Skip to main content

Vibrational Spectroscopic Techniques for Probing Bioelectrochemical Systems

  • Chapter
  • First Online:
Biophotoelectrochemistry: From Bioelectrochemistry to Biophotovoltaics

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 158))

Abstract

A more complete understanding of bioelectrochemical interfaces is of increasing importance in both fundamental studies and biotechnological applications of proteins. Bioelectrochemical methods provide detailed information about the activity or rate of a process, but in situ spectroscopic methods are needed to gain direct structural insight into functionally relevant states. A number of methods have been reported that allow electrochemical and spectroscopic data to be collected from the same electrode, providing direct spectroscopic ‘snapshots’ of protein function, and here we focus on the application of infrared and Raman spectroscopies to the study of electrode-immobilised species. The ability to probe coordination at metal centres, protonation changes in amino acid side chains, reaction-induced changes in organic cofactors or substrates, protein orientation and subtle changes in protein secondary structure simultaneously, rapidly and at room temperature means that vibrational spectroscopic approaches are almost uniquely applicable to answering a wide range of questions in bioelectrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Technically this conversion between wavelength and wavenumber is only true in vacuum. In other media (for example laboratory air) the refractive index, n m, of the medium must also be taken into account such that \( \tilde{v} \) = 1/(λ m n m).

  2. 2.

    In fact the molar absorptivities (units M−1 cm−1) of the water bands are orders of magnitude lower than the more intense bands of biological molecules, but the molar concentration of the water solvent is very high.

  3. 3.

    IRRAS is also variously referred to as reflection-absorption IR spectroscopy (RAIRS) or abbreviated to IRAS in the literature.

References

  1. Siebert F, Hildebrandt P (2008) Vibrational spectroscopy in life science. Wiley-VCH, Weinheim, Chichester

    Google Scholar 

  2. Ash PA, Vincent KA (2012) Spectroscopic analysis of immobilised redox enzymes under direct electrochemical control. Chem Commun 48:1400–1409. doi:10.1039/C1CC15871F

    Article  CAS  Google Scholar 

  3. Sezer M, Millo D, Weidinger IM et al (2012) Analyzing the catalytic processes of immobilized redox enzymes by vibrational spectroscopies. IUBMB Life 64:455–464. doi:10.1002/iub.1020

    Article  CAS  Google Scholar 

  4. Atkins PW, Friedman RS (2010) Molecular quantum mechanics, 5th edn. Oxford University Press, Oxford

    Google Scholar 

  5. Hollas M (2004) Modern spectroscopy, 4th edn. Wiley, Chichester

    Google Scholar 

  6. Hecht E (2016) Optics, 5th edn. Addison-Wesley, Boston

    Google Scholar 

  7. Caughey WS, Shimada H, Choc MG, Tucker MP (1981) Dynamic protein structures: infrared evidence for four discrete rapidly interconverting conformers at the carbon monoxide binding site of bovine heart myoglobin. Proc Natl Acad Sci U S A 78:2903–2907

    Article  CAS  Google Scholar 

  8. Peterson ES, Friedman JM, Chien EYT, Sligar SG (1998) Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants. Biochemistry (Mosc) 37:12301–12319. doi:10.1021/bi980752u

    Article  CAS  Google Scholar 

  9. Baker MJ, Trevisan J, Bassan P et al (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9:1771–1791. doi:10.1038/nprot.2014.110

    Article  CAS  Google Scholar 

  10. Barth A, Zscherp C (2002) What vibrations tell about proteins. Q Rev Biophys 35:369–430. doi:10.1017/S0033583502003815

    Article  CAS  Google Scholar 

  11. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767:1073–1101. doi:10.1016/j.bbabio.2007.06.004

    Article  CAS  Google Scholar 

  12. Barth A (2000) The infrared absorption of amino acid side chains. Prog Biophys Mol Biol 74:141–173. doi:10.1016/S0079-6107(00)00021-3

    Article  CAS  Google Scholar 

  13. Venyaminov SY, Prendergast FG (1997) Water (H2O and D2O) molar absorptivity in the 1,000–4,000 cm − 1range and quantitative infrared spectroscopy of aqueous solutions. Anal Biochem 248:234–245. doi:10.1006/abio.1997.2136

    Article  CAS  Google Scholar 

  14. George J, Thomas J (1999) Raman spectroscopy of protein and nucleic acid assemblies. Annu Rev Biophys Biomol Struct 28:1–27. doi:10.1146/annurev.biophys.28.1.1

    Article  Google Scholar 

  15. Shreve AP, Cherepy NJ, Mathies RA (1992) Effective rejection of fluorescence interference in raman spectroscopy using a shifted excitation difference technique. Appl Spectrosc 46:707–711

    Article  CAS  Google Scholar 

  16. Matousek P, Towrie M, Ma C et al (2001) Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate. J Raman Spectrosc 32:983–988. doi:10.1002/jrs.784

    Article  CAS  Google Scholar 

  17. Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J Phys Chem 88:5935–5944. doi:10.1021/j150668a038

    Article  CAS  Google Scholar 

  18. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  19. Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Hydrogenases. Chem Rev. doi:10.1021/cr4005814

    Google Scholar 

  20. De Lacey AL, Fernández VM, Rousset M, Cammack R (2007) Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem Rev 107:4304–4330. doi:10.1021/cr0501947

    Article  Google Scholar 

  21. Moss D, Nabedryk E, Breton J, Mäntele W (1990) Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry. Eur J Biochem 187:565–572. doi:10.1111/j.1432-1033.1990.tb15338.x

    Article  CAS  Google Scholar 

  22. McEvoy JP, Foord JS (2005) Direct electrochemistry of blue copper proteins at boron-doped diamond electrodes. Electrochim Acta 50:2933–2941. doi:10.1016/j.electacta.2004.11.043

    Article  CAS  Google Scholar 

  23. Renault C, Harris KD, Brett MJ et al (2011) Time-resolved UV-visible spectroelectrochemistry using transparent 3D-mesoporous nanocrystalline ITO electrodes. Chem Commun 47:1863–1865. doi:10.1039/C0CC04154H

    Article  CAS  Google Scholar 

  24. Renault C, Nicole L, Sanchez C et al (2015) Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO2 films by voltabsorptometry. Phys Chem Chem Phys 17:10592–10607. doi:10.1039/C5CP00023H

    Article  CAS  Google Scholar 

  25. Marritt SJ, Kemp GL, Xiaoe L et al (2008) Spectroelectrochemical characterization of a pentaheme cytochrome in solution and as electrocatalytically active films on nanocrystalline metal-oxide electrodes. J Am Chem Soc 130:8588–8589. doi:10.1021/ja802641a

    Article  CAS  Google Scholar 

  26. Kemp GL, Marritt SJ, Xiaoe L et al (2009) Opportunities for mesoporous nanocrystalline SnO2 electrodes in kinetic and catalytic analyses of redox proteins. Biochem Soc Trans 37:368–372. doi:10.1042/BST0370368

    Article  CAS  Google Scholar 

  27. Matousek P, Parker AW (2006) Bulk Raman analysis of pharmaceutical tablets. Appl Spectrosc 60:1353–1357. doi:10.1366/000370206779321463

    Article  CAS  Google Scholar 

  28. Matousek P, Stone N (2007) Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. J Biomed Opt 12:024008–024008–8. doi: 10.1117/1.2718934

    Google Scholar 

  29. Leitch JJ, Brosseau CL, Roscoe SG et al (2013) Electrochemical and PM-IRRAS characterization of cholera toxin binding at a model biological membrane. Langmuir 29:965–976. doi:10.1021/la304939k

    Article  CAS  Google Scholar 

  30. Olejnik P, Palys B, Kowalczyk A, Nowicka AM (2012) Orientation of laccase on charged surfaces. Mediatorless oxygen reduction on amino- and carboxyl-ended ethylphenyl groups. J Phys Chem C 116:25911–25918. doi:10.1021/jp3098654

    Article  CAS  Google Scholar 

  31. Woods DA, Bain CD (2014) Total internal reflection spectroscopy for studying. Soft Matter 10:1071–1096. doi:10.1039/C3SM52817K

    Article  CAS  Google Scholar 

  32. Harrick NJ (1967) Internal reflection spectroscopy. Wiley, New York

    Google Scholar 

  33. Hidalgo R, Ash PA, Healy AJ, Vincent KA (2015) Infrared spectroscopy during electrocatalytic turnover reveals the Ni–L active site state during H2 oxidation by a NiFe hydrogenase. Angew Chem Int Ed 54:7110–7113. doi:10.1002/anie.201502338

    Article  CAS  Google Scholar 

  34. Ataka K, Stripp ST, Heberle J (2013) Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochim Biophys Acta Biomembr 1828:2283–2293. doi:10.1016/j.bbamem.2013.04.026

    Article  CAS  Google Scholar 

  35. Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, Chichester

    Book  Google Scholar 

  36. Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed 53:4756–4795. doi:10.1002/anie.201205748

    Article  Google Scholar 

  37. Gutiérrez-Sanz O, Rüdiger O, De Lacey A (2014) FTIR spectroscopy of metalloproteins. In: Nicolet Y, Fontecilla-Camps JC (eds) Metalloproteins. Humana, New York, pp 95–106

    Chapter  Google Scholar 

  38. Królikowska A (2013) Surface-enhanced resonance Raman scattering (SERRS) as a tool for the studies of electron transfer proteins attached to biomimetic surfaces: case of cytochrome c. Electrochim Acta 111:952–995. doi:10.1016/j.electacta.2013.08.140

    Article  Google Scholar 

  39. Ataka K, Heberle J (2007) Biochemical applications of surface-enhanced infrared absorption spectroscopy. Anal Bioanal Chem 388:47–54. doi:10.1007/s00216-006-1071-4

    Article  CAS  Google Scholar 

  40. Jeuken LJC (2016) Biophotoelectrochemistry: from bioelectrochemistry to photosynthesis. Adv Biochem Eng Biotechnol. Springer, Chapter 2

    Google Scholar 

  41. Kriegel S, Uchida T, Osawa M et al (2014) Biomimetic environment to study E. coli complex I through surface-enhanced IR absorption spectroscopy. Biochemistry (Mosc) 53:6340–6347. doi:10.1021/bi500955a

    Article  CAS  Google Scholar 

  42. Kranich A, Ly HK, Hildebrandt P, Murgida DH (2008) Direct observation of the gating step in protein electron transfer: electric-field-controlled protein dynamics. J Am Chem Soc 130:9844–9848. doi:10.1021/ja8016895

    Article  CAS  Google Scholar 

  43. Block H, Maertens B, Spriestersbach A, Brinker N, Kubicek J, Fabis R, Labahn J, Schäfer F (2009) Immobilized-metal affinity chromatography (IMAC): a review. Method Enzymol 463:439–473. doi:10.1016/S0076-6879(09)63027-5

    Article  CAS  Google Scholar 

  44. Ataka K, Giess F, Knoll W et al (2004) Oriented attachment and membrane reconstitution of His-tagged Cytochrome c oxidase to a gold electrode: in situ monitoring by surface-enhanced infrared absorption spectroscopy. J Am Chem Soc 126:16199–16206. doi:10.1021/ja045951h

    Article  CAS  Google Scholar 

  45. Guo H, Kimura T, Furutani Y (2013) Distortion of the amide-I and -II bands of an α-helical membrane protein, pharaonis halorhodopsin, depends on thickness of gold films utilized for surface-enhanced infrared absorption spectroscopy. Chem Phys 419:8–16. doi:10.1016/j.chemphys.2012.11.011

    Article  CAS  Google Scholar 

  46. Ataka K, Richter B, Heberle J (2006) Orientational control of the physiological reaction of cytochrome c oxidase tethered to a gold electrode. J Phys Chem B 110:9339–9347. doi:10.1021/jp0534131

    Article  CAS  Google Scholar 

  47. Sezer M, Frielingsdorf S, Millo D et al (2011) Role of the HoxZ subunit in the electron transfer pathway of the membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha immobilized on electrodes. J Phys Chem B 115:10368–10374. doi:10.1021/jp204665r

    Article  CAS  Google Scholar 

  48. Kozuch J, Weichbrodt C, Millo D et al (2014) Voltage-dependent structural changes of the membrane-bound anion channel hVDAC1 probed by SEIRA and electrochemical impedance spectroscopy. Phys Chem Chem Phys 16:9546–9555. doi:10.1039/C4CP00167B

    Article  CAS  Google Scholar 

  49. Yamakata A, Shimizu H, Oiki S (2015) Surface-enhanced IR absorption spectroscopy of the KcsA potassium channel upon application of an electric field. Phys Chem Chem Phys 17:21104–21111. doi:10.1039/C5CP02681D

    Article  CAS  Google Scholar 

  50. Alves A, Ly HK, Hildebrandt P et al (2015) Nature of the surface-exposed cytochrome–electrode interactions in electroactive biofilms of desulfuromonas acetoxidans. J Phys Chem B 119:7968–7974. doi:10.1021/acs.jpcb.5b03419

    Article  CAS  Google Scholar 

  51. Moe E, Sezer M, Hildebrandt P, Todorovic S (2015) Surface enhanced vibrational spectroscopic evidence for an alternative DNA-independent redox activation of endonuclease III. Chem Commun 51:3255–3257. doi:10.1039/C4CC09498K

    Article  CAS  Google Scholar 

  52. Jiang X, Zaitseva E, Schmidt M et al (2008) Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy. Proc Natl Acad Sci U S A 105:12113–12117. doi:10.1073/pnas.0802289105

    Article  CAS  Google Scholar 

  53. Greene BL, Joseph CA, Maroney MJ, Dyer RB (2012) Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies. J Am Chem Soc 134:11108–11111. doi:10.1021/ja3042367

    Article  CAS  Google Scholar 

  54. Murphy BJ, Hidalgo R, Roessler MM et al (2015) Discovery of dark pH-dependent H+ migration in a [NiFe]-hydrogenase and its mechanistic relevance: mobilizing the hydrido ligand of the Ni–C intermediate. J Am Chem Soc 137:8484–8489. doi:10.1021/jacs.5b03182

    Article  CAS  Google Scholar 

  55. Millo D, Hildebrandt P, Pandelia ME et al (2011) SEIRA spectroscopy of the electrochemical activation of an immobilized [NiFe] hydrogenase under turnover and non-turnover conditions. Angew Chem Int Ed 50:2632–2634. doi:10.1002/anie.201006646

    Article  CAS  Google Scholar 

  56. Kielb P, Sezer M, Katz S et al (2015) Spectroscopic observation of calcium-induced reorientation of cellobiose dehydrogenase immobilized on electrodes and its effect on electrocatalytic activity. ChemPhysChem 16:1960–1968. doi:10.1002/cphc.201500112

    Article  CAS  Google Scholar 

  57. Millo D, Ly HK (2015) Towards the understanding of the effect of oxygen on the electrocatalytic activity of microbial biofilms: a spectroelectrochemical study. RSC Adv 5:92042–92044. doi:10.1039/C5RA17429E

    Article  CAS  Google Scholar 

  58. Tonzetich ZJ, Wang H, Mitra D et al (2010) Identification of protein-bound dinitrosyl iron complexes by nuclear resonance vibrational spectroscopy. J Am Chem Soc 132:6914–6916. doi:10.1021/ja101002f

    Article  CAS  Google Scholar 

  59. Ogata H, Krämer T, Wang H et al (2015) Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy. Nat Commun 6:7890. doi:10.1038/ncomms8890

    Article  CAS  Google Scholar 

  60. Bozzini B, De Gaudenzi GP, Busson B et al (2010) In situ spectroelectrochemical measurements during the electro-oxidation of ethanol on WC-supported Pt-black, based on sum-frequency generation spectroscopy. J Power Sources 195:4119–4123. doi:10.1016/j.jpowsour.2010.01.017

    Article  CAS  Google Scholar 

  61. Guyot-Sionnest P (2005) The mature years of sum-frequency generation are ahead. Surf Sci 585:1–2. doi:10.1016/j.susc.2005.04.021

    Article  CAS  Google Scholar 

  62. Liu Y, Jasensky J, Chen Z (2012) Molecular interactions of proteins and peptides at interfaces studied by sum frequency generation vibrational spectroscopy. Langmuir 28:2113–2121. doi:10.1021/la203823t

    Article  Google Scholar 

  63. Cheng H, Nikolic-Hughes I, Wang JH et al (2002) Environmental effects on phosphoryl group bonding probed by vibrational spectroscopy: implications for understanding phosphoryl transfer and enzymatic catalysis. J Am Chem Soc 124:11295–11306. doi:10.1021/ja026481z

    Article  CAS  Google Scholar 

  64. Yan ECY, Wang Z, Fu L (2015) Proteins at interfaces probed by chiral vibrational sum frequency generation spectroscopy. J Phys Chem B 119:2769–2785. doi:10.1021/jp508926e

    Article  CAS  Google Scholar 

  65. Amenabar I, Poly S, Nuansing W et al (2013) Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat Commun 4:2890. doi:10.1038/ncomms3890

    Article  Google Scholar 

  66. Zeng ZC, Huang SC, Wu DY et al (2015) Electrochemical tip-enhanced Raman spectroscopy. J Am Chem Soc 137:11928–11931. doi:10.1021/jacs.5b08143

    Article  CAS  Google Scholar 

  67. Kurouski D, Mattei M, Van Duyne RP (2015) Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett 15:7956–7962. doi:10.1021/acs.nanolett.5b04177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the European Research Council (EnergyBioCatalysis-ERC-2010-StG-258600), the Biotechnology and Biological Sciences Research Council (BB/L009722/1), and the Engineering and Physical Sciences Research Council (EP/N013514/1) for funding. We wish to thank Pathinan Paengnakorn and Charlotte McKenna for recording the IR spectrum of carboxymyoglobin in Fig. 1, Rebecca Shutt for acquiring the spectra used in Fig. 4 and Ricardo Hidalgo for experimental data collection for and preparation of Figs. 7, 15 and 16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kylie A. Vincent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ash, P.A., Vincent, K.A. (2016). Vibrational Spectroscopic Techniques for Probing Bioelectrochemical Systems. In: Jeuken, L. (eds) Biophotoelectrochemistry: From Bioelectrochemistry to Biophotovoltaics. Advances in Biochemical Engineering/Biotechnology, vol 158. Springer, Cham. https://doi.org/10.1007/10_2016_3

Download citation

Publish with us

Policies and ethics