a hallmark of cancer with a reversed pH gradient and with a constitutively increased intracellular pH that is elevated above the extracellular pH. This phenomenon has been referred to as “a perfect storm” for cancer progression. Acid-extruding ion transporters include the Na+/H+ exchanger NHE1 (SLC9A1), the Na+HCO3 cotransporter NBCn1 (SLC4A7), anion exchangers, vacuolar-type adenosine triphosphatases, and the lactate-H+ cotransporters of the monocarboxylate family (MCT1 and MCT4 (SLC16A1 and 3)). Additionally, carbonic anhydrases contribute to acid transport. Of these, several have been shown to be upregulated in different human cancers including the NBCn1, MCTs, and NHE1. Here the role and contribution of acid-extruding transporters in prostate cancer growth and metastasis were examined. These proteins make significant contributions to prostate cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CA:

Carbonic anhydrase

EMT:

Epithelial-mesenchymal transition

MCT:

Monocarboxylate transporter

MMP:

Matrix metalloproteinase

NBC:

Sodium bicarbonate cotransporter

NHE1:

Na+/H+ exchanger isoform 1

pHe:

Extracellular pH

pHi:

Intracellular pH

uPA:

Urokinase plasminogen activator

V-ATPases:

Vacuolar-type adenosine triphosphatases

References

  • Akudugu J, Serafin A, Bohm L (2015) Further evaluation of uPA and PAI-1 as biomarkers for prostatic diseases. J Cancer Res Clin Oncol 141:627–631

    Article  CAS  PubMed  Google Scholar 

  • Ambrosio MR, Di Serio C, Danza G et al (2016) Carbonic anhydrase IX is a marker of hypoxia and correlates with higher Gleason scores and ISUP grading in prostate cancer. Diagn Pathol 11:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amith SR, Fliegel L (2013) Regulation of the Na+/H+ exchanger (NHE1) in breast cancer metastasis. Cancer Res 73:1259–1264

    Article  CAS  PubMed  Google Scholar 

  • Amith SR, Fliegel L (2016) The Na+/H+ exchanger in metastasis. Aging 8:1291

    Article  PubMed  PubMed Central  Google Scholar 

  • Amith SR, Fliegel L (2017) Na(+)/H(+) exchanger-mediated hydrogen ion extrusion as a carcinogenic signal in triple-negative breast cancer etiopathogenesis and prospects for its inhibition in therapeutics. Semin Cancer Biol 43:35–41

    Article  CAS  PubMed  Google Scholar 

  • Amith SR, Fong S, Baksh S et al (2015a) Na (+)/H (+)exchange in the tumour microenvironment: does NHE1 drive breast cancer carcinogenesis? Int J Dev Biol 59:367–377

    Article  CAS  PubMed  Google Scholar 

  • Amith SR, Wilkinson JM, Baksh S et al (2015b) Na+/H+ exchanger (NHE1) as a novel co-adjuvant target in paclitaxel therapy of triple-negative breast cancer cells. Oncotarget 6:1262–1275

    Article  PubMed  Google Scholar 

  • Amith SR, Wilkinson JM, Fliegel L (2016a) KR-33028, a potent inhibitor of the Na+/H+ exchanger NHE1, suppresses metastatic potential of triple-negative breast cancer cells. Biochem Pharmacol 118:31–39

    Article  CAS  PubMed  Google Scholar 

  • Amith SR, Wilkinson JM, Fliegel L (2016b) Na+/H+ exchanger NHE1 regulation modulates metastatic potential and epithelial-mesenchymal transition of triple-negative breast cancer cells. Oncotarget 7:21091–21113

    Article  PubMed  PubMed Central  Google Scholar 

  • Amith SR, Vincent KM, Wilkinson JM et al (2017) Defining the Na(+)/H(+) exchanger NHE1 interactome in triple-negative breast cancer cells. Cell Signal 29:69–77

    Article  CAS  PubMed  Google Scholar 

  • Andersen AP, Moreira JM, Pedersen SF (2014) Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci 369:20130098

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen AP, Flinck M, Oernbo EK et al (2016) Roles of acid-extruding ion transporters in regulation of breast cancer cell growth in a 3-dimensional microenvironment. Mol Cancer 15:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersen AP, Samsoe-Petersen J, Oernbo EK et al (2018) The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. Int J Cancer 142:2529–2542

    Article  CAS  PubMed  Google Scholar 

  • Angeli A, Trallori E, Ferraroni M et al (2018) Discovery of new 2, 5-disubstituted 1,3-selenazoles as selective human carbonic anhydrase IX inhibitors with potent anti-tumor activity. Eur J Med Chem 157:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Avnet S, Lemma S, Cortini M et al (2016) Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance. Oncotarget 7:63408–63423

    Article  PubMed  PubMed Central  Google Scholar 

  • Azzarito T, Venturi G, Cesolini A et al (2015) Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma. Cancer Lett 356:697–703

    Article  CAS  PubMed  Google Scholar 

  • Boedtkjer E, Bunch L, Pedersen SF (2012) Physiology, pharmacology and pathophysiology of the pH regulatory transport proteins NHE1 and NBCn1: similarities, differences, and implications for cancer therapy. Curr Pharm Des 18:1345–1371

    Article  CAS  PubMed  Google Scholar 

  • Boedtkjer E, Moreira JM, Mele M et al (2013) Contribution of Na+, HCO3(−)-cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). Int J Cancer 132:1288–1299

    Article  CAS  PubMed  Google Scholar 

  • Bohm L, Serafin A, Akudugu J et al (2013) uPA/PAI-1 ratios distinguish benign prostatic hyperplasia and prostate cancer. J Cancer Res Clin Oncol 139:1221–1228

    Article  PubMed  CAS  Google Scholar 

  • Brant SR, Yun CHC, Donowitz M et al (1995) Cloning, tissue distribution, and functional analysis of the human Na+/H+ exchanger isoform, NHE3. Am J Physiol 269:C198–C206

    Article  CAS  PubMed  Google Scholar 

  • Buckley BJ, Aboelela A, Minaei E et al (2018) 6-substituted hexamethylene amiloride (HMA) derivatives as potent and selective inhibitors of the human urokinase plasminogen activator for use in cancer. J Med Chem 61:8299–8320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busco G, Cardone RA, Greco MR et al (2010) NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. FASEB J 24:3903–3915

    Article  CAS  PubMed  Google Scholar 

  • Canitano A, Iessi E, Spugnini EP et al (2016) Proton pump inhibitors induce a caspase-independent antitumor effect against human multiple myeloma. Cancer Lett 376:278–283

    Article  CAS  PubMed  Google Scholar 

  • Capecci J, Forgac M (2013) The function of vacuolar ATPase (V-ATPase) a subunit isoforms in invasiveness of MCF10a and MCF10CA1a human breast cancer cells. J Biol Chem 288:32731–32741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5:786–795

    Article  CAS  PubMed  Google Scholar 

  • Chambard JC, Pouyssegur J (1986) Intracellular pH controls growth factor-induced ribosomal protein S6 phosphorylation and protein synthesis in the G0----G1 transition of fibroblasts. Exp Cell Res 164:282–294

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Schmidt S, Pouli S et al (2014) Membrane androgen receptor sensitive Na+/H+ exchanger activity in prostate cancer cells. FEBS Lett 588:1571–1579

    Article  CAS  PubMed  Google Scholar 

  • Chiche J, Ilc K, Laferriere J et al (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69:358–368

    Article  CAS  PubMed  Google Scholar 

  • Chiche J, Le Fur Y, Vilmen C et al (2012) In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. Int J Cancer 130:1511–1520

    Article  CAS  PubMed  Google Scholar 

  • Choi SY, Xue H, Wu R et al (2016) The MCT4 gene: a novel, potential target for therapy of advanced prostate cancer. Clin Cancer Res 22:2721–2733

    Article  CAS  PubMed  Google Scholar 

  • Cordat E, Casey JR (2009) Bicarbonate transport in cell physiology and disease. Biochem J 417:423–439

    Article  CAS  PubMed  Google Scholar 

  • Cordat E, Reithmeier RA (2014) Structure, function, and trafficking of SLC4 and SLC26 anion transporters. Curr Top Membr 73:1–67

    Article  CAS  PubMed  Google Scholar 

  • Cotter K, Capecci J, Sennoune S et al (2015) Activity of plasma membrane V-ATPases is critical for the invasion of MDA-MB231 breast cancer cells. J Biol Chem 290:3680–3692

    Article  CAS  PubMed  Google Scholar 

  • Cotter K, Liberman R, Sun-Wada G et al (2016) The a3 isoform of subunit a of the vacuolar ATPase localizes to the plasma membrane of invasive breast tumor cells and is overexpressed in human breast cancer. Oncotarget 7:46142–46157

    Article  PubMed  PubMed Central  Google Scholar 

  • De Milito A, Fais S (2005) Proton pump inhibitors may reduce tumour resistance. Expert Opin Pharmacother 6:1049–1054

    Article  PubMed  Google Scholar 

  • De Milito A, Canese R, Marino ML et al (2010) pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer 127:207–219

    Article  PubMed  CAS  Google Scholar 

  • Debreova M, Csaderova L, Burikova M et al (2019) CAIX regulates invadopodia formation through both a pH-dependent mechanism and interplay with actin regulatory proteins. Int J Mol Sci 20:2745

    Article  CAS  PubMed Central  Google Scholar 

  • Dhup S, Dadhich RK, Porporato PE et al (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Dubois L, Peeters SG, Van Kuijk SJ et al (2013) Targeting carbonic anhydrase IX by nitroimidazole based sulfamides enhances the therapeutic effect of tumor irradiation: a new concept of dual targeting drugs. Radiother Oncol 108:523–528

    Article  CAS  PubMed  Google Scholar 

  • Dykes SS, Gao C, Songock WK et al (2017a) Zinc finger E-box binding homeobox-1 (Zeb1) drives anterograde lysosome trafficking and tumor cell invasion via upregulation of Na+/H+ exchanger-1 (NHE1). Mol Carcinog 56:722–734

    Article  CAS  PubMed  Google Scholar 

  • Dykes SS, Steffan JJ, Cardelli JA (2017b) Lysosome trafficking is necessary for EGF-driven invasion and is regulated by p38 MAPK and Na+/H+ exchangers. BMC Cancer 17:672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Federici C, Lugini L, Marino ML et al (2016) Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells. J Enzyme Inhib Med Chem 31:119–125

    Article  CAS  PubMed  Google Scholar 

  • Fiaschi T, Giannoni E, Taddei ML et al (2013) Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells. Cell Cycle 12:1791–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillies RJ, Raghunand N, Karczmar GS et al (2002) MRI of the tumor microenvironment. J Magn Reson Imaging 16:430–450

    Article  PubMed  Google Scholar 

  • Gonzalez-Gronow M, Misra UK, Gawdi G et al (2005) Association of plasminogen with dipeptidyl peptidase IV and Na+/H+ exchanger isoform NHE3 regulates invasion of human 1-LN prostate tumor cells. J Biol Chem 280:27173–27178

    Article  CAS  PubMed  Google Scholar 

  • Grant CM, Kyprianou N (2013) Epithelial mesenchymal transition (EMT) in prostate growth and tumor progression. Transl Androl Urol 2:202–211

    PubMed  PubMed Central  Google Scholar 

  • Greco MR, Antelmi E, Busco G et al (2014) Protease activity at invadopodial focal digestive areas is dependent on NHE1-driven acidic pHe. Oncol Rep 31:940–946

    Article  CAS  PubMed  Google Scholar 

  • Guan X, Luo L, Begum G et al (2018) Elevated Na/H exchanger 1 (SLC9A1) emerges as a marker for tumorigenesis and prognosis in gliomas. J Exp Clin Cancer Res 37:255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halestrap AP (2013) The SLC16 gene family – structure, role and regulation in health and disease. Mol Aspects Med 34:337–349

    Article  CAS  PubMed  Google Scholar 

  • Halfdanarson OO, Fall K, Ogmundsdottir MH et al (2019) Proton pump inhibitor use and risk of breast cancer, prostate cancer, and malignant melanoma: an Icelandic population-based case-control study. Pharmacoepidemiol Drug Saf 28:471–478

    Article  CAS  PubMed  Google Scholar 

  • Harguindey S, Reshkin SJ (2017) “The new pH-centric anticancer paradigm in oncology and medicine”; SCB, 2017. Semin Cancer Biol 43:1–4

    Article  PubMed  Google Scholar 

  • Harguindey S, Arranz JL, Wahl ML et al (2009) Proton transport inhibitors as potentially selective anticancer drugs. Anticancer Res 29:2127–2136

    CAS  PubMed  Google Scholar 

  • Harguindey S, Arranz JL, Polo Orozco JD et al (2013) Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs--an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research. J Transl Med 11:282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harguindey S, Stanciu D, Devesa J et al (2017) Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin Cancer Biol 43:157–179

    Article  CAS  PubMed  Google Scholar 

  • Harguindey S, Koltai T, Reshkin SJ (2018) Curing cancer? Further along the new pH-centric road and paradigm. Oncoscience 5:132–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi H, Aharonovitz O, Alexander RT et al (2008) Na+/H+ exchange and pH regulation in the control of neutrophil chemokinesis and chemotaxis. Am J Physiol Cell Physiol 294:C526–C534

    Article  CAS  PubMed  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M et al (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    Article  CAS  PubMed  Google Scholar 

  • Hinton A, Sennoune SR, Bond S et al (2009) Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 284:16400–16408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyuga S, Wada H, Eguchi H et al (2017) Expression of carbonic anhydrase IX is associated with poor prognosis through regulation of the epithelialmesenchymal transition in hepatocellular carcinoma. Int J Oncol 51:1179–1190

    Article  CAS  PubMed  Google Scholar 

  • Iessi E, Logozzi M, Mizzoni D et al (2017) Rethinking the combination of proton exchanger inhibitors in cancer therapy. Metabolites 8:2

    Article  PubMed Central  CAS  Google Scholar 

  • Ivanov S, Liao SY, Ivanova A et al (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klier M, Andes FT, Deitmer JW et al (2014) Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters. J Biol Chem 289:2765–2775

    Article  CAS  PubMed  Google Scholar 

  • Koltai T (2017) Triple-edged therapy targeting intracellular alkalosis and extracellular acidosis in cancer. Semin Cancer Biol 43:139–146

    Article  CAS  PubMed  Google Scholar 

  • Kong SC, Giannuzzo A, Novak I et al (2014) Acid-base transport in pancreatic cancer: molecular mechanisms and clinical potential. Biochem Cell Biol 92:449–459

    Article  CAS  PubMed  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    Article  CAS  PubMed  Google Scholar 

  • Korenchan DE, Bok R, Sriram R et al (2019) Hyperpolarized in vivo pH imaging reveals grade-dependent acidification in prostate cancer. Oncotarget 10:6096–6110

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang SH, Hyde C, Reid IN et al (2002) Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma. Prostate 52:253–263

    Article  CAS  PubMed  Google Scholar 

  • Lauritzen G, Jensen MB, Boedtkjer E et al (2010) NBCn1 and NHE1 expression and activity in DeltaNErbB2 receptor-expressing MCF-7 breast cancer cells: contributions to pHi regulation and chemotherapy resistance. Exp Cell Res 316:2538–2553

    Article  CAS  PubMed  Google Scholar 

  • Lauritzen G, Stock CM, Lemaire J et al (2012) The Na+/H+ exchanger NHE1, but not the Na+, HCO3(−) cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2. Cancer Lett 317:172–183

    Article  CAS  PubMed  Google Scholar 

  • Le Floch R, Chiche J, Marchiq I et al (2011) CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci U S A 108:16663–16668

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebelo MT, Joubert AM, Visagie MH (2019) Warburg effect and its role in tumourigenesis. Arch Pharm Res 42:833–847

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Li JM, Choi I (2018a) Sodium bicarbonate cotransporter NBCe1 affects the growth and motility of prostate cancer cell lines LNCaP and PC3. FASEB J 32(1):IB411

    Google Scholar 

  • Lee S, Axelsen TV, Jessen N et al (2018b) Na(+),HCO3(−)-cotransporter NBCn1 (Slc4a7) accelerates ErbB2-induced breast cancer development and tumor growth in mice. Oncogene 37:5569–5584

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Mcintyre D, Honess D et al (2018c) Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. Br J Cancer 119:622–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Alvarez B, Casey JR et al (2002) Carbonic anhydrase II binds to and enhances activity of the Na+/H+ exchanger. J Biol Chem 277:36085–36091

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liu Y, Alvarez BV et al (2006) A novel carbonic anhydrase II binding site regulates NHE1 activity. Biochemistry 45:2414–2424

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang H, Oosterwijk E et al (2009) Antibody-specific detection of CAIX in breast and prostate cancers. Biochem Biophys Res Commun 386:488–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C, Niu L, Xiao Z et al (2019) Whole-genome sequencing of prostate cancer reveals novel mutation-driven processes and molecular subgroups. Life Sci:117218. https://doi.org/10.1016/j.lfs.2019.117218

  • Licon-Munoz Y, Michel V, Fordyce CA et al (2017) F-actin reorganization by V-ATPase inhibition in prostate cancer. Biol Open 6:1734–1744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JH, Park JW, Kim MS et al (2006) Bafilomycin induces the p21-mediated growth inhibition of cancer cells under hypoxic conditions by expressing hypoxia-inducible factor-1alpha. Mol Pharmacol 70:1856–1865

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Wang SS, Yang CK et al (2019) Genetic polymorphism and carbonic anhydrase 9 expression can predict nodal metastatic prostate cancer risk in patients with prostate-specific antigen levels </=10 ng/ml at initial biopsy. Urol Oncol 37:814.e9–814.e16

    Article  CAS  Google Scholar 

  • Lippert S, Berg KD, Hoyer-Hansen G et al (2016) Copenhagen uPAR prostate cancer (CuPCa) database: protocol and early results. Biomark Med 10:209–216

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chen G, Liu Z et al (2018) Aberrant FGFR tyrosine kinase signaling enhances the Warburg effect by reprogramming LDH isoform expression and activity in prostate cancer. Cancer Res 78:4459–4470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lock FE, Mcdonald PC, Lou Y et al (2013) Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene 32:5210–5219

    Article  CAS  PubMed  Google Scholar 

  • Lou Y, Mcdonald PC, Oloumi A et al (2011) Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 71:3364–3376

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Qin W, Li J et al (2005) The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res 65:6843–6849

    Article  CAS  PubMed  Google Scholar 

  • Lugini L, Federici C, Borghi M et al (2016) Proton pump inhibitors while belonging to the same family of generic drugs show different anti-tumor effect. J Enzyme Inhib Med Chem 31:538–545

    Article  CAS  PubMed  Google Scholar 

  • Lugini L, Sciamanna I, Federici C et al (2017) Antitumor effect of combination of the inhibitors of two new oncotargets: proton pumps and reverse transcriptase. Oncotarget 8:4147–4155

    Article  PubMed  Google Scholar 

  • Mahoney BP, Raghunand N, Baggett B et al (2003) Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 66:1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Malakooti J, Dahdal RY, Schmidt L et al (1999) Molecular cloning, tissue distribution, and functional expression of the human Na(+)/H(+) exchanger NHE2. Am J Physiol 277:G383–G390

    CAS  PubMed  Google Scholar 

  • Marchiq I, Le Floch R, Roux D et al (2015) Genetic disruption of lactate/H+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin. Cancer Res 75:171–180

    Article  CAS  PubMed  Google Scholar 

  • Margheri F, Luciani C, Taddei ML et al (2014) The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style. Oncotarget 5:1538–1553

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin-Aguilera M, Reig O, Lozano JJ et al (2015) Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer. Oncotarget 6:10604–10616

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Zaguilan R, Lynch RM, Martinez GM et al (1993) Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol 265:C1015–C1029

    Article  CAS  PubMed  Google Scholar 

  • Martins BX, Arruda RF, Costa GA et al (2019) Myrtenal-induced V-ATPase inhibition – a toxicity mechanism behind tumor cell death and suppressed migration and invasion in melanoma. Biochim Biophys Acta Gen Subj 1863:1–12

    Article  CAS  PubMed  Google Scholar 

  • Mcconnell M, Feng S, Chen W et al (2017) Osteoclast proton pump regulator Atp6v1c1 enhances breast cancer growth by activating the mTORC1 pathway and bone metastasis by increasing V-ATPase activity. Oncotarget 8:47675–47690

    Article  PubMed  PubMed Central  Google Scholar 

  • Mcguire CM, Collins MP, Sun-Wada G et al (2019) Isoform-specific gene disruptions reveal a role for the V-ATPase subunit a4 isoform in the invasiveness of 4T1-12B breast cancer cells. J Biol Chem 294:11248–11258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcintyre A, Harris AL (2016) The role of pH regulation in cancer progression. Recent Results Cancer Res 207:93–134

    Article  CAS  PubMed  Google Scholar 

  • Meehan J, Ward C, Turnbull A et al (2017) Inhibition of pH regulation as a therapeutic strategy in hypoxic human breast cancer cells. Oncotarget 8:42857–42875

    Article  PubMed  PubMed Central  Google Scholar 

  • Merk H, Messer P, Ardelt MA et al (2017) Inhibition of the V-ATPase by Archazolid A: a new strategy to inhibit EMT. Mol Cancer Ther 16:2329–2339

    Article  CAS  PubMed  Google Scholar 

  • Michel V, Licon-Munoz Y, Trujillo K et al (2013) Inhibitors of vacuolar ATPase proton pumps inhibit human prostate cancer cell invasion and prostate-specific antigen expression and secretion. Int J Cancer 132:E1–E10

    Article  CAS  PubMed  Google Scholar 

  • Nauseef JT, Henry MD (2011) Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat Rev Urol 8:428–439

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishisho T, Hata K, Nakanishi M et al (2011) The a3 isoform vacuolar type H(+)-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Mol Cancer Res 9:845–855

    Article  CAS  PubMed  Google Scholar 

  • Noor SI, Dietz S, Heidtmann H et al (2015) Analysis of the binding moiety mediating the interaction between monocarboxylate transporters and carbonic anhydrase II. J Biol Chem 290:4476–4486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odero-Marah V, Hawsawi O, Henderson V et al (2018) Epithelial-mesenchymal transition (EMT) and prostate cancer. Adv Exp Med Biol 1095:101–110

    Article  CAS  PubMed  Google Scholar 

  • Pacchiano F, Carta F, Mcdonald PC et al (2011) Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J Med Chem 54:1896–1902

    Article  CAS  PubMed  Google Scholar 

  • Parks SK, Pouyssegur J (2015) The Na(+)/HCO3(−) Co-transporter SLC4A4 plays a role in growth and migration of colon and breast cancer cells. J Cell Physiol 230:1954–1963

    Article  CAS  PubMed  Google Scholar 

  • Parks SK, Pouyssegur J (2017) Targeting pH regulating proteins for cancer therapy-Progress and limitations. Semin Cancer Biol 43:66–73

    Article  CAS  PubMed  Google Scholar 

  • Parks SK, Chiche J, Pouyssegur J (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226:299–308

    Article  CAS  PubMed  Google Scholar 

  • Parks SK, Chiche J, Pouyssegur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 13:611–623

    Article  CAS  PubMed  Google Scholar 

  • Parks SK, Cormerais Y, Durivault J et al (2017) Genetic disruption of the pHi-regulating proteins Na+/H+ exchanger 1 (SLC9A1) and carbonic anhydrase 9 severely reduces growth of colon cancer cells. Oncotarget 8:10225–10237

    Article  PubMed  Google Scholar 

  • Pastorekova S, Gillies RJ (2019) The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev 38:65–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen SF, King SA, Nygaard EB et al (2007) NHE1 inhibition by amiloride- and benzoylguanidine-type compounds. Inhibitor binding loci deduced from chimeras of NHE1 homologues with endogenous differences in inhibitor sensitivity. J Biol Chem 282:19716–19727

    Article  CAS  PubMed  Google Scholar 

  • Peppicelli S, Andreucci E, Ruzzolini J et al (2017) The acidic microenvironment as a possible niche of dormant tumor cells. Cell Mol Life Sci 74:2761–2771

    Article  CAS  PubMed  Google Scholar 

  • Pertega-Gomes N, Vizcaino JR, Miranda-Goncalves V et al (2011) Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer 11:312

    Article  PubMed  PubMed Central  Google Scholar 

  • Pertega-Gomes N, Felisbino S, Massie CE et al (2015) A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J Pathol 236:517–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouysségur J, Franchi A, L’allemain G et al (1985) Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Lett 190:115–119

    Article  PubMed  Google Scholar 

  • Proescholdt MA, Merrill MJ, Stoerr EM et al (2012) Function of carbonic anhydrase IX in glioblastoma multiforme. Neuro Oncol 14:1357–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulukuri SM, Gondi CS, Lakka SS et al (2005) RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem 280:36529–36540

    Article  CAS  PubMed  Google Scholar 

  • Raghunand N, Mahoney BP, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol 66:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Reshkin SJ, Cardone RA, Harguindey S (2013) Na+-H+ exchanger, pH regulation and cancer. Recent Pat Anticancer Drug Discov 8:85–99

    Article  CAS  PubMed  Google Scholar 

  • Reshkin SJ, Greco MR, Cardone RA (2014) Role of pHi, and proton transporters in oncogene-driven neoplastic transformation. Philos Trans R Soc Lond B Biol Sci 369:20130100

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero MF, Boron WF (1999) Electrogenic Na+/HCO3 cotransporters: cloning and physiology. Annu Rev Physiol 61:699–723

    Article  CAS  PubMed  Google Scholar 

  • Saha B, Kaur P, Tsao-Wei D et al (2008) Unmethylated E-cadherin gene expression is significantly associated with metastatic human prostate cancer cells in bone. Prostate 68:1681–1688

    Article  CAS  PubMed  Google Scholar 

  • Schwab A, Fabian A, Hanley PJ et al (2012) Role of ion channels and transporters in cell migration. Physiol Rev 92:1865–1913

    Article  CAS  PubMed  Google Scholar 

  • Sennoune SR, Bakunts K, Martinez GM et al (2004a) Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol 286:C1443–C1452

    Article  CAS  PubMed  Google Scholar 

  • Sennoune SR, Luo D, Martinez-Zaguilan R (2004b) Plasmalemmal vacuolar-type H+-ATPase in cancer biology. Cell Biochem Biophys 40:185–206

    Article  CAS  PubMed  Google Scholar 

  • Sethi S, Macoska J, Chen W et al (2010) Molecular signature of epithelial-mesenchymal transition (EMT) in human prostate cancer bone metastasis. Am J Transl Res 3:90–99

    PubMed  PubMed Central  Google Scholar 

  • Siegel R, Ma J, Zou Z et al (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  PubMed  Google Scholar 

  • Singh S, Sadacharan S, Su S et al (2003) Overexpression of vimentin: role in the invasive phenotype in an androgen-independent model of prostate cancer. Cancer Res 63:2306–2311

    CAS  PubMed  Google Scholar 

  • Skovgaard D, Persson M, Kjaer A (2017a) Imaging of prostate cancer using urokinase-type plasminogen activator receptor PET. PET Clin 12:243–255

    Article  PubMed  Google Scholar 

  • Skovgaard D, Persson M, Kjaer A (2017b) Urokinase plasminogen activator receptor-PET with (68)Ga-NOTA-AE105: first clinical experience with a novel PET ligand. PET Clin 12:311–319

    Article  PubMed  Google Scholar 

  • Smith BN, Odero-Marah VA (2012) The role of Snail in prostate cancer. Cell Adh Migr 6:433–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith GA, Howell GJ, Phillips C et al (2016) Extracellular and luminal pH regulation by vacuolar H+-ATPase isoform expression and targeting to the plasma membrane and endosomes. J Biol Chem 291:8500–8515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth LG, O’hurley G, O’grady A et al (2010) Carbonic anhydrase IX expression in prostate cancer. Prostate Cancer Prostatic Dis 13:178–181

    Article  CAS  PubMed  Google Scholar 

  • Spugnini E, Fais S (2017) Proton pump inhibition and cancer therapeutics: a specific tumor targeting or it is a phenomenon secondary to a systemic buffering? Semin Cancer Biol 43:111–118

    Article  CAS  PubMed  Google Scholar 

  • Spugnini EP, Baldi A, Buglioni S et al (2011) Lansoprazole as a rescue agent in chemoresistant tumors: a phase I/II study in companion animals with spontaneously occurring tumors. J Transl Med 9:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spugnini EP, Buglioni S, Carocci F et al (2014) High dose lansoprazole combined with metronomic chemotherapy: a phase I/II study in companion animals with spontaneously occurring tumors. J Transl Med 12:225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steffan JJ, Snider JL, Skalli O et al (2009) Na+/H+ exchangers and RhoA regulate acidic extracellular pH-induced lysosome trafficking in prostate cancer cells. Traffic 10:737–753

    Article  CAS  PubMed  Google Scholar 

  • Steffan JJ, Williams BC, Welbourne T et al (2010) HGF-induced invasion by prostate tumor cells requires anterograde lysosome trafficking and activity of Na+-H+ exchangers. J Cell Sci 123:1151–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stock C, Cardone RA, Busco G et al (2008) Protons extruded by NHE1: digestive or glue? Eur J Cell Biol 87:591–599

    Article  CAS  PubMed  Google Scholar 

  • Sun XC, Bonanno JA (2003) Identification and cloning of the Na/HCO(3) cotransporter (NBC) in human corneal endothelium. Exp Eye Res 77:287–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svastova E, Hulikova A, Rafajova M et al (2004) Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 577:439–445

    Article  CAS  PubMed  Google Scholar 

  • Todenhofer T, Seiler R, Stewart C et al (2018) Selective inhibition of the lactate transporter MCT4 reduces growth of invasive bladder cancer. Mol Cancer Ther 17:2746–2755

    Article  PubMed  Google Scholar 

  • Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem 281:9030–9037

    Article  CAS  PubMed  Google Scholar 

  • Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198–206

    Article  PubMed  Google Scholar 

  • Vaupel PW, Frinak S, Bicher HI (1981) Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res 41:2008–2013

    CAS  PubMed  Google Scholar 

  • Wang BY, Zhang J, Wang JL et al (2015) Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer. J Exp Clin Cancer Res 34:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Long X, Wang D et al (2018) Increased expression of Na(+)/H(+) exchanger isoform 1 predicts tumor aggressiveness and unfavorable prognosis in epithelial ovarian cancer. Oncol Lett 16:6713–6720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webb BA, Chimenti M, Jacobson MP et al (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677

    Article  CAS  PubMed  Google Scholar 

  • Whitton B, Okamoto H, Packham G et al (2018) Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer. Cancer Med 7:3800–3811

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie R, Wang H, Jin H et al (2017) NHE1 is upregulated in gastric cancer and regulates gastric cancer cell proliferation, migration and invasion. Oncol Rep 37:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Liu B, Zou P et al (2014a) Silencing of LASS2/TMSG1 enhances invasion and metastasis capacity of prostate cancer cell. J Cell Biochem 115:731–743

    Article  CAS  PubMed  Google Scholar 

  • Xu X, You J, Pei F (2014b) LASS2/TMSG1 gene silencing promotes the invasiveness and metastatic of human prostatic carcinoma cells through increase in vacuolar ATPase activity. Zhonghua Bing Li Xue Za Zhi 43:177–183

    CAS  PubMed  Google Scholar 

  • Yamada H, Yamazaki S, Moriyama N et al (2003) Localization of NBC-1 variants in human kidney and renal cell carcinoma. Biochem Biophys Res Commun 310:1213–1218

    Article  CAS  PubMed  Google Scholar 

  • Yang OCY, Loh SH (2019) Acidic stress triggers sodium-coupled bicarbonate transport and promotes survival in A375 human melanoma cells. Sci Rep 9:6858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Wang D, Dong W et al (2010) Inhibition of Na(+)/H(+) exchanger 1 by 5-(N-ethyl-N-isopropyl) amiloride reduces hypoxia-induced hepatocellular carcinoma invasion and motility. Cancer Lett 295:198–204

    Article  CAS  PubMed  Google Scholar 

  • Yuen HF, Kwok WK, Chan KK et al (2008) TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction. Carcinogenesis 29:1509–1518

    Article  CAS  PubMed  Google Scholar 

  • Zhu WB, Zhao ZF, Zhou X (2018) AMD3100 inhibits epithelial-mesenchymal transition, cell invasion, and metastasis in the liver and the lung through blocking the SDF-1alpha/CXCR4 signaling pathway in prostate cancer. J Cell Physiol 234:11746–11759

    Article  PubMed  CAS  Google Scholar 

  • Zou P, Yang Y, Xu X et al (2018) Silencing of vacuolar ATPase c subunit ATP6V0C inhibits the invasion of prostate cancer cells through a LASS2/TMSG1-independent manner. Oncol Rep 39:298–306

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Fliegel .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary Table 1

Summary of studies that directly point to a role for, or upregulation of, net acid-extruding transporters (and urokinase plasminogen activator) in prostate cancer. (PC, prostate cancer; uPA, urokinase plasminogen activator) (DOCX 53 kb))

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fliegel, L. (2020). Role of pH Regulatory Proteins and Dysregulation of pH in Prostate Cancer. In: Stock, C., Pardo, L.A. (eds) From Malignant Transformation to Metastasis. Reviews of Physiology, Biochemistry and Pharmacology, vol 182. Springer, Cham. https://doi.org/10.1007/112_2020_18

Download citation

Publish with us

Policies and ethics