Skip to main content

Photobiohydrogen Production and Strategies for H2 Yield Improvements in Cyanobacteria

  • Chapter
  • First Online:
Cyanobacteria in Biotechnology

Abstract

H2, an environmentally friendly energy source, can be generated using a fermentative biological method. Cyanobacteria, with their photosynthetic ability, utilize water as an electron source for H2 production catalyzed by a bidirectional hydrogenase and/or a nitrogenase. Unfortunately, these enzymes are irreversibly inactivated when exposed to atmospheric molecular oxygen, so optimization of production is needed. Various physicochemical parameters, such as carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) sources, impact H2 yield, ranging from 0.12 ± 0.01 to 31.79 ± 0.54 μmolH2/mg chl a/h. Genetic modification in many cyanobacterial strains resulted in an increased H2 yield, ranging from 2.8–101.33 μmol H2/mg chl a/h. Cell immobilization, primarily in agar and alginate, is another approach to increase H2 yield during biological production over several production cycles by reducing gas diffusion and cell stacking effects. Although commercialized biological hydrogen has undergone many challenges, numerous scientific methods are still required to be developed to turn these efforts into reality.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 September 2023

    A correction has been published.

References

  1. Perry JH (1963) Chemical engineers’ handbook. McGraw-Hill, New York

    Google Scholar 

  2. Allahverdiyeva Y, Aro EM, Kosourov SN (2014) Chapter 21 – Recent developments on cyanobacteria and green algae for biohydrogen photoproduction and its importance in CO2 reduction. In: Gupta VK, Tuohy MG, Kubicek CP, Saddler J, Xu F (eds) Bioenergy research: advances and applications. Elsevier, Amsterdam, pp 367–387. https://doi.org/10.1016/B978-0-444-59561-4.00021-8

    Chapter  Google Scholar 

  3. Mathews J, Wang G (2009) Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrog Energy 34(17):7404–7416. https://doi.org/10.1016/j.ijhydene.2009.05.078

    Article  CAS  Google Scholar 

  4. Hansel A, Lindblad P (1998) Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen. Appl Microbiol Biotechnol 50:153–160. https://doi.org/10.1007/s002530051270

    Article  CAS  Google Scholar 

  5. Kosourov S, Böhm M, Senger M, Berggren G, Stensjö K, Mamedov F et al (2021) Photosynthetic hydrogen production: novel protocols, promising engineering approaches and application of semi-synthetic hydrogenases. Physiol Plant 173(2):555–567. https://doi.org/10.1111/ppl.13428

    Article  CAS  PubMed  Google Scholar 

  6. Lindblad P (2018) Hydrogen production using novel photosynthetic cell factories. Cyanobacterial hydrogen production: design of efficient organisms. In: Microalgal hydrogen production: achievements and perspectives. G Royal Society of Chemistry, pp 323–334

    Chapter  Google Scholar 

  7. Wegelius A, Khanna N, Esmieu C, Barone GD, Pinto F, Tamagnini P, Berggren G, Lindblad P (2018) Generation of a functional, semisynthetic [FeFe]-hydrogenase in a photosynthetic microorganism. Energy Environ Sci 11(11):3163–3167. https://doi.org/10.1039/C8EE01975D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wegelius A, Land X, Berggren G, Lindblad P (2021) Semisynthetic [FeFe]-hydrogenase with stable expression and H2 production capacity in a photosynthetic microbe. Cell Rep Phys Sci 2(3):100376. https://doi.org/10.1016/j.xcrp.2021.100376

    Article  CAS  Google Scholar 

  9. Pinto FAL, Troshina O, Lindblad P (2002) A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrog Energy 27(11–12):1209–1215. https://doi.org/10.1016/S0360-3199(02)00089-7

    Article  Google Scholar 

  10. Khetkorn W, Khanna N, Incharoensakdi A, Lindblad P (2013) Metabolic and genetic engineering of cyanobacteria for enhanced hydrogen production. Biofuels 4(5):535–561. https://doi.org/10.4155/bfs.13.41

    Article  CAS  Google Scholar 

  11. Sadvakasova AK, Kossalbayev BD, Zayadan BK, Bolatkhan K, Alwasel S, Najafpour MM, Allakhverdiev SI (2020) Bioprocesses of hydrogen production by cyanobacteria cells and possible ways to increase their productivity. Renew Sust Energ Rev 133:110054. https://doi.org/10.1016/j.rser.2020.110054

    Article  CAS  Google Scholar 

  12. Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31(6):692–720. https://doi.org/10.1111/j.1574-6976.2007.00085.x

    Article  CAS  PubMed  Google Scholar 

  13. Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74(4):529–551. https://doi.org/10.1128/MMBR.00033-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27(11):1185–1193. https://doi.org/10.1016/S0360-3199(02)00131-3

    Article  CAS  Google Scholar 

  15. Lindberg P (2003) Cyanobacteial hydrogen metabolism-uptake hydrogenase and hydrogen production by nitrogenase in filamentous cyanobacteria. Doctor of Philosophy, Uppsala University, Uppsaly, Sweden

    Google Scholar 

  16. Golden JW, Yoon HS (1998) Heterocyst formation in Anabaena. Curr Opin Microbiol 1(6):623–629. https://doi.org/10.1016/s1369-5274(98)80106-9

    Article  CAS  PubMed  Google Scholar 

  17. Curatti L, Flores E, Salerno G (2002) Sucrose is involved in the diazotrophic metabolism of the heterocyst-forming cyanobacterium Anabaena sp. FEBS Lett 513(2–3):175–178. https://doi.org/10.1016/s0014-5793(02)02283-4

    Article  CAS  PubMed  Google Scholar 

  18. Thomas J, Meeks JC, Wolk CP, Shaffer PW, Austin SM (1977) Formation of glutamine from [13N] ammonia,[13N] dinitrogen, and [14C] glutamate by heterocysts isolated from Anabaena cylindrica. J Bacteriol 129(3):1545–1555. https://doi.org/10.1128/jb.129.3.1545-1555.1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bandyopadhyay A, Stöckel J, Min H, Sherman LA, Pakrasi HB (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 1:139. https://doi.org/10.1038/ncomms1139

    Article  CAS  PubMed  Google Scholar 

  20. Berman-Frank I, Lundgren P, Chen Y-B, Küpper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294(5546):1534–1537. https://doi.org/10.1126/science.1064082

    Article  CAS  PubMed  Google Scholar 

  21. Compaoré J, Stal LJ (2010) Oxygen and the light–dark cycle of nitrogenase activity in two unicellular cyanobacteria. Environ Microbiol 12(1):54–62. https://doi.org/10.1111/j.1462-2920.2009.02034.x

    Article  CAS  PubMed  Google Scholar 

  22. Tamagnini P, Costa JL, Almeida L, Oliveira MJ, Salema R, Lindblad P (2000) Diversity of cyanobacterial hydrogenases, a molecular approach. Curr Microbiol 40(6):356–361. https://doi.org/10.1007/s002840010070

    Article  CAS  PubMed  Google Scholar 

  23. Houchins JP, Burris RH (1981) Light and dark reactions of the uptake hydrogenase in Anabaena 7120. Plant Physiol 68(3):712–716. https://doi.org/10.1104/pp.68.3.712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lindblad P, Sellstedt A (1990) Occurrence and localization of an uptake hydrogenase in the filamentous heterocystous cyanobacterium Nostoc PCC 73102. Protoplasma 159:9–15. https://doi.org/10.1007/BF01326630

    Article  CAS  Google Scholar 

  25. Bothe H, Winkelmann S, Boison G (2008) Maximizing hydrogen production by cyanobacteria. Z Naturforsch C 63(3–4):226–232. https://doi.org/10.1515/znc-2008-3-412

    Article  CAS  PubMed  Google Scholar 

  26. Happe T, Schütz K, Böhme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182(6):1624–1631. https://doi.org/10.1128/jb.182.6.1624-1631.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oliveira P, Leitao E, Tamagnini P, Moradas-Ferreira P, Oxelfelt F (2004) Characterization and transcriptional analysis of hupSLW in Gloeothece sp. ATCC 27152: an uptake hydrogenase from a unicellular cyanobacterium. Microbiology 150(11):3647–3655. https://doi.org/10.1099/mic.0.27248-0

    Article  CAS  PubMed  Google Scholar 

  28. Oxelfelt F, Tamagnini P, Lindblad P (1998) Hydrogen uptake in Nostoc sp. strain PCC 73102. Cloning and characterization of a hupSL homologue. Arch Microbiol 169(4):267–274. https://doi.org/10.1007/s002030050571

    Article  CAS  PubMed  Google Scholar 

  29. Carrasco CD, Buettner JA, Golden JW (1995) Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci 92(3):791–795. https://doi.org/10.1073/pnas.92.3.791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carrasco CD, Holliday SD, Hansel A, Lindblad P, Golden JW (2005) Heterocyst-specific excision of the Anabaena sp. strain PCC 7120 hupL element requires xisC. J Bacteriol 187(17):6031–6038. https://doi.org/10.1128/jb.187.17.6031-6038.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91. https://doi.org/10.1146/annurev.arplant.58.032806.103848

    Article  CAS  PubMed  Google Scholar 

  32. Kentemich T, Casper M, Bothe H (1991) The reversible hydrogenase in Anacystis nidulans is a component of the cytoplasmic membrane. Naturwissenschaften 78:559–560. https://doi.org/10.1007/BF01134448

    Article  CAS  Google Scholar 

  33. Appel J, Phunpruch S, Steinmüller K, Schulz R (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch Microbiol 173(5):333–338. https://doi.org/10.1007/s002030000139

    Article  CAS  PubMed  Google Scholar 

  34. Gutekunst K, Chen X, Schreiber K, Kaspar U, Makam S, Appel J (2014) The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions. J Biol Chem 289(4):1930–1937. https://doi.org/10.1074/jbc.M113.526376

    Article  CAS  PubMed  Google Scholar 

  35. Troshina O, Serebryakova L, Sheremetieva M, Lindblad P (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int J Hydrog Energy 27(11):1283–1289. https://doi.org/10.1016/S0360-3199(02)00103-9

    Article  CAS  Google Scholar 

  36. Cournac L, Guedeney G, Peltier G, Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186(6):1737–1746. https://doi.org/10.1128/jb.186.6.1737-1746.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khetkorn W, Lindblad P, Incharoensakdi A (2010) Enhanced biohydrogen production by the N2-fixing cyanobacterium Anabaena siamensis strain TISTR 8012. Int J Hydrog Energy 35(23):12767–12776. https://doi.org/10.1016/j.ijhydene.2010.08.135

    Article  CAS  Google Scholar 

  38. Taikhao S, Phunpruch S (2017) Effect of metal cofactors of key enzymes on biohydrogen production by nitrogen fixing cyanobacterium Anabaena siamensis TISIR 8012. Energy Procedia 138:360–365. https://doi.org/10.1016/j.egypro.2017.10.166

    Article  CAS  Google Scholar 

  39. Khetkorn W, Lindblad P, Incharoensakdi A (2020) Enhanced H2 production with efficient N2-fixation by fructose mixotrophically grown Anabaena sp. PCC 7120 strain disrupted in uptake hydrogenase. Algal Res 47:101823. https://doi.org/10.1016/j.algal.2020.101823

    Article  Google Scholar 

  40. Taikhao S, Junyapoon S, Incharoensakdi A, Phunpruch S (2013) Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica. J Appl Phycol 25(2):575–585. https://doi.org/10.1007/s10811-012-9892-3

    Article  CAS  Google Scholar 

  41. Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium “Arthrospira (Spirulina) maxima”. Appl Environ Microbiol 74(19):6102–6113. https://doi.org/10.1128/AEM.01078-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raksajit W, Satchasataporn K, Lehto K, Mäenpää P, Incharoensakdi A (2012) Enhancement of hydrogen production by the filamentous non-heterocystous cyanobacterium Arthrospira sp. PCC 8005. Int J Hydrog Energy 37(24):18791–18797. https://doi.org/10.1016/j.ijhydene.2012.10.011

    Article  CAS  Google Scholar 

  43. Raksajit W, Maneeruttanarungroj C, Mäenpää P, Lehto K, Incharoensakdi A (2020) Upregulation of Hox-hydrogenase gene expression by nutrient adjustment in the filamentous non-heterocystous cyanobacterium Arthrospira sp. PCC 8005. J Appl Phycol 32(6):3799–3807. https://doi.org/10.1007/s10811-020-02217-x

    Article  CAS  Google Scholar 

  44. Yodsang P, Raksajit W, Aro EM, Mäenpää P, Incharoensakdi A (2018) Factors affecting photobiological hydrogen production in five filamentous cyanobacteria from Thailand. Photosynthetica 56(1):334–341. https://doi.org/10.1007/s11099-018-0789-5

    Article  CAS  Google Scholar 

  45. Wutthithien P, Lindblad P, Incharoensakdi A (2019) Improvement of photobiological hydrogen production by suspended and immobilized cells of the N2-fixing cyanobacterium Fischerella muscicola TISTR 8215. J Appl Phycol 31(6):3527–3536. https://doi.org/10.1007/s10811-019-01881-y

    Article  CAS  Google Scholar 

  46. Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98(1):114–120. https://doi.org/10.1111/j.1365-2672.2004.02431.x

    Article  CAS  PubMed  Google Scholar 

  47. Kaushik A, Anjana K (2011) Biohydrogen production by Lyngbya perelegans: influence of physico-chemical environment. Biomass Bioenergy 35(3):1041–1045. https://doi.org/10.1016/j.biombioe.2010.11.024

    Article  CAS  Google Scholar 

  48. Shah V, Garg N, Madamwar D (2003) Ultrastructure of the cyanobacterium Nostoc muscorum and exploitation of the culture for hydrogen production. Folia Microbiol 48(1):65–70. https://doi.org/10.1007/bf02931278

    Article  CAS  Google Scholar 

  49. Baebprasert W, Lindblad P, Incharoensakdi A (2010) Response of H2 production and hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Int J Hydrog Energy 35(13):6611–6616. https://doi.org/10.1016/j.ijhydene.2010.04.047

    Article  CAS  Google Scholar 

  50. Touloupakis E, Rontogiannis G, Silva Benavides AM, Cicchi B, Ghanotakis DF, Torzillo G (2016) Hydrogen production by immobilized Synechocystis sp. PCC 6803. Int J Hydrog Energy 41(34):15181–15186. https://doi.org/10.1016/j.ijhydene.2016.07.075

    Article  CAS  Google Scholar 

  51. Anjana K, Kaushik A (2014) Enhanced hydrogen production by immobilized cyanobacterium Lyngbya perelegans under varying anaerobic conditions. Biomass Bioenergy 63:54–57. https://doi.org/10.1016/j.biombioe.2014.01.019

    Article  CAS  Google Scholar 

  52. Leino H, Kosourov SN, Saari L, Sivonen K, Tsygankov AA, Aro E-M, Allahverdiyeva Y (2012) Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films. Int J Hydrog Energy 37(1):151–161. https://doi.org/10.1016/j.ijhydene.2011.09.088

    Article  CAS  Google Scholar 

  53. Pansook S, Incharoensakdi A, Phunpruch S (2019) Enhanced dark fermentative H2 production by agar-immobilized cyanobacterium Aphanothece halophytica. J Appl Phycol 31(5):2869–2879. https://doi.org/10.1007/s10811-019-01822-9

    Article  CAS  Google Scholar 

  54. Rashid N, Song W, Park J, Jin H-F, Lee K (2009) Characteristics of hydrogen production by immobilized cyanobacterium Microcystis aeruginosa through cycles of photosynthesis and anaerobic incubation. J Ind Eng Chem 15(4):498–503. https://doi.org/10.1016/j.jiec.2008.12.013

    Article  CAS  Google Scholar 

  55. Touloupakis E, Poloniataki EG, Ghanotakis DF, Carlozzi P (2021) Production of biohydrogen and/or poly-β-hydroxybutyrate by Rhodopseudomonas sp. using various carbon sources as substrate. Appl Biochem Biotechnol 193(1):307–318. https://doi.org/10.1007/s12010-020-03428-1

    Article  CAS  PubMed  Google Scholar 

  56. Khanna N, Lindblad P (2015) Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects. Int J Mol Sci 16(5):10537–10561. https://doi.org/10.3390/ijms160510537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tuo SH, Rodriguez IB, Ho TY (2020) H2 accumulation and N2 fixation variation by Ni limitation in Cyanothece. Limnol Oceanogr 65(2):377–386. https://doi.org/10.1002/lno.11305

    Article  CAS  Google Scholar 

  58. Allahverdiyeva Y, Leino H, Saari L, Fewer DP, Shunmugam S, Sivonen K, Aro E-M (2010) Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes. Int J Hydrog Energy 35(3):1117–1127. https://doi.org/10.1016/j.ijhydene.2009.12.030

    Article  CAS  Google Scholar 

  59. Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12(3):291–300. https://doi.org/10.1023/A:1008175112704

    Article  CAS  Google Scholar 

  60. Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Factories 4(1):36. https://doi.org/10.1186/1475-2859-4-36

    Article  CAS  Google Scholar 

  61. Touloupakis E, Torzillo G (2019) Photobiological hydrogen production. In: Solar hydrogen production. Academic Press, pp 511–525. https://doi.org/10.1016/B978-0-12-814853-2.00014-X

    Chapter  Google Scholar 

  62. Nagarajan D, Lee D-J, Kondo A, Chang J-S (2017) Recent insights into biohydrogen production by microalgae – from biophotolysis to dark fermentation. Bioresour Technol 227:373–387. https://doi.org/10.1016/j.biortech.2016.12.104

    Article  CAS  Google Scholar 

  63. Lindblad P, Christensson K, Lindberg P, Fedorov A, Pinto F, Tsygankov A (2002) Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. Int J Hydrog Energy 27(11):1271–1281. https://doi.org/10.1016/S0360-3199(02)00111-8

    Article  CAS  Google Scholar 

  64. Krujatz F, Illing R, Krautwer T, Liao J, Helbig K, Goy K, Opitz J, Cuniberti G, Bley T, Weber J (2015) Light-field-characterization in a continuous hydrogen-producing photobioreactor by optical simulation and computational fluid dynamics. Biotechnol Bioeng 112(12):2439–2449. https://doi.org/10.1002/bit.25667

    Article  CAS  PubMed  Google Scholar 

  65. Castro-Ceseña AB, del Pilar Sánchez-Saavedra M (2016) Effect of glycerol and PEGMA coating on the efficiency of cell holding in alginate immobilized Synechococcus elongatus. J Appl Phycol 28(1):63–71. https://doi.org/10.1007/s10811-015-0552-2

    Article  CAS  Google Scholar 

  66. Kaklamani G, Cheneler D, Grover LM, Adams MJ, Bowen J (2014) Mechanical properties of alginate hydrogels manufactured using external gelation. J Mech Behav Biomed Mater 36:135–142. https://doi.org/10.1016/j.jmbbm.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  67. Kosourov S, Leino H, Murukesan G, Lynch F, Sivonen K, Tsygankov AA et al (2014) Hydrogen photoproduction by immobilized N2-fixing cyanobacteria: understanding the role of the uptake hydrogenase in the long-term process. Appl Environ Microbiol 80(18):5807–5817. https://doi.org/10.1128/aem.01776-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Therien JB, Zadvornyy OA, Posewitz MC, Bryant DA, Peters JW (2014) Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002. Biotechnol Biofuels 7(1):1–8. https://doi.org/10.1186/s13068-014-0154-2

    Article  CAS  Google Scholar 

  69. Kosourov SN, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102(1):50–58. https://doi.org/10.1002/bit.22050

    Article  CAS  PubMed  Google Scholar 

  70. Seol E, Manimaran A, Jang Y, Kim S, Oh Y-K, Park S (2011) Sustained hydrogen production from formate using immobilized recombinant Escherichia coli SH5. Int J Hydrog Energy 36(14):8681–8686. https://doi.org/10.1016/j.ijhydene.2010.05.118

    Article  CAS  Google Scholar 

  71. Nguyen BT, Nicolai T, Benyahia L, Chassenieux C (2014) Synergistic effects of mixed salt on the gelation of κ-carrageenan. Carbohydr Polym 112:10–15. https://doi.org/10.1016/j.carbpol.2014.05.048

    Article  CAS  PubMed  Google Scholar 

  72. Semenchuk IN, Taranova LA, Kaleniuk AA, Il'iasov PV, Reshetilov AN (2000) Effect of various methods of immobilization on stability of a microbial biosensor based on Pseudomonas rathonis T during detection of surfactants. Prikl Biokhim Mikrobiol 36(1):80–84

    CAS  PubMed  Google Scholar 

  73. Gutthann F, Egert M, Marques A, Appel J (2007) Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochim Biophys Acta (BBA)-Bioenerget 1767(2):161–169. https://doi.org/10.1016/j.bbabio.2006.12.003

    Article  CAS  Google Scholar 

  74. Baebprasert W, Jantaro S, Khetkorn W, Lindblad P, Incharoensakdi A (2011) Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng 13(5):610–616. https://doi.org/10.1016/j.ymben.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  75. McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 76(15):5032–5038. https://doi.org/10.1128/aem.00862-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lindberg P, Schütz K, Happe T, Lindblad P (2002) A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133. Int J Hydrog Energy 27(11):1291–1296. https://doi.org/10.1016/S0360-3199(02)00121-0

    Article  CAS  Google Scholar 

  77. Masukawa H, Mochimaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58(5):618–624. https://doi.org/10.1007/s00253-002-0934-7

    Article  CAS  PubMed  Google Scholar 

  78. Lindberg P, Devine E, Stensjö K, Lindblad P (2012) HupW protease specifically required for processing of the catalytic subunit of the uptake hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120. Appl Environ Microbiol 78(1):273–276. https://doi.org/10.1128/aem.05957-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yoshino F, Ikeda H, Masukawa H, Sakurai H (2007) High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Mar Biotechnol 9(1):101–112. https://doi.org/10.1007/s10126-006-6035-3

    Article  CAS  Google Scholar 

  80. Ducat DC, Sachdeva G, Silver PA (2011) Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc Natl Acad Sci 108(10):3941–3946. https://doi.org/10.1073/pnas.1016026108

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gärtner K, Lechno-Yossef S, Cornish AJ, Wolk CP, Hegg EL (2012) Expression of Shewanella oneidensis MR-1 [FeFe]-hydrogenase genes in Anabaena sp. strain PCC 7120. Appl Environ Microbiol 78(24):8579–8586. https://doi.org/10.1128/aem.01959-12

    Article  PubMed  PubMed Central  Google Scholar 

  82. Weyman PD, Vargas WA, Tong Y, Yu J, Maness PC, Smith HO, Xu Q (2011) Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] hydrogenases in Synechococcus elongatus. PLoS One 6(5):e20126. https://doi.org/10.1371/journal.pone.0020126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lupacchini S, Appel J, Stauder R, Bolay P, Klähn S, Lettau E, Adrian L, Lauterbach L, Bühler B, Schmid A, Toepel J (2021) Rewiring cyanobacterial photosynthesis by the implementation of an oxygen-tolerant hydrogenase. Metab Eng 68:199–209. https://doi.org/10.1016/j.ymben.2021.10.006

    Article  CAS  PubMed  Google Scholar 

  84. Wolk CP, Ernst A, Elhai J (1994) Heterocyst metabolism and development. In: The molecular biology of cyanobacteria. Springer, Dordrecht, pp 769–823

    Chapter  Google Scholar 

  85. Buikema WJ, Haselkorn R (2001) Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. Proc Natl Acad Sci 98(5):2729–2734. https://doi.org/10.1073/pnas.051624898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wong FC, Meeks JC (2001) The hetF gene product is essential to heterocyst differentiation and affects HetR function in the cyanobacterium Nostoc punctiforme. J Bacteriol 183(8):2654–2661. https://doi.org/10.1128/jb.183.8.2654-2661.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Muñoz-García J, Ares S (2016) Formation and maintenance of nitrogen-fixing cell patterns in filamentous cyanobacteria. Proc Natl Acad Sci 113(22):6218–6223. https://doi.org/10.1073/pnas.1524383113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Avilan L, Roumezi B, Risoul V, Bernard CS, Kpebe A, Belhadjhassine M, Rousset M, Brugna M, Latifi A (2018) Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120. Appl Microbiol Biotechnol 102(13):5775–5783. https://doi.org/10.1007/s00253-018-8989-2

    Article  CAS  PubMed  Google Scholar 

  89. Vargas WA, Weyman PD, Tong Y, Smith HO, Xu Q (2011) [NiFe] hydrogenase from Alteromonas macleodii with unusual stability in the presence of oxygen and high temperature. Appl Environ Microbiol 77(6):1990–1998. https://doi.org/10.1128/aem.01559-10

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lindblad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khetkorn, W., Raksajit, W., Maneeruttanarungroj, C., Lindblad, P. (2023). Photobiohydrogen Production and Strategies for H2 Yield Improvements in Cyanobacteria. In: Bühler, K., Lindberg, P. (eds) Cyanobacteria in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 183. Springer, Cham. https://doi.org/10.1007/10_2023_216

Download citation

Publish with us

Policies and ethics