Skip to main content

Starting Up Microbial Enhanced Oil Recovery

  • Chapter
  • First Online:
Geobiotechnology II

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 142))

Abstract

This chapter gives the reader a practical introduction into microbial enhanced oil recovery (MEOR) including the microbial production of natural gas from oil. Decision makers who consider the use of one of these technologies are provided with the required scientific background as well as with practical advice for upgrading an existing laboratory in order to conduct microbiological experiments. We believe that the conversion of residual oil into natural gas (methane) and the in situ production of biosurfactants are the most promising approaches for MEOR and therefore focus on these topics. Moreover, we give an introduction to the microbiology of oilfields and demonstrate that in situ microorganisms as well as injected cultures can help displace unrecoverable oil in place (OIP). After an initial research phase, the enhanced oil recovery (EOR) manager must decide whether MEOR would be economical. MEOR generally improves oil production but the increment may not justify the investment. Therefore, we provide a brief economical assessment at the end of this chapter. We describe the necessary state-of-the-art scientific equipment to guide EOR managers towards an appropriate MEOR strategy. Because it is inevitable to characterize the microbial community of an oilfield that should be treated using MEOR techniques, we describe three complementary start-up approaches. These are: (i) culturing methods, (ii) the characterization of microbial communities and possible bio-geochemical pathways by using molecular biology methods, and (iii) interfacial tension measurements. In conclusion, we hope that this chapter will facilitate a decision on whether to launch MEOR activities. We also provide an update on relevant literature for experienced MEOR researchers and oilfield operators. Microbiologists will learn about basic principles of interface physics needed to study the impact of microorganisms living on oil droplets. Last but not least, students and technicians trying to understand processes in oilfields and the techniques to examine them will, we hope, find a valuable source of information in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “biocracking” refers to thermal cracking, usually used in the refining industry to break large hydrocarbon molecules into smaller ones, which is essentially what microorganisms do at much lower temperature.

Abbreviations

16S rRNA:

Ribosomal RNA of a sedimentation rate of 16 Svedberg

A :

Surface area of an oil droplet

alk :

Alkane hydroxylase gene

apsA :

Adenosine-5′-phosphosulfate (APS) reductase gene

bbl:

Barrel (oil)

CARD-FISH:

Catalyzed reporter deposition, fluorescence in situ hybridization

cDNA:

Complementary DNA for an RNA strand

CMC:

Critical micelle concentration

dsrAB :

Dissimilatory (bi)sulfite reductase gene

DGGE:

Denaturing gradient gel electrophoresis

DNA:

Deoxyribonucleic acid

E :

Elasticity

EDTA:

Ethylenediaminetetraacetate

EOR:

Enhanced oil recovery

EPS:

Extracellular polymeric substances

f :

Frequency

FISH:

Fluorescence in situ hybridization

g :

Gravity force

ΔG :

Gibbs free energy

γ:

Interfacial tension

HOT:

Hot oil treatment

licA :

Lichenysin A synthetase gene

μ:

Viscosity

mcr :

Methyl coenzyme M reductase gene

MEOR:

Microbial enhanced oil recovery

MIC:

Microbial influenced corrosion

MPN:

Most probable number

mRNA:

Messenger RNA

nar :

Nitrate reductase gene

nir :

Nitrite reductase gene

nor :

Nitrite oxidoreductase gene

nos :

Nitric oxide synthase gene

nrf :

Nitrite reductase gene (to ammonium)

NTA:

Nitrilotriacetic acid

OIP:

Oil in place

omc :

Outer-membrane cytochrome gene

omp :

Outer-membrane multicopper protein gene

P :

Pressure

PCR:

Polymerase chain reaction

PLFA:

Phospholipid-derived fatty acids

psia:

Pounds per square inch

qPCR:

Quantitative PCR

RNA:

Ribonucleic acid

RT-qPCR:

Reverse transcription-qPCR

SAC:

Surface active compound

sfp :

Surfactin synthesizing protein gene

SIP:

Stable isotope probing

srf :

sfp operon (sfp gene cluster)

θ:

Contact angle

SSU:

Small subunit

T-RFLP:

Terminal restriction fragment length polymorphism

V :

Volume

References

  1. U.S. Energy Information Administration, U.S. Department of Energy (2010) International Energy Outlook. Office of Integrated Analysis and Forecasting: Washington, DC

    Google Scholar 

  2. BP p.l.c. Statistical Review of World Energy 2013. 22 June 2013. Available from: http://www.bp.com/content/dam/bp/excel/Statistical-Review/statistical_review_of_world_energy_2013_workbook.xlsx.

  3. U.S. Department of Energy (2006) Undeveloped domestic oil resources. U.S. Department of Energy: Washington, DC, USA

    Google Scholar 

  4. Zobell CE (1946) Bacteriological process for treatment of fluid-bearing earth formations. United States, US Patent 2413278

    Google Scholar 

  5. Brown LR (2010) Microbial enhanced oil recovery (MEOR). Curr Opin Microbiol 13:316–320

    CAS  Google Scholar 

  6. Lazar I (1991) MEOR field trials carried out over the world during the last 35 Years. In: Erle CD (ed) Developments in petroleum science. Elsevier, Amsterdam

    Google Scholar 

  7. Youssef N, Elshahed MS, McInerney MJ (2009) Microbial processes in oil fields: culprits, problems, and opportunities. In: Allen I, Laskin SS, Geoffrey MG (eds) Advances in applied microbiology. Academic Press, New York

    Google Scholar 

  8. U.S. Energy Information Administration (2013) Spot Prices for Crude Oil and Petroleum Products. http://www.eia.gov/dnav/pet/pet_pri_spt_s1_m.htm. Accessed 9–13 Jan 2013

  9. Volk H, Hendry P (2010) 3° oil recovery: fundamental approaches and principles of microbially enhanced oil recovery. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  10. Moses V, Springham DG (1982) Bacteria and the enhancement of oil recovery. Applied Science Publishers, London

    Google Scholar 

  11. Meyer JP (2010) Summary of carbon dioxide enhanced oil recovery (CO2EOR) injection well technology. American Petroleum Institute, Plano, TX, USA

    Google Scholar 

  12. Bastin ES (1926) The problem of the natural reduction of sulphates. Bull Am Assoc Petrol Geol 10:1270–1299

    Google Scholar 

  13. Galushko AS, Rozanova EP (1991) Desulfobacterium cetonicum spec. nov., a sulfate-reducing bacterium oxidizing fatty acids and ketones. Microbiology (Moscow, Russ. Fed.), 60:102–107

    Google Scholar 

  14. Rozanova EP, Nazina TN, Galushko AS (1988) Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov., sp. nov. Microbiology (Moscow, Russ. Fed.) 57: 634–641

    Google Scholar 

  15. Ng TK, Weimer PJ, Gawel LJ (1989) Possible nonanthropogenic origin of two methanogenic isolates from oil-producing wells in the san miguelito field, ventura county, California. Geomicrobiol J 7:185–192

    Google Scholar 

  16. Voordouw G, Armstrong SM, Reimer MF, Fouts B et al (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62:1623–1629

    CAS  Google Scholar 

  17. L’Haridon S, Reysenbacht AL, Glenat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–224

    Google Scholar 

  18. Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77:103–116

    CAS  Google Scholar 

  19. Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    CAS  Google Scholar 

  20. Birkeland N-K (2004) Chapter 14: The microbial diversity of deep subsurface oil reservoirs. In: Vazquez-Duhalt R, Quintero-Ramirez R (eds) Studies in Surface Science and Catalalysis. Elsevier, Amsterdam

    Google Scholar 

  21. Grassia GS, McLean KM, Glénat P, Bauld J, Sheehy AJ (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21:47–58

    CAS  Google Scholar 

  22. Magot M (1996) Similar bacteria in remote oil fields. Nature 379:681

    CAS  Google Scholar 

  23. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    CAS  Google Scholar 

  24. Sunde E, Torsvik T (2005) Microbial control of hydrogen sulfide production in oil reservoirs. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC

    Google Scholar 

  25. Venzlaff H, Enning D, Srinivasan J, Mayrhofer KJJ et al (2013) Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci 66:88–96

    CAS  Google Scholar 

  26. Matthews JD (2008) The origin of oil—a creationist answer. Ans Res J 1:145–168

    Google Scholar 

  27. Tissot BP, Welte HD (1984) Petroleum formation and occurrence, 2nd edn. Springer, Berlin

    Google Scholar 

  28. Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC

    Google Scholar 

  29. Stetter KO, Huber R, Blochl E, Kurr M et al (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745

    Google Scholar 

  30. Jones DM, Head IM, Gray ND, Adams JJ et al (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180

    CAS  Google Scholar 

  31. Sunde E (2006) Method of treating a hydrocarbon bearing formation. United States, US Patent 7124817

    Google Scholar 

  32. Hyne NJ (2001) Nontechnical guide to petroleum geology, exploration, drilling, and production, 2nd edn. PennWell Corporation Oklahoma, Oklahoma

    Google Scholar 

  33. Nourani M, Panahi H, Mohebbi A, Haghighi M, Roostaazad R, Biria D (2007) Laboratory studies of MEOR in the micromodel as a fractured system. In: Eastern Regional Meeting, SPE Publications, Lexington

    Google Scholar 

  34. Abtahi N, Roostaazad R, Ghadiri F (2003) Biosurfactant production. In: MEOR for improvement of Iran’s Oil reservoirs’ production experimental approach. In: SPE international improved oil recovery conference in Asia Pacific. SPE Publications, Kuala Lumpur

    Google Scholar 

  35. Sayyouh MH (2002) Microbial enhanced oil recovery: research studies in the Arabic area during the last ten years. In: SPE/DOE improved oil recovery symposium. SPE Publications, Tulsa

    Google Scholar 

  36. Kadarwati S, Udiharto M, Hadi N, Doria I (1999) Selected Indonesian microbes potentials for MEOR. In: SPE Asia Pacific improved oil recovery conference. SPE Publications, Kuala Lumpur

    Google Scholar 

  37. Yusuf A, Sri K, Nurkamelia, Sumaryana (1999) Field test of the indigenous microbes for oil recovery, Ledok Field, Central Java. In: SPE Asia Pacific improved oil recovery conference. SPE Publications, Kuala Lumpur, Malaysia. SPE accession number 57309, doi: 10.2118/57309-MS

  38. Sugihardjo, Legowo EH, Pratomo, Pratomo SW (1999) Microbial core flooding experiments using indigenous microbes. In: SPE Asia Pacific improved oil recovery conference. SPE Publications, Kuala Lumpur, Malaysia. SPE accession number 57306, doi: 10.2118/57306-MS

  39. Sugai Y, Kishita A, Hong CX, Enomoto H, Chida T, Zhou SC (1999) Laboratory investigation of polymer producer TU-15A for MEOR field tests. In: SPE Asia Pacific oil and gas conference and exhibition. SPE Publications, Jakarta, pp. 1–13

    Google Scholar 

  40. AlMaghrabi I, Chaalal O, Islam MR (1998) Thermophilic bacteria in UAE environment can enhance biodegradation and mitigate wellbore problems. In: Abu Dhabi international petroleum exhibition and conference. SPE Publications, Abu Dhabi

    Google Scholar 

  41. Ohno K, Maezumi S, Sarma HK, Enomoto H et al (1999) Implementation and performance of a microbial enhanced oil recovery field pilot in Fuyu oilfield, China. In: SPE Asia Pacific oil and gas conference and exhibition. SPE Publications, Jakarta

    Google Scholar 

  42. Lewin A, Johansen J, Wentzel A, Kotlar HK, Drabløs F, Valla S (in press) The microbial communities in two apparently physically separated deep subsurface oil reservoirs show extensive DNA sequence similarities. Environ Microbiol. doi:10.1111/1462-2920.12181 (in press)

  43. Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291–294

    CAS  Google Scholar 

  44. Wilhelms A, Larter SR, Head I, Farrimond P, di-Primio R, Zwach C (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411:1034–1037

    CAS  Google Scholar 

  45. da Cunha C, Rosado A, Sebastián G, Seldin L, von der Weid I (2006) Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. Appl Microbiol Biotechnol 73:949–959

    CAS  Google Scholar 

  46. Spark I, Patey I, Duncan B, Hamilton A, Devine C, McGovern-Traa C (2000) The effects of indigenous and introduced microbes on deeply buried hydrocarbon reservoirs, North Sea. Clay Miner 35:5–12

    CAS  Google Scholar 

  47. Beeder J, Nilsen RK, Thorstenson T, Torsvik T (1996) Penetration of sulfate reducers through a porous North Sea oil reservoir. Appl Environ Microbiol 62:3551–3553

    CAS  Google Scholar 

  48. Nilsen RK, Beeder J, Thorstenson T, Torsvik T (1996) Distribution of thermophilic marine sulfate reducers in North Sea oil field waters and oil reservoirs. Appl Environ Microbiol 62:1793–1798

    CAS  Google Scholar 

  49. Slobodkin AI, Jeanthon C, L’Haridon S, Nazina T, Miroshnichenko M, Bonch-Osmolovskaya E (1999) Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of Western Siberia. Curr Microbiol 39:99–102

    CAS  Google Scholar 

  50. Kotlar HK, Lewin A, Johansen J, Throne-Holst M et al (2011) High coverage sequencing of DNA from microorganisms living in an oil reservoir 2.5 kilometres subsurface. Environ Microbiol Rep 3:674–681

    Google Scholar 

  51. Basso O, Lascourrèges J-F, Jarry M, Magot M (2005) The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples. Environ Microbiol 7:13–21

    Google Scholar 

  52. Park CB, Clark DS (2002) Rupture of the cell envelope by decompression of the deep-sea methanogen Methanococcus jannaschii. Appl Environ Microbiol 68:1458–1463

    CAS  Google Scholar 

  53. Belyaev SS, Wolkin R, Kenealy WR, DeNiro MJ, Epstein S, Zeikus JG (1983) Methanogenic bacteria from the bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl Environ Microbiol 45:691–697

    CAS  Google Scholar 

  54. Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG et al (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864

    CAS  Google Scholar 

  55. Youssef N, Simpson DR, Duncan KE, McInerney MJ et al (2007) In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol 73:1239–1247

    CAS  Google Scholar 

  56. Brioukhanov AL, Netrusov AI (2004) Catalase and superoxide dismutase: distribution, properties, and physiological role in cells of strict anaerobes. Biochemistry (Mosc.) 69:949–962

    CAS  Google Scholar 

  57. Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848

    CAS  Google Scholar 

  58. Voordouw G (1995) The genus Desulfovibrio: the centennial. Appl Environ Microbiol 61:2813–2819

    CAS  Google Scholar 

  59. Colin Y, Goñi-Urriza M, Caumette P, Guyoneaud R (2013) Combination of high throughput cultivation and dsrA sequencing for assessment of sulfate-reducing bacteria diversity in sediments. FEMS Microbiol Ecol 83:26–37

    CAS  Google Scholar 

  60. Thamdrup B, Rossello-Mora R, Amann R (2000) Microbial manganese and sulfate reduction in black sea shelf sediments. Appl Environ Microbiol 66:2888–2897

    CAS  Google Scholar 

  61. Sowers KR, Boone JE, Gunsalus RP (1993) Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl Environ Microbiol 59:3832–3839

    CAS  Google Scholar 

  62. Galushko AS, Rozanova EP, Ivanova AE (1993) Sulfate reduction in waters injected into oil strata. Microbiology (Moscow, Russ. Fed.) 62:653–656

    Google Scholar 

  63. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris R, Ribbons DW (eds) Methods in microbiology. Academic Press, New York

    Google Scholar 

  64. Ali SA, Hasan F, Shah Z, Kanwal N, Zeb S (2013) Biodegradation of natural and synthetic rubbers: a review. Int Biodeterior Biodegrad 83:145–157

    Google Scholar 

  65. Widdel F (2010) Cultivation of anaerobic microorganisms with hydrocarbons as growth substrates. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  66. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    CAS  Google Scholar 

  67. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Dworkin M (ed) The prokaryotes. Springer, New York

    Google Scholar 

  68. Mahlert F, Bauer C, Jaun B, Thauer R, Duin E (2002) The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: In vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2. J Biol Inorg Chem 7:500–513

    CAS  Google Scholar 

  69. Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49

    CAS  Google Scholar 

  70. Wolfe RS, Metcalf WW (2010) A vacuum-vortex technique for preparation of anoxic solutions or liquid culture media in small volumes for cultivating methanogens or other strict anaerobes. Anaerobe 16:216–219

    Google Scholar 

  71. Jones GA, Pickard MD (1980) Effect of titanium (III) citrate as reducing agent on growth of rumen bacteria. Appl Environ Microbiol 39:1144–1147

    CAS  Google Scholar 

  72. Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    CAS  Google Scholar 

  73. Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13:271–279

    Google Scholar 

  74. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  75. McInerney MJ, Knapp RM, Duncan K, Simpson DR et al (2007) Development of an in situ biosurfactant production technology for enhanced oil recovery. University of Oklahoma.

    Google Scholar 

  76. Yakimov MM, Kröger A, Slepak TN, Giuliano L, Timmis KN, Golyshin PN (1998) A putative lichenysin A synthetase operon in Bacillus licheniformis initial characterization. Biochimica et Biophysica Acta (BBA)—Gene Structure and Expression, 1399:141–153

    Google Scholar 

  77. Philippot L, Piutti S, Martin-Laurent F, Hallet S, Germon JC (2002) Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. Appl Environ Microbiol 68:6121–6128

    CAS  Google Scholar 

  78. Palmer K, Biasi C, Horn MA (2012) Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J 6:1058–1077

    CAS  Google Scholar 

  79. Throbäck IN, Enwall K, Jarvis Å, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

    Google Scholar 

  80. Rich JJ, Heichen RS, Bottomley PJ, Cromack K, Myrold DD (2003) Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl Environ Microbiol 69:5974–5982

    CAS  Google Scholar 

  81. Wagner M, Loy A, Klein M, Lee N et al (2005) Functional marker genes for identification of sulfate-reducing prokaryotes. In: Leadbetter JR (ed) Methods in enzymology. Academic Press. New York

    Google Scholar 

  82. Pester M, Bittner N, Deevong P, Wagner M, Loy A (2010) A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. ISME J 4:1591–1602

    CAS  Google Scholar 

  83. Hales BA, Edwards C, Ritchie DA, Hall G, Pickup RW, Saunders JR (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62:668–675

    CAS  Google Scholar 

  84. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530

    CAS  Google Scholar 

  85. Steinberg LM, Regan JM (2009) mcrA-Targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75:4435–4442

    CAS  Google Scholar 

  86. von Netzer F, Pilloni G, Kleindienst S, Krüger M et al (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552

    Google Scholar 

  87. Kuntze K, Kiefer P, Baumann S, Seifert J et al (2011) Enzymes involved in the anaerobic degradation of meta-substituted halobenzoates. Mol Microbiol 82:758–769

    CAS  Google Scholar 

  88. Kuntze K, Shinoda Y, Moutakki H, McInerney MJ et al (2008) 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ Microbiol 10:1547–1556

    CAS  Google Scholar 

  89. Kepner RL, Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58:603–615

    CAS  Google Scholar 

  90. Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118

    Google Scholar 

  91. Pernthaler J, Glöckner F-O, Schönhuber W, Amann R (2001) Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. In: Paul JH (ed) Methods in microbiology. Academic Press, New York

    Google Scholar 

  92. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    CAS  Google Scholar 

  93. Zhang T, Fang HP (2006) Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl Microbiol Biotechnol 70:281–289

    CAS  Google Scholar 

  94. Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20

    CAS  Google Scholar 

  95. Gittel A, Sorensen KB, Skovhus TL, Ingvorsen K, Schramm A (2009) Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment. Appl Environ Microbiol 75:7086–7096

    CAS  Google Scholar 

  96. Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jørgensen BB (2007) Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol 9:131–142

    CAS  Google Scholar 

  97. Schippers A, Kock D, Höft C, Köweker G, Siegert M (2012) Quantification of microbial communities in subsurface marine sediments of the Black Sea and off Namibia. Front Microbiol 3

    Google Scholar 

  98. Agrawal A, Lal B (2009) Rapid detection and quantification of bisulfite reductase genes in oil field samples using real-time PCR. FEMS Microbiol Ecol 69:301–312

    CAS  Google Scholar 

  99. Akkanen J, Tuikka A, Kukkonen JVK (2012) On the borderline of dissolved and particulate organic matter: Partitioning and bioavailability of polycyclic aromatic hydrocarbons. Ecotoxicol Environ Saf 78:91–98

    CAS  Google Scholar 

  100. Gittel A, Kofoed MVW, Sørensen KB, Ingvorsen K, Schramm A (2012) Succession of Deferribacteres and Epsilonproteobacteria through a nitrate-treated high-temperature oil production facility. Syst Appl Microbiol 35:165–174

    CAS  Google Scholar 

  101. Reis P, Waldron L, Goswami R, Xu W et al (2011) mRNA transcript quantification in archival samples using multiplexed, color-coded probes. BMC Biotechnol 11:46

    CAS  Google Scholar 

  102. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    CAS  Google Scholar 

  103. Meyerdierks A, Kube M, Kostadinov I, Teeling H et al (2010) Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol 12:422–439

    CAS  Google Scholar 

  104. Siegert M, Taubert M, Seifert J, von Bergen M, et al (in press) The nitrogen cycle in anaerobic methanotrophic mats of the Black Sea is linked to sulfate reduction and biomass decomposition. FEMS Microbiol Ecol. doi:10.1111/1574-6941.12156 (in press)

  105. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    CAS  Google Scholar 

  106. DeSantis T, Brodie E, Moberg J, Zubieta I, Piceno Y, Andersen G (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    CAS  Google Scholar 

  107. He Z, Deng Y, Van Nostrand JD, Tu Q et al (2010) GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J 4:1167–1179

    CAS  Google Scholar 

  108. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek 73:127–141

    CAS  Google Scholar 

  109. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    CAS  Google Scholar 

  110. Van Der Kraan GM, Bruining J, Lomans BP, Van Loosdrecht MCM, Muyzer G (2010) Microbial diversity of an oil–water processing site and its associated oil field: the possible role of microorganisms as information carriers from oil-associated environments. FEMS Microbiol Ecol 71:428–443

    Google Scholar 

  111. Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    CAS  Google Scholar 

  112. Herrmann S, Kleinsteuber S, Chatzinotas A, Kuppardt S et al (2010) Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Environ Microbiol 12:401–411

    CAS  Google Scholar 

  113. Winderl C, Penning H, Netzer FV, Meckenstock RU, Lueders T (2010) DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment. ISME J 4:1314–1325

    Google Scholar 

  114. Redmond MC, Valentine DL, Sessions AL (2010) Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. Appl Environ Microbiol 76:6412–6422

    CAS  Google Scholar 

  115. Wagner M (2009) Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63:411–429

    CAS  Google Scholar 

  116. Hallmann C, Schwark L, Grice K (2008) Community dynamics of anaerobic bacteria in deep petroleum reservoirs. Nat Geosci 1:588–591

    CAS  Google Scholar 

  117. Bennett B, Adams JJ, Gray ND, Sherry A et al (2013) The controls on the composition of biodegraded oils in the deep subsurface. Part 3. The impact of microorganism distribution on petroleum geochemical gradients in biodegraded petroleum reservoirs. Org Geochem 56:94–105

    CAS  Google Scholar 

  118. Sadasivam S, Manickam A (1996) Nucleic acids. Biochemical methods. New Age International (P) Limited, Publishers, New Delhi

    Google Scholar 

  119. Jiménez N, Morris BEL, Cai M, Gründger F et al (2012) Evidence for in situ methanogenic oil degradation in the Dagang oil field. Org Geochem 52:44–54

    Google Scholar 

  120. Yamane K, Maki H, Nakayama T, Nakajima T et al (2008) Diversity and similarity of microbial communities in petroleum crude oils produced in asia. Biosci Biotechnol Biochem 72:2831–2839

    CAS  Google Scholar 

  121. Lappé M, Kallmeyer J (2011) A cell extraction method for oily sediments. Front Microbiol 2

    Google Scholar 

  122. Korenblum E, Souza DB, Penna M, Seldin L (2012) Molecular Analysis of the bacterial communities in crude oil samples from two Brazilian offshore petroleum platforms. Int J Microbiol 2012: Article ID 156537

    Google Scholar 

  123. Von Der Weid I, Korenblum E, Jurelevicius D, Rosado AS et al (2008) Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil. J Microbiol Biotechnol 18:5–14

    Google Scholar 

  124. Kryachko Y, Dong X, Sensen C, Voordouw G (2012) Compositions of microbial communities associated with oil and water in a mesothermic oil field. Antonie Leeuwenhoek 101:493–506

    Google Scholar 

  125. Penner TJ, Foght JM, Budwill K (2010) Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures. Int J Coal Geol 82:81–93

    CAS  Google Scholar 

  126. Klein DA, Flores RM, Venot C, Gabbert K et al (2008) Molecular sequences derived from Paleocene Fort Union Formation coals vs. associated produced waters: Implications for CBM regeneration. Int J Coal Geol 76:3–13

    CAS  Google Scholar 

  127. Karpicz R, Dementjev A, Kuprionis Z, Pakalnis S et al (2005) Laser fluorosensor for oil spot detection. Lith J Phys 45:213–218

    CAS  Google Scholar 

  128. Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112

    CAS  Google Scholar 

  129. U.S. Department of Energy, U.S. Environmental Protection Agency (2000) Carbon dioxide emissions from the generation of electric power in the United States. U.S. Department of Energy & U.S. Environmental Protection Agency, Washington, DC, USA

    Google Scholar 

  130. Head IM, Larter SR, Gray ND, Sherry A et al (2010) Hydrocarbon degradation in petroleum reservoirs. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  131. Tausson WO, Vesselov IJ (1934) On the bacteriology of the decomposition of cyclical compounds at the reduction of sulphates. Mikrobiologiia 3:360–369

    Google Scholar 

  132. Novelli GD, ZoBell CE (1944) Assimilation of petroleum hydrocarbons by sulfate-reducing bacteria. J Bacteriol 47:447–448

    Google Scholar 

  133. Muller F (1957) On methane fermentation of higher alkanes. Antonie Leeuwenhoek 23:369–384

    CAS  Google Scholar 

  134. Davis JB, Yarbrough HF (1966) Anaerobic oxidation of hydrocarbons by Desulfovibrio desulfuricans. Chem Geol 1:137–144

    Google Scholar 

  135. Grbić-Galić D, Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53:254–260

    Google Scholar 

  136. Zengler K, Heider J, Rosselló-Mora R, Widdel F (1999) Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch Microbiol 172:204–212

    CAS  Google Scholar 

  137. Dolfing J, Larter SR, Head IM (2007) Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2:442–452

    Google Scholar 

  138. Mayumi D, Mochimaru H, Yoshioka H, Sakata S et al (2011) Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan). Environ Microbiol 13:1995–2006

    CAS  Google Scholar 

  139. Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269

    CAS  Google Scholar 

  140. Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029

    CAS  Google Scholar 

  141. Siegert M, Cichocka D, Herrmann S, Gründger F et al (2011) Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron and sulfate reducing conditions. FEMS Microbiol Lett 315:6–16

    CAS  Google Scholar 

  142. Eberlein C, Johannes J, Mouttaki H, Sadeghi M et al (2013) ATP-dependent/-independent enzymatic ring reductions involved in the anaerobic catabolism of naphthalene. Environ Microbiol 15:1832–1841

    CAS  Google Scholar 

  143. Krüger M, Siegert M, Feisthauer S, Richnow H-H (2011) Microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs. In: International symposium on applied microbiology and molecular biology in oil systems. Biodegradation Society, Calgary

    Google Scholar 

  144. Gray MR, Yeung A, Foght JM, Yarranton HW (2008) Potential microbial enhanced oil recovery processes: a critical analysis. In: SPE annual technical conference and exhibition. SPE Publications, Denver

    Google Scholar 

  145. Farias MJ, Watson RW (2007) Interaction of nitrogen/CO2 mixtures with crude oil. Pennsylvania State University, University Park, PA, USA

    Google Scholar 

  146. Haynes Jr S, Alston RB (1990) Study of the mechanisms of carbon dioxide flooding and applications to more efficient EOR projects. In: SPE/DOE enhanced oil recovery symposium, 1990 Copyright 1990. Society of Petroleum Engineers Inc., Tulsa

    Google Scholar 

  147. Cramer SD (1984) Solubility of methane in brines from 0 to 300°C. Ind Eng Chem Process Design Dev 23:533–538

    CAS  Google Scholar 

  148. Michels A, Gerver J, Bijl A (1936) The influence of pressure on the solubility of gases. Physica 3:797–808

    CAS  Google Scholar 

  149. Pomeroy RD, Lacey WN, Scudder NF, Stapp FP (1933) Rate of solution of methane in quiescent liquid hydrocarbons. Ind Eng Chem 25:1014–1019

    CAS  Google Scholar 

  150. Gunsalus RP, Romesser JA, Wolfe RS (1978) Preparation of coenzyme M analogs and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry (Mosc) 17:2374–2377

    CAS  Google Scholar 

  151. Belyaev SS, Borzenkov IA, Nazina TN, Rozanova EP et al (2004) Use of microorganisms in the biotechnology for the enhancement of oil recovery. Microbiology 73:590–598

    CAS  Google Scholar 

  152. Updegraff DM (1957) Recovery of petroleum oil. United States, US Patent 2807570.

    Google Scholar 

  153. Hitzman DO, Sperl GT (1994) A new microbial technology for enhanced oil recovery and sulfide prevention and reduction. In: SPE/DOE improved oil recovery symposium. SPE Publications, Tulsa

    Google Scholar 

  154. Taber JJ (1969) Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water. SPE J 9

    Google Scholar 

  155. Reed RL, Healy RN (1977) Some physicochemical aspects of microemulsion flooding: a review. In: Shah DO, Schecheter RS (eds) Improved oil recovery by surfactant and polymer flooding. Academic Press, New York

    Google Scholar 

  156. Finnerty WR, Singer ME (1984) A microbial biosurfactant–physiology, biochemistry, and applications. In: Nash CH (ed) Development in Industrial Microbiology. Society for Industrial Microbiology

    Google Scholar 

  157. Klein B, Bouriat P, Goulas P, Grimaud R (2009) Behavior of Marinobacter hydrocarbonoclasticus SP17 cells during initiation of biofilm formation at the alkane–water interface. Biotechnol Bioeng 105:461–468

    Google Scholar 

  158. Ivanov IB, Danov KD, Ananthapadmanabhan KP, Lips A (2005) Interfacial rheology of adsorbed layers with surface reaction: on the origin of the dilatational surface viscosity. Adv Colloid Interface Sci 114–115:61–92

    Google Scholar 

  159. Bouriat P, El Kerri N, Graciaa A, Lachaise J (2004) Properties of a two-dimensional asphaltene network at the water-cyclohexane interface deduced from dynamic tensiometry. Langmuir 20:7459–7464

    CAS  Google Scholar 

  160. Anton N, Vandamme TF, Bouriat P (2013) Dilatational rheology of a gel point network formed by nonionic soluble surfactants at the oil-water interface. Soft Matter 9:1310–1318

    CAS  Google Scholar 

  161. Rosenberg M (2006) Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. FEMS Microbiol Lett 262:129–134

    CAS  Google Scholar 

  162. Weizmann C (1919) Production of acetone and alcohol by bacteriological processes. United States, US Patent 1315585

    Google Scholar 

  163. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166

    CAS  Google Scholar 

  164. Rosenberg E (2006) Biosurfactants. In: Dworkin M et al (eds) The prokaryotes. Springer, New York

    Google Scholar 

  165. Riser-Roberts E (1998) 3.4 Intermediate metabolites and end products of biodegradation. Remediation of petroleum contaminated soils: biological, physical, and chemical processes. Lewis Publishers, London

    Google Scholar 

  166. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    CAS  Google Scholar 

  167. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    CAS  Google Scholar 

  168. McInerney MJ, Javaheri M, Nagle DP (1990) Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J Ind Microbiol Biotechnol 5:95–101

    CAS  Google Scholar 

  169. Amani H, Sarrafzadeh MH, Haghighi M, Mehrnia MR (2010) Comparative study of biosurfactant producing bacteria in MEOR applications. J Petrol Sci Eng 75:209–214

    CAS  Google Scholar 

  170. Deng D, Li C, Ju Q, Wu P, Dietrich FL, Zhou ZH (1999) Systematic extensive laboratory studies of microbial EOR mechanisms and microbial EOR application results in Changqing oilfield. In: SPE Asia Pacific oil and gas conference and exhibition. SPE Publications, Jakarta

    Google Scholar 

  171. Chowdhury SR, Manna S, Saha P, Basak RK et al (2011) Composition analysis and material characterization of an emulsifying extracellular polysaccharide (EPS) produced by Bacillus megaterium RB-05: a hydrodynamic sediment-attached isolate of freshwater origin. J Appl Microbiol 111:1381–1393

    CAS  Google Scholar 

  172. Zosim Z, Gutnick D, Rosenberg E (1982) Properties of hydrocarbon-in-water emulsions stabilized by Acinetobacter RAG-1 emulsan. Biotechnol Bioeng 24:281–292

    CAS  Google Scholar 

  173. Zhang Y, Miller R (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol 61:2247–2251

    CAS  Google Scholar 

  174. Löser C, Seidel H, Zehnsdorf A, Hoffmann P (2000) Improvement of the bioavailability of hydrocarbons by applying nonionic surfactants during the microbial remediation of a sandy soil. Acta Biotechnol 20:99–118

    Google Scholar 

  175. Pacheco GJ, Ciapina EMP, Gomes EdB, Pereira Junior N (2010) Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Braz J Microbiol 41: 685–693

    Google Scholar 

  176. Thavasi R, Jayalakshmi S, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 102:3366–3372

    CAS  Google Scholar 

  177. Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011) Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf, B 84:292–300

    CAS  Google Scholar 

  178. Owsianiak M, Chrzanowski L, Szulc A, Staniewski J et al (2009) Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: Effect of the type of blend and the addition of biosurfactants. Bioresour Technol 100:1497–1500

    CAS  Google Scholar 

  179. Kunapuli U, Griebler C, Beller HR, Meckenstock RU (2008) Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ Microbiol 10:1703–1712

    CAS  Google Scholar 

  180. Selesi D, Meckenstock RU (2009) Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture. FEMS Microbiol Ecol 68:86–93

    CAS  Google Scholar 

  181. Bogan BW, Sullivan WR, Kayser KJ, Derr KD, Aldrich HC, Paterek JR (2003) Alkanindiges illinoisensis gen. nov., sp. nov., an obligately hydrocarbonoclastic, aerobic squalane-degrading bacterium isolated from oilfield soils. Int J Syst Evol Microbiol 53:1389–1395

    CAS  Google Scholar 

  182. Golyshin PN, Chernikova TN, Abraham W-R, Lünsdorf H, Timmis KN, Yakimov MM (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911

    CAS  Google Scholar 

  183. Merkel GJ, Stapleton SS, Perry JJ (1978) Isolation and peptidoglycan of Gram-negative hydrocarbon-utilizing thermophilic bacteria. J Gen Microbiol 109:141–148

    CAS  Google Scholar 

  184. Radwan SS, Barabás G, Sorkhoh NA, Damjanovich S et al (1998) Hydrocarbon uptake by Streptomyces. FEMS Microbiol Lett 169:87–94

    CAS  Google Scholar 

  185. Yakimov MM, Giuliano L, Denaro R, Crisafi E et al (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54:141–148

    CAS  Google Scholar 

  186. Phillips WE, Perry JJ (1976) Thermomicrobium fosteri sp. nov., a hydrocarbon-utilizing obligate thermophile. Int J Syst Bacteriol 26:220–225

    Google Scholar 

  187. Feisthauer S, Siegert M, Seidel M, Richnow HH et al (2010) Isotopic fingerprinting of methane and CO2 formation from aliphatic and aromatic hydrocarbons. Org Geochem 41:482–490

    CAS  Google Scholar 

  188. Kniemeyer O, Musat F, Sievert SM, Knittel K et al (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901

    CAS  Google Scholar 

  189. So CM, Phelps CD, Young LY (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69:3892–3900

    CAS  Google Scholar 

  190. So CM, Young LY (1999) Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01. Appl Environ Microbiol 65:5532–5540

    CAS  Google Scholar 

  191. Shaw J (1984) Enhanced oil recovery using carboxylate surfactant systems. J Am Oil Chemists’ Soc 61:1389–1394

    CAS  Google Scholar 

  192. Jehmlich N, Schmidt F, von Bergen M, Richnow HH, Vogt C (2008) Protein-based stable isotope probing (protein-SIP) reveals active species within anoxic mixed cultures. ISME J 2:1122–1133

    CAS  Google Scholar 

  193. Kasai Y, Takahata Y, Manefield M, Watanabe K (2006) RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Appl Environ Microbiol 72:3586–3592

    CAS  Google Scholar 

  194. Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B (2000) Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66:2743–2747

    CAS  Google Scholar 

  195. Musat F, Galushko A, Jacob J, Widdel F et al (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11:209–219

    CAS  Google Scholar 

  196. Johnsen AR, Winding A, Karlson U, Roslev P (2002) Linking of microorganisms to phenanthrene metabolism in soil by analysis of 13C-labeled cell lipids. Appl Environ Microbiol 68:6106–6113

    CAS  Google Scholar 

  197. Rabus R (2005) Biodegradation of hydrocarbons under anoxic conditions. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC

    Google Scholar 

  198. Shaw J.E., (1985) Immiscible displacement of oil with surfactant system. United States, US Patent 4556495.

    Google Scholar 

  199. Burland SM, Edwards EA (1999) Anaerobic benzene biodegradation linked to nitrate reduction. Appl Environ Microbiol 65:529–533

    CAS  Google Scholar 

  200. Harvey RR (1967) Oil recovery in water flooding. United States, US Patent 3326286

    Google Scholar 

  201. Cooper DG, Macdonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    CAS  Google Scholar 

  202. Javaheri M, Jenneman GE, McInerney MJ, Knapp RM (1985) Anaerobic production of a biosurfactant by Bacillus licheniformis JF-2. Appl Environ Microbiol 50:698–700

    CAS  Google Scholar 

  203. Maudgalya S, McInerney MJ, Knapp RM, Nagle DP, Folmsbee MJ (2004) Development of bio-surfactant based microbial enhanced oil recovery procedure. In: SPE/DOE symposium on improved oil recovery. SPE Publications, Tulsa

    Google Scholar 

  204. Maudgalya S, Knapp RM, McInerney MJ, Folmsbee M, Nagle DP (2005) Tertiary oil recovery with microbial biosurfactant treatment of low-permeability Berea sandstone cores. In: SPE production operations symposium. SPE Publications, Oklahoma City

    Google Scholar 

  205. Kim H-S, Yoon B-D, Lee C-H, Suh H–H et al (1997) Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. J Ferment Bioeng 84:41–46

    Google Scholar 

  206. Zekri AY, Al-Khanbashi (2000) A microbial phase behavior laboratory studies. In: Abu Dhabi international petroleum exhibition and conference. SPE Publications, Abu Dhabi

    Google Scholar 

  207. Lin SC, Minton MA, Sharma MM, Georgiou G (1994) Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl Environ Microbiol 60:31–38

    CAS  Google Scholar 

  208. Nguyen TT, Youssef NH, McInerney MJ, Sabatini DA (2008) Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res 42:1735–1743

    CAS  Google Scholar 

  209. Zekri AY, Almehaideb RA, Chaalal O (1999) Project of increasing oil recovery from UAE reservoirs using bacteria flooding. In: SPE annual technical conference and exhibition. SPE Publications, Houston

    Google Scholar 

  210. Kim H-S, Kim S-B, Park S-H, Oh H-M et al (2000) Expression of sfp gene and hydrocarbon degradation by Bacillus subtilis. Biotechnol Lett 22:1431–1436

    CAS  Google Scholar 

  211. Lee Y-K, Yoon B-D, Yoon J-H, Lee S-G et al (2007) Cloning of srfA operon from Bacillus subtilis C9 and its expression in E. coli. Appl Microbiol Biotechnol 75:567–572

    CAS  Google Scholar 

  212. Lin SC, Carswell KS, Sharma MM, Georgiou G (1994) Continuous production of the lipopeptide biosurfactant of Bacillus licheniformis JF-2. Appl Microbiol Biotechnol 41:281–285

    CAS  Google Scholar 

  213. Lin S-C, Lin K-G, Lo C-C, Lin Y-M (1998) Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme Microb Technol 23:267–273

    CAS  Google Scholar 

  214. Yakimov M, Timmis K, Wray V, Fredrickson H (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713

    CAS  Google Scholar 

  215. Kang Z, Yeung A, Foght JM, Gray MR (2008) Mechanical properties of hexadecane-water interfaces with adsorbed hydrophobic bacteria. Colloids Surf B: Biointerfaces 62:273–279

    CAS  Google Scholar 

  216. Kang Z, Yeung A, Foght JM, Gray MR (2008) Hydrophobic bacteria at the hexadecane-water interface: examination of micrometre-scale interfacial properties. Colloids Surf B: Biointerfaces 67:59–66

    CAS  Google Scholar 

  217. Town K, Sheehy AJ, Govreau BR (2010) MEOR success in Southern Saskatchewan. SPE Reservoir Eval Eng 13

    Google Scholar 

  218. Illias RM, Ooi SW, Idris AK (1999) Isolation and characterization of thermophilic microorganisms from Malaysian oil fields. In: SPE annual technical conference and exhibition. SPE Publications, Houston

    Google Scholar 

  219. Halim AY, Fauzi UD, Siregar S, Soewono E et al (2009) Microbial enhanced oil recovery: an investigation of bacteria ability to live and alter crude oil physical characteristics in high pressure condition. In: Asia Pacific oil and gas conference & exhibition. SPE Publications, Jakarta

    Google Scholar 

  220. Kotlar HK, Wentzel A, Throne-Holst M, Zotchev S, Ellingsen T (2007) Wax control by biocatalytic degradation in high-paraffinic crude oils. In: International symposium on oilfield chemistry. SPE Publications, Houston

    Google Scholar 

  221. Maure MA, Saldaña AA, Juarez AR (2005) Biotechnology applications to EOR in Talara offshore oil fields, Northwest Peru. In: SPE Latin American and Caribbean petroleum engineering conference. SPE Publications, Rio de Janeiro

    Google Scholar 

  222. Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014

    CAS  Google Scholar 

  223. Oremland RS (1981) Microbial formation of ethane in anoxic estuarine sediments. Appl Environ Microbiol 42:122–129

    CAS  Google Scholar 

  224. Belay N, Daniels L (1988) Ethane production by Methanosarcina barkeri during growth in ethanol supplemented medium. Antonie Leeuwenhoek 54:113–125

    CAS  Google Scholar 

  225. Hinrichs K-U, Hayes JM, Bach W, Spivack AJ et al (2006) Biological formation of ethane and propane in the deep marine subsurface. Proc Natl Acad Sci USA 103:14684–14689

    CAS  Google Scholar 

  226. Harder J, Foss S (1999) Anaerobic formation of the aromatic hydrocarbon p-cymene from monoterpenes by methanogenic enrichment cultures. Geomicrobiol J 16:295–305

    CAS  Google Scholar 

  227. Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 77:1718–1727

    CAS  Google Scholar 

  228. Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP (2010) Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA. Appl Environ Microbiol 76:3850–3862

    CAS  Google Scholar 

  229. Price LC, Wenger LM, Ging T, Blount CW (1983) Solubility of crude oil in methane as a function of pressure and temperature. Org Geochem 4:201–221

    CAS  Google Scholar 

  230. Shiu WY, Bobra M, Bobra AM, Maijanen A, Suntio L, Mackay D (1990) The water solubility of crude oils and petroleum products. Oil Chem Pollut 7:57–84

    CAS  Google Scholar 

  231. Holm LW (1974) Miscible flooding process using methane-enriched soluble oil. United States, US Patent 3830301

    Google Scholar 

  232. Wawrik B, Mendivelso M, Parisi VA, Suflita JM et al (2012) Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin. FEMS Microbiol Ecol 81:26–42

    CAS  Google Scholar 

  233. Hitzman DO, Dennis M, Hitzman DC (2004) Recent successes: MEOR using synergistic H2S prevention and increased oil recovery systems. In: SPE/DOE symposium on improved oil recovery. SPE Publications, Tulsa

    Google Scholar 

  234. Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12:1011–1020

    CAS  Google Scholar 

  235. Thompson BG, Jack TR (1984) Method of enhancing oil recovery by use of exopolymer producing microorganisms. United States, US Patent 4460043

    Google Scholar 

  236. Kantzas A, Stehmeier L, Marentette DF, Ferris FG, Jha KN, Maurits FM (1992) A novel method of sand consolidation through bacteriogenic mineral plugging. In: Annual technical meeting, Calgary

    Google Scholar 

  237. Khan HA, Gbosi A, Britton LN, Bryant SL (2008) Mechanistic models of microbe growth in heterogeneous porous media. In: SPE/DOE symposium on improved oil recovery, Tulsa

    Google Scholar 

  238. Nagase K, Zhang ST, Asami H, Yazawa N et al (2001) Improvement of sweep efficiency by microbial EOR process in Fuyu oilfield, China. In: SPE Asia Pacific oil and gas conference and exhibition. SPE Publications, Jakarta

    Google Scholar 

  239. Jenneman GE, Knapp RM, McInerney MJ, Menzie DE, Revus DE (1984) Experimental studies of in-situ microbial enhanced oil recovery. SPE J 24

    Google Scholar 

  240. Sugai Y, Hong C, Chida T, Enomoto H (2007) Simulation studies on the mechanisms and performances of MEOR using a polymer producing microorganism Clostridium sp. TU-15A. in Asia Pacific oil and gas conference and exhibition. SPE Publications, Jakarta

    Google Scholar 

  241. Stiles WE (1949) Use of permeability distributions in waterflood calculations. Trans AIME 15:9–12

    Google Scholar 

  242. Nagase K, Zhang ST, Asami H, Yazawa N et al (2002) A successful field test of microbial EOR process in Fuyu oilfield, China. In: SPE/DOE improved oil recovery symposium. SPE Publications, Tulsa

    Google Scholar 

  243. Reksidler R, Volpon AG, Barbosa LCF, Brasileiro CG, Nicolau HCC, Calasans Júnior JA (2010) A microbial enhanced oil recovery field pilot in a Brazilian onshore oilfield. In: SPE improved oil recovery symposium. SPE Publications, Tulsa

    Google Scholar 

  244. Knapp RM, McInerney MJ, Coates JD, Chisholm JL, Menzie DE, Bhupathiraju VK, (1992) Design and implementation of a microbially enhanced oil recovery field pilot, Payne County, Oklahoma. In: SPE annual technical conference and exhibition. SPE Publications, Washington

    Google Scholar 

  245. Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571

    CAS  Google Scholar 

  246. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    CAS  Google Scholar 

  247. Glunk C, Dupraz C, Braissant O, Gallagher KL, Verrecchia EP, Visscher PT (2011) Microbially mediated carbonate precipitation in a hypersaline lake, Big Pond (Eleuthera, Bahamas). Sedimentology 58:720–736

    Google Scholar 

  248. Bosak T, Newman DK (2003) Microbial nucleation of calcium carbonate in the Precambrian. Geology 31:577–580

    CAS  Google Scholar 

  249. Drobner E, Huber H, Wachtershauser G, Rose D, Stetter KO (1990) Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature 346:742–744

    CAS  Google Scholar 

  250. Friedmann EI (1982) Endolithic microorganisms in the Antarctic Cold Desert. Science 215:1045–1053

    CAS  Google Scholar 

  251. Thorseth IH, Furnes H, Heldal M (1992) The importance of microbiological activity in the alteration of natural basaltic glass. Geochim Cosmochim Acta 56:845–850

    CAS  Google Scholar 

  252. Blackhurst RL, Genge MJ, Kearsley AT, Grady MM (2005) Cryptoendolithic alteration of Antarctic sandstones: Pioneers or opportunists? J Geophys Res 110:E12S24

    Google Scholar 

  253. Udegbunam EO, Adkins JP, Knapp RM, McInerney MJ, Tanner RS (1991) Assessing the effects of microbial metabolism and metabolites on reservoir pore structure. In: SPE annual technical conference and exhibition. SPE Publications, Dallas

    Google Scholar 

  254. Wagner M, Müller P (1980) Verfahren zur mikrobiellen Sekundärgewinnung von Erdöl. German Democratic Republic, Patent DD000000140067A1

    Google Scholar 

  255. Yarbrough HF, Coty VF (1983) Microbially enhanced oil recovery from the upper cretaceous nacatoch formation, Union County, Arkansas. In: Proceedings of the 1982 international conference on microbial enhancement of oil Recovery (CONF-8205140), Bartlesville, USA

    Google Scholar 

  256. Burchfield TE, Carroll Jr. HB (1988) Economics of MEOR processes. In: Applications of microorganisms to petroleum technology, 12–13 August 1987. U.S. Department of Energy, Bartlesville, USA

    Google Scholar 

  257. Portwood JT (1995) A commercial microbial enhanced oil recovery technology: evaluation of 322 projects. In: SPE production operations symposium. SPE Publications, Oklahoma City

    Google Scholar 

  258. Maure A, Dietrich F, Gomez U, Vallesi J, Irusta M (2001) Waterflooding optimization using biotechnology: 2-year field test, La Ventana Field, Argentina. In: SPE Latin American and Caribbean petroleum engineering conference. SPE Publications, Buenos Aires

    Google Scholar 

  259. Maudgalya S, Knapp RM, McInerney MJ (2007) Microbially enhanced oil recovery technologies: a review of the past, present and future. In: Production and operations symposium. SPE Publications, Oklahoma City

    Google Scholar 

  260. Vadie AA, Stephens JO, Brown LR (1996) Utilization of indigenous microflora in permeability profile modification of oil bearing formations. In: SPE/DOE improved oil recovery symposium. SPE Publications, Tulsa

    Google Scholar 

  261. Hyne NJ (1991) Dictionary of petroleum exploration, drilling & production. PennWell Publishing Company, Tulsa

    Google Scholar 

  262. Ferguson KR, Lloyd CT, Dan S, James H (1996) Microbial pilot test for the control of paraffin and asphaltenes at Prudhoe Bay. In: SPE annual technical conference and exhibition. SPE Publications, Denver

    Google Scholar 

  263. Maure MA, Dietrich FL, Diaz VA, Argañaraz H (1999) Microbial enhanced oil recovery pilot test in Piedras Coloradas Field, Argentina. In: Latin American and Caribbean petroleum engineering conference. SPE Publications, Caracas, pp. 1–28

    Google Scholar 

  264. Talukdar S, Instefjord R (2008) Reservoir management of the Gullfaks main field. In: Europec/EAGE conference and exhibition. SPE Publications, Rome

    Google Scholar 

  265. Zhang X, Xiang T (2010) Review on microbial enhanced oil recovery technology and development in China. Int J Petrol Sci Technol 4:61–80

    Google Scholar 

  266. Gao CH, Zekri A (2011) Applications of microbial-enhanced oil recovery technology in the past decade. Energy Sources Part A: Recov Util Environ Effects 33:972–989

    CAS  Google Scholar 

  267. Mnif S, Chamkha M, Labat M, Sayadi S (2011) Simultaneous hydrocarbon biodegradation and biosurfactant production by oilfield-selected bacteria. J Appl Microbiol 111:525–536

    CAS  Google Scholar 

  268. Rees GN, Patel BKC, Grassia GS, Sheehy AJ (1997) Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Bacteriol 47:150–154

    CAS  Google Scholar 

  269. Kato T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2001) Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J Biosci Bioeng 91:64–70

    CAS  Google Scholar 

  270. Fardeau ML, Magot M, Patel BKC, Thomas P, Garcia JL, Ollivier B (2000) Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50:2141–2149

    CAS  Google Scholar 

  271. Fardeau M-L, Salinas MB, L’Haridon S, Jeanthon C et al (2004) Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 54:467–474

    CAS  Google Scholar 

  272. Ying J-Y, Wang B-J, Yang S-S, Liu S-J (2006) Cyclobacterium lianum sp. nov., a marine bacterium isolated from sediment of an oilfield in the South China Sea, and emended description of the genus Cyclobacterium. Int J Syst Evol Microbiol 56:2927–2930

    CAS  Google Scholar 

  273. Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509

    CAS  Google Scholar 

  274. Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP, Patel BKC (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45:85–89

    Google Scholar 

  275. Rozanova EP, Tourova TP, Kolganova TV, Lysenko AM et al (2001) Desulfacinum subterraneum sp. nov., a new thermophilic sulfate-reducing bacterium isolated from a high-temperature oil field. Microbiology (Moscow, Russ. Fed.) 70:466–471

    Google Scholar 

  276. Lien T, Beeder J (1997) Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Bacteriol 47:1124–1128

    CAS  Google Scholar 

  277. Harms G, Zengler K, Rabus R, Aeckersberg F et al (1999) Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65:999–1004

    Google Scholar 

  278. Lien T, Madsen M, Steen IH, Gjerdevik K (1998) Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Bacteriol 48:469–474

    Google Scholar 

  279. Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14

    CAS  Google Scholar 

  280. Davidova IA, Duncan KE, Choi OK, Suflita JM (2006) Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56:2737–2742

    Google Scholar 

  281. Tardy-Jacquenod C, Magot M, Patel BKC, Matheron R, Caumette P (1998) Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. Int J Syst Bacteriol 48:333–338

    Google Scholar 

  282. Nilsen RK, Torsvik T, Lien T (1996) Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot north sea oil reservoir. Int J Syst Bacteriol 46:397–402

    Google Scholar 

  283. Belyakova E, Rozanova E, Borzenkov I, Tourova T et al (2006) The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov., sp. nov., isolated from an oil field. Microbiology 75:161–171

    CAS  Google Scholar 

  284. Feio MJ, Zinkevich V, Beech IB, Llobet-Brossa E et al (2004) Desulfovibrio alaskensis sp. nov., a sulphate-reducing bacterium from a soured oil reservoir. Int J Syst Evol Microbiol 54:1747–1752

    CAS  Google Scholar 

  285. Magot M, Basso O, Tardy-Jacquenod C, Caumette P (2004) Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. Int J Syst Evol Microbiol 54:1693–1697

    CAS  Google Scholar 

  286. Miranda-Tello E, Fardeau M-L, Fernández L, Ramírez F et al (2003) Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe 9:97–103

    CAS  Google Scholar 

  287. Tardy-Jacquenod C, Magot M, Laigret F, Kaghad M et al (1996) Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline. Int J Syst Bacteriol 46:710–715

    CAS  Google Scholar 

  288. Magot M, Caumette P, Desperrier JM, Matheron R et al (1992) Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int J Syst Bacteriol 42:398–402

    CAS  Google Scholar 

  289. Nga DP, Ha DTC, Hien LT, Stan-Lotter H (1996) Desulfovibrio vietnamensis sp.nov., a halophilic sulfate-reducing bacterium from vietnamese oil fields. Anaerobe 2:385–392

    CAS  Google Scholar 

  290. Magot M, Ravot G, Campaignolle X, Ollivier B et al (1997) Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824

    CAS  Google Scholar 

  291. Wang X-B, Chi C-Q, Nie Y, Tang Y-Q et al (2011) Degradation of petroleum hydrocarbons (C6-C40) and crude oil by a novel Dietzia strain. Bioresour Technol 102:7755–7761

    CAS  Google Scholar 

  292. Ravot G, Magot M, Fardeau M-L, Patel BKC et al (1999) Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. Int J Syst Bacteriol 49:1141–1147

    CAS  Google Scholar 

  293. Miranda-Tello E, Fardeau M-L, Sepulveda J, Fernandez L et al (2003) Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate- and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico. Int J Syst Evol Microbiol 53:1509–1514

    CAS  Google Scholar 

  294. Greene AC, Patel BKC, Yacob S (2009) Geoalkalibacter subterraneus sp. nov., an anaerobic Fe(III)- and Mn(IV)-reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter. Int J Syst Evol Microbiol 59:781–785

    CAS  Google Scholar 

  295. Nazina TN, Sokolova DS, Grigoryan AA, Shestakova NM et al (2005) Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. Syst Appl Microbiol 28:43–53

    CAS  Google Scholar 

  296. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV et al (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446

    CAS  Google Scholar 

  297. Kuisiene N, Raugalas J, Chitavichius D (2004) Geobacillus lituanicus sp. nov. Int J Syst Evol Microbiol 54:1991–1995

    CAS  Google Scholar 

  298. Zheng C, He J, Wang Y, Wang M, Huang Z (2011) Hydrocarbon degradation and bioemulsifier production by thermophilic Geobacillus pallidus strains. Bioresour Technol 102:9155–9161

    CAS  Google Scholar 

  299. Zhang J, Zhang X, Liu J, Li R, Shen B (2012) Isolation of a thermophilic bacterium, Geobacillus sp. SH-1, capable of degrading aliphatic hydrocarbons and naphthalene simultaneously, and identification of its naphthalene degrading pathway. Bioresour Technol 124:83–89

    CAS  Google Scholar 

  300. Xue Y, Sun X, Zhou P, Liu R, Liang F, Ma Y (2003) Gordonia paraffinivorans sp. nov., a hydrocarbon-degrading actinomycete isolated from an oil-producing well. Int J Syst Evol Microbiol 53:1643–1646

    CAS  Google Scholar 

  301. Ravot G, Magot M, Ollivier B, Patel BKC et al (1997) Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate- and sulfur-reducing bacterium from an African oil field. FEMS Microbiol Lett 147:81–88

    CAS  Google Scholar 

  302. DiPippo JL, Nesbø CL, Dahle H, Doolittle WF, Birkland N-K, Noll KM (2009) Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. Int J Syst Evol Microbiol 59:2991–3000

    CAS  Google Scholar 

  303. Salinas MB, Fardeau M-L, Thomas P, Cayol J-L, Patel BKC, Ollivier B (2004) Mahella australiensis gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from an Australian oil well. Int J Syst Evol Microbiol 54:2169–2173

    CAS  Google Scholar 

  304. Ollivier B, Fardeau M-L, Cayol J-L, Magot M et al (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48:821–828

    Google Scholar 

  305. Nilsen RK, Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62:728–731

    CAS  Google Scholar 

  306. Cheng L, Qiu T-L, Yin X-B, Wu X-L et al (2007) Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. Int J Syst Evol Microbiol 57:2964–2969

    CAS  Google Scholar 

  307. Ben Ali Gam Z, Abdelkafi S, Casalot L, Tholozan JL, Oueslati R, Labat M (2007) Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 57:2307–2313

    CAS  Google Scholar 

  308. Schippers A, Schumann P, Sproer C (2005) Nocardioides oleivorans sp. nov., a novel crude-oil-degrading bacterium. Int J Syst Evol Microbiol 55:1501–1504

    CAS  Google Scholar 

  309. Jayasinghearachchi HS, Lal B (2011) Oceanotoga teriensis gen. nov., sp. nov., a thermophilic bacterium isolated from offshore oil-producing wells. Int J Syst Evol Microbiol 61:554–560

    CAS  Google Scholar 

  310. Grabowski A, Tindall BJ, Bardin V, Blanchet D, Jeanthon C (2005) Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int J Syst Evol Microbiol 55:1113–1121

    CAS  Google Scholar 

  311. Salinas MB, Fardeau M-L, Cayol J-L, Casalot L et al (2004) Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from an Australian oil well. Int J Syst Evol Microbiol 54:645–649

    CAS  Google Scholar 

  312. Miranda-Tello E, Fardeau M-L, Joulian C, Magot M et al (2007) Petrotoga halophila sp. nov., a thermophilic, moderately halophilic, fermentative bacterium isolated from an offshore oil well in Congo. Int J Syst Evol Microbiol 57:40–44

    CAS  Google Scholar 

  313. Purwasena IA, Sugai Y, Sasaki K (2009) estimation of the potential of an oil-viscosity-reducing bacteria, Petrotoga isolated from an oilfield for MEOR. In: International petroleum technology conference. SPE Publications, Doha

    Google Scholar 

  314. Miranda-Tello E, Fardeau M-L, Thomas P, Ramirez F et al (2004) Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54:169–174

    Google Scholar 

  315. Lien T, Madsen M, Rainey FA, Birkeland N-K (1998) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48:1007–1013

    CAS  Google Scholar 

  316. Samir MA, Ela MAE, Marsafy SE, El-Tayeb S, Sayyouh H, Wally AW (2010) New incubated Pseudomonas aeruginosa bacteria for increasing oil recovery under reservoir conditions. In: North Africa technical conference and exhibition, Cairo, Egypt

    Google Scholar 

  317. Zheng C, Yu L, Huang L, Xiu J, Huang Z (2012) Investigation of a hydrocarbon-degrading strain, Rhodococcus ruber Z25, for the potential of microbial enhanced oil recovery. J Petrol Sci Eng 81:49–56

    CAS  Google Scholar 

  318. Magot M, Fardeau M-L, Arnauld O, Lanau C et al (1997) Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol Lett 155:185–191

    CAS  Google Scholar 

  319. Cayol JL, Ollivier B, Patel BKC, Ravot G et al (1995) Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended description of Thermoanaerobacter brockii. Int J Syst Bacteriol 45:783–789

    CAS  Google Scholar 

  320. Feng Y, Cheng L, Zhang X, Li X, Deng Y, Zhang H (2010) Thermococcoides shengliensis gen. nov., sp. nov., a new member of the order Thermotogales isolated from oil-production fluid. Int J Syst Evol Microbiol 60:932–937

    CAS  Google Scholar 

  321. Beeder J, Torsvik T, Lien T (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336

    CAS  Google Scholar 

  322. Ravot G, Magot M, Fardeau ML, Patel BKC et al (1995) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an african oil-producing well. Int J Syst Bacteriol 45:308–314

    CAS  Google Scholar 

  323. Dahle H, Birkeland N-K (2006) Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Microbiol 56:1539–1545

    CAS  Google Scholar 

  324. Ying J-Y, Wang B-J, Dai X, Yang S-S, Liu S-J, Liu Z-P (2007) Wenxinia marina gen. nov., sp. nov., a novel member of the Roseobacter clade isolated from oilfield sediments of the South China Sea. Int J Syst Evol Microbiol 57:1711–1716

    Google Scholar 

  325. Dore SY, Clancy QE, Rylee SM, Kulpa CF (2003) Naphthalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl Microbiol Biotechnol 63:194–199

    CAS  Google Scholar 

  326. Meyer S, Moser R, Neef A, Stahl U, Kampfer P (1999) Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiology 145:1731–1741

    CAS  Google Scholar 

  327. Chaîneau CH, Morel J, Dupont J, Bury E, Oudot J (1999) Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Sci Total Environ 227:237–247

    Google Scholar 

  328. Amund OO, Higgins IJ (1985) The degradation of 1-phenylalkanes by an oil-degrading strain of Acinetobacter lwoffi. Antonie Leeuwenhoek 51:45–56

    CAS  Google Scholar 

  329. Mara K, Decorosi F, Viti C, Giovannetti L et al (2012) Molecular and phenotypic characterization of Acinetobacter strains able to degrade diesel fuel. Res Microbiol 163:161–172

    CAS  Google Scholar 

  330. Marín M, Pedregosa A, Laborda F (1996) Emulsifier production and microscopical study of emulsions and biofilms formed by the hydrocarbon-utilizing bacteria Acinetobacter calcoaceticus MM5. Appl Microbiol Biotechnol 44:660–667

    Google Scholar 

  331. Marín M, Pedregosa A, Ríos S, Laborda F (1996) Study of factors influencing the degradation of heating oil by Acinetobacter calcoaceticus MM5. Int Biodeterior Biodegrad 38:69–75

    Google Scholar 

  332. Büttner H (1926) Zur Kenntnis der Mykobakterien, insbesondere ihres quantitativen Stoffwechsels auf Paraffinnährböden. Archiv für Hygiene 97:12–27

    Google Scholar 

  333. Odokuma LO, Dickson AA (2003) Bioremediation of a crude oil polluted tropical rain forest soil. Global J Environ Sci 2:29–40

    CAS  Google Scholar 

  334. Prantera MT, Drozdowicz A, Gomes Leite S, Soares Rosado A (2002) Degradation of gasoline aromatic hydrocarbons by two N2-fixing soil bacteria. Biotechnol Lett 24:85–89

    CAS  Google Scholar 

  335. Ridgway HF, Safarik J, Phipps D, Carl P, Clark D (1990) Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contaminated aquifer. Appl Environ Microbiol 56:3565–3575

    CAS  Google Scholar 

  336. Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A (2010) Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater 184:523–532

    CAS  Google Scholar 

  337. Yakimov MM, Golyshin PN, Lang S, Moore ERB et al (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348

    CAS  Google Scholar 

  338. Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186

    CAS  Google Scholar 

  339. Bruns A, Berthe-Corti L (1999) Fundibacter jadensis gen. nov., sp. nov., a new slightly halophilic bacterium, isolated from intertidal sediment. Int J Syst Bacteriol 49:441–448

    Google Scholar 

  340. Fernandez-Martinez J, Pujalte MJ, Garcia-Martinez J, Mata M, Garay E, Rodriguez-Valera F (2003) Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol 53:331–338

    CAS  Google Scholar 

  341. Weelink SAB, Tan NCG, ten Broeke H, van den Kieboom C et al (2008) Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with chlorate as the electron acceptor. Appl Environ Microbiol 74:6672–6681

    CAS  Google Scholar 

  342. Iwabuchi N, Sunairi M, Urai M, Itoh C et al (2002) Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl Environ Microbiol 68:2337–2343

    CAS  Google Scholar 

  343. Khelifi N, Grossi V, Hamdi M, Dolla A et al (2010) Anaerobic oxidation of fatty acids and alkenes by the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus. Appl Environ Microbiol 76:3057–3060

    CAS  Google Scholar 

  344. Rabus R, Jarling R, Lahme S, Kühner S et al (2011) Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria. Environ Microbiol 13:2576–2586

    CAS  Google Scholar 

  345. Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103

    CAS  Google Scholar 

  346. Song B, Haggblom MM, Zhou J, Tiedje JM, Palleroni NJ (1999) Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov. and Azoarcus toluclasticus sp. nov. Int J Syst Bacteriol 49:1129–1140

    CAS  Google Scholar 

  347. Fries MR, Forney LJ, Tiedje JM (1997) Phenol- and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Appl Environ Microbiol 63:1523–1530

    CAS  Google Scholar 

  348. Zhou J, Fries MR, Chee-Sanford JC, Tiedje JM (1995) Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth on toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol 45:500–506

    CAS  Google Scholar 

  349. Gradova NB, Gornova IB, Eddaudi R, Salina RN (2003) Use of bacteria of the genus Azotobacter for bioremediation of oil-contaminated soils. Appl Biochem Microbiol 39:279–281

    CAS  Google Scholar 

  350. Christova N, Tuleva B, Nikolova-Damyanovab B (2004) Enhanced hydrocarbon biodegradation by a newly isolated Bacillus subtilis strain. Zeitschrift für Naturforschung 59c:205–208

    Google Scholar 

  351. Stucki G, Alexander M (1987) Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl Environ Microbiol 53:292–297

    CAS  Google Scholar 

  352. Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum by two bacteria isolated from coastal waters. Biotechnol Bioeng 14:297–308

    CAS  Google Scholar 

  353. Pirnik MP, Atlas RM, Bartha R (1974) Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. J Bacteriol 119:868–878

    CAS  Google Scholar 

  354. Juhasz AL, Britz ML, Stanley GA (1997) Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a,h]anthracene by Burkholderia cepacia. J Appl Microbiol 83:189–198

    CAS  Google Scholar 

  355. Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66:4098–4104

    CAS  Google Scholar 

  356. Landuyt SM, Hsu EJ, Wang B, Tsay S (1995) Conversion of paraffin oil to alcohols by Clostridium thermosaccharolyticum. Appl Environ Microbiol 61:1153–1155

    CAS  Google Scholar 

  357. Zajic JE, Guignard H, Gerson DF (1977) Emulsifying and surface active agents from Corynebacterium hydrocarboclastus. Biotechnol Bioeng 19:1285–1301

    CAS  Google Scholar 

  358. Maure A, Dietrich F, Gomez U, Vallesi J, Irusta M (2001) Waterflooding Optimization Using Biotechnology: 2-Year Field Test, La Ventana Field, Argentina, SPE Latin American and Caribbean Petroleum Engineering Conference, SPE Publications, Buenos Aires, Argentina. SPE accession number 69652, doi: 10.2118/69652-MS

  359. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123

    CAS  Google Scholar 

  360. Chung WK, King GM (2001) Isolation, characterization, and polyaromatic hydrocarbon degradation potential of aerobic bacteria from marine macrofaunal burrow sediments and description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov. Appl Environ Microbiol 67:5585–5592

    CAS  Google Scholar 

  361. Coates JD, Chakraborty R, Lack JG, O’Connor SM et al (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039–1043

    CAS  Google Scholar 

  362. Salinero K, Keller K, Feil W, Feil H et al (2009) Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics 10:351

    Google Scholar 

  363. Cravo-Laureau C, Matheron R, Cayol J-L, Joulian C, Hirschler-Rea A (2004) Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54:77–83

    Google Scholar 

  364. Cravo-Laureau C, Matheron R, Joulian C, Cayol J-L, Hirschler-Réa A (2004) Desulfatibacillum alkenivorans sp. nov., a novel n-alkene-degrading, sulfate-reducing bacterium, and emended description of the genus Desulfatibacillum. Int J Syst Evol Microbiol 54:1639–1642

    CAS  Google Scholar 

  365. Cravo-Laureau C, Labat C, Joulian C, Matheron R, Hirschler-Rea A (2007) Desulfatiferula olefinivorans gen. nov., sp. nov., a long-chain n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 57:2699–2702

    Google Scholar 

  366. Kunapuli U, Jahn MK, Lueders T, Geyer R, Heipieper HJ, Meckenstock RU (2010) Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol 60:686–695

    CAS  Google Scholar 

  367. Rabus R, Nordhaus R, Ludwig W, Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59:1444–1451

    CAS  Google Scholar 

  368. Kuever J, Rainey FA, Widdel F (2005) Genus III. Desulfothermus gen. nov. In: Brenner DJ et al (eds) Bergey’s Manual of systematic bacteriology. Springer, New York

    Google Scholar 

  369. Rueter P, Rabus R, Wilkest H, Aeckersberg F et al (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458

    CAS  Google Scholar 

  370. Ommedal H, Torsvik T (2007) Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column. Int J Syst Evol Microbiol 57:2865–2869

    CAS  Google Scholar 

  371. Morasch B, Schink B, Tebbe C, Meckenstock R (2004) Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum. Arch Microbiol 181:407–417

    CAS  Google Scholar 

  372. Yumoto I, Nakamura A, Iwata H, Kojima K et al (2002) Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90

    CAS  Google Scholar 

  373. Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159:2675–2683

    CAS  Google Scholar 

  374. Mohanty G, Mukherji S (2008) Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia. Int Biodeterior Biodegrad 61:240–250

    CAS  Google Scholar 

  375. Šepič E, Bricelj M, Leskovšek H (1997) Biodegradation studies of polyaromatic hydrocarbons in aqueous media. J Appl Microbiol 83:561–568

    Google Scholar 

  376. Rodríguez-Blanco A, Vetion G, Escande M-L, Delille D, Ghiglione J-F (2010) Gallaecimonas pentaromativorans gen. nov., sp. nov., a bacterium carrying 16S rRNA gene heterogeneity and able to degrade high-molecular-mass polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 60:504–509

    Google Scholar 

  377. Lavania M, Cheema S, Sarma P, Mandal A, Lal B (2012) Biodegradation of asphalt by Garciaella petrolearia TERIG02 for viscosity reduction of heavy oil. Biodegradation 23:15–24

    CAS  Google Scholar 

  378. Coates JD, Bhupathiraju VK, Achenbach LA, McInerney MJ, Lovley DR (2001) Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 51:581–588

    CAS  Google Scholar 

  379. Lovley DR, Giovannoni SJ, White DC, Champine JE et al (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    CAS  Google Scholar 

  380. Weelink SAB, Van Doesburg W, Saia FT, Rijpstra WIC et al (2009) A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol 70:575–585

    CAS  Google Scholar 

  381. Kummer C, Schumann P, Stackebrandt E (1999) Gordonia alkanivorans sp. nov., isolated from tar-contaminated soil. Int J Syst Bacteriol 49:1513–1522

    CAS  Google Scholar 

  382. Mikolasch A, Hammer E, Schauer F (2003) Synthesis of imidazol-2-yl amino acids by using cells from alkane-oxidizing bacteria. Appl Environ Microbiol 69:1670–1679

    CAS  Google Scholar 

  383. Kästner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl Microbiol Biotechnol 41:267–273

    Google Scholar 

  384. Bonfá MRL, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676

    Google Scholar 

  385. Wang Q, Fang X, Bai B, Liang X et al (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853

    CAS  Google Scholar 

  386. Sarma PM, Bhattacharya D, Krishnan S, Lal B (2004) Degradation of polycyclic aromatic hydrocarbons by a newly discovered enteric bacterium, Leclercia adecarboxylata. Appl Environ Microbiol 70:3163–3166

    CAS  Google Scholar 

  387. Gauthier MJ, Lafay B, Christen R, Fernandez L et al (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576

    CAS  Google Scholar 

  388. Schippers A, Bosecker K, Spröer C, Schumann P (2005) Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Int J Syst Evol Microbiol 55:655–660

    CAS  Google Scholar 

  389. Adebusoye SA, Amund OO, Ilori MO, Domeih DO, Okpuzor J (2008) Growth and biosurfactant synthesis by Nigerian hydrocarbon-degrading estuarine bacteria. Rev Biol Trop 56:1603–1611

    Google Scholar 

  390. Hennessee CT, Seo J-S, Alvarez AM, Li QX (2009) Polycyclic aromatic hydrocarbon-degrading species isolated from Hawaiian soils: Mycobacterium crocinum sp. nov., Mycobacterium pallens sp. nov., Mycobacterium rutilum sp. nov., Mycobacterium rufum sp. nov. and Mycobacterium aromaticivorans sp. nov. Int J Syst Evol Microbiol 59:378–387

    CAS  Google Scholar 

  391. Zobell CE (1946) Action of microörganisms on hydrocarbons. Microbiol Rev 10:1–49

    CAS  Google Scholar 

  392. Willumsen P, Karlson U, Stackebrandt E, Kroppenstedt RM (2001) Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int J Syst Evol Microbiol 51:1715–1722

    CAS  Google Scholar 

  393. Bushnell LD, Haas HF (1941) The utilization of certain hydrocarbons by microörganisms. J Bacteriol 41:653–673

    CAS  Google Scholar 

  394. Derz K, Klinner U, Schuphan I, Stackebrandt E, Kroppenstedt RM (2004) Mycobacterium pyrenivorans sp. nov., a novel polycyclic-aromatic-hydrocarbon-degrading species. Int J Syst Evol Microbiol 54:2313–2317

    CAS  Google Scholar 

  395. Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT (1999) Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol 65:251–259

    CAS  Google Scholar 

  396. Jamison VW, Raymond RL, Hudson JO (1969) Microbial hydrocarbon co-oxidation. III. Isolation and characterization of an α, α′-dimethyl-cis, cis-muconic acid-producing strain of Nocardia corallina. Appl Microbiol 17:853–856

    CAS  Google Scholar 

  397. Raymond RL, Jamison VW, Hudson JO (1967) Microbial hydrocarbon co-oxidation. I. Oxidation of mono- and dicyclic hydrocarbons by soil isolates of the genus Nocardia. Appl Microbiol 15:857–865

    CAS  Google Scholar 

  398. Kim J-S, Powalla M, Lang S, Wagner F, Lünsdorf H, Wray V (1990) Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol 13:257–266

    CAS  Google Scholar 

  399. Kubota M, Kawahara K, Sekiya K, Uchida T et al (2005) Nocardioides aromaticivorans sp. nov., a dibenzofuran-degrading bacterium isolated from dioxin-polluted environments. Syst Appl Microbiol 28:165–174

    CAS  Google Scholar 

  400. Balkwill DL, Drake GR, Reeves RH, Fredrickson JK et al (1997) Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47:191–201

    CAS  Google Scholar 

  401. Romine MF, Stillwell LC, Wong K–K, Thurston SJ et al (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602

    CAS  Google Scholar 

  402. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    CAS  Google Scholar 

  403. Yuan J, Lai Q, Zheng T, Shao Z (2009) Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int J Syst Evol Microbiol 59:2084–2088

    CAS  Google Scholar 

  404. Suzuki S, Hiraishi A (2007) Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. J Gen Appl Microbiol 53:221–228

    CAS  Google Scholar 

  405. Sohn JH, Kwon KK, Kang J-H, Jung H-B, Kim S-J (2004) Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54:1483–1487

    CAS  Google Scholar 

  406. Teramoto M, Ohuchi M, Hatmanti A, Darmayati Y et al (2011) Oleibacter marinus gen. nov., sp. nov., a bacterium that degrades petroleum aliphatic hydrocarbons in a tropical marine environment. Int J Syst Evol Microbiol 61:375–380

    CAS  Google Scholar 

  407. Yakimov MM, Giuliano L, Gentile G, Crisafi E et al (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785

    CAS  Google Scholar 

  408. Szabó I, Szoboszlay S, Kriszt B, Háhn J et al (2011) Olivibacter oleidegradans sp. nov., a hydrocarbon-degrading bacterium isolated from a biofilter clean-up facility on a hydrocarbon-contaminated site. Int J Syst Evol Microbiol 61:2861–2865

    Google Scholar 

  409. Engelhardt MA, Daly K, Swannell RPJ, Head IM (2001) Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J Appl Microbiol 90:237–247

    CAS  Google Scholar 

  410. Das R, Tiwary BN (2013) Isolation of a novel strain of Planomicrobium chinense from diesel contaminated soil of tropical environment. J Basic Microbiol 53:723–732

    Google Scholar 

  411. Jeon CO, Park W, Ghiorse WC, Madsen EL (2004) Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54:93–97

    CAS  Google Scholar 

  412. Gutierrez T, Green DH, Nichols PD, Whitman WB, Semple KT, Aitken MD (2013) Polycyclovorans algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton. Appl Environ Microbiol 79:205–214

    CAS  Google Scholar 

  413. Gutierrez T, Nichols PD, Whitman WB, Aitken MD (2012) Porticoccus hydrocarbon-oclasticus sp. nov., an aromatic hydrocarbon-degrading bacterium identified in laboratory cultures of marine phytoplankton. Appl Environ Microbiol 78:628–637

    Google Scholar 

  414. Hedlund BP, Staley JT (2006) Isolation and characterization of Pseudoalteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties. Environ Microbiol 8:178–182

    CAS  Google Scholar 

  415. Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads a taxonomic study. J Gen Microbiol 43:159–271

    CAS  Google Scholar 

  416. Zylstra GJ, Gibson DT (1989) Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem 264:14940–14946

    Google Scholar 

  417. Kotturi G, Robinson CW, Inniss WE (1991) Phenol degradation by a psychrotrophic strain of Pseudomonas putida. Appl Microbiol Biotechnol 34:539–543

    CAS  Google Scholar 

  418. Juang R-S, Wu C-Y (2007) Microbial degradation of phenol in high-salinity solutions in suspensions and hollow fiber membrane contactors. Chemosphere 66:191–198

    CAS  Google Scholar 

  419. Ramsay B, McCarthy J, Guerra-Santos L, Kappeli O, Fiechter A, Margaritis A (1988) Biosurfactant production and diauxic growth of Rhodococcus aurantiacus when using n-alkanes as the carbon source. Can J Microbiol 34:1209–1212

    CAS  Google Scholar 

  420. Iwabuchi N, Sunairi M, Anzai H, Nakajima M, Harayama S (2000) Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Appl Environ Microbiol 66:5073–5077

    CAS  Google Scholar 

  421. Austin B, Calomiris JJ, Walker JD, Colwell RR (1977) Numerical taxonomy and ecology of petroleum-degrading bacteria. Appl Environ Microbiol 34:60–68

    CAS  Google Scholar 

  422. Walker J, Colwell R (1974) Microbial degradation of model petroleum at low temperatures. Microb Ecol 1:63–95

    CAS  Google Scholar 

  423. Rentz JA, Alvarez PJJ, Schnoor JL (2008) Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02. Environ Pollut 151:669–677

    CAS  Google Scholar 

  424. Mallick S, Dutta TK (2008) Kinetics of phenanthrene degradation by Staphylococcus sp. strain PN/Y involving 2-hydroxy-1-naphthoic acid in a novel metabolic pathway. Process Biochem 43:1004–1008

    CAS  Google Scholar 

  425. Juhasz AL, Stanley GA, Britz ML (2000) Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett Appl Microbiol 30:396–401

    CAS  Google Scholar 

  426. Balachandran C, Duraipandiyan V, Balakrishna K, Ignacimuthu S (2012) Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresour Technol 112:83–90

    CAS  Google Scholar 

  427. Kodama Y, Stiknowati LI, Ueki A, Ueki K, Watanabe K (2008) Thalassospira tepidiphila sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from seawater. Int J Syst Evol Microbiol 58:711–715

    CAS  Google Scholar 

  428. Zhao B, Wang H, Li R, Mao X (2010) Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol 60:1125–1129

    CAS  Google Scholar 

  429. Evans PJ, Mang DT, Kim KS, Young LY (1991) Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol 57:1139–1145

    CAS  Google Scholar 

  430. Song B, Young LY, Palleroni NJ (1998) Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition. Int J Syst Bacteriol 48:889–894

    Google Scholar 

  431. Shinoda Y, Sakai Y, Uenishi H, Uchihashi Y et al (2004) Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl Environ Microbiol 70:1385–1392

    CAS  Google Scholar 

  432. Perry J (2006) The genus Thermoleophilum. In: Dworkin M et al (eds) The prokaryotes. Springer, New York

    Google Scholar 

  433. Zarilla KA, Perry JJ (1984) Thermoleophilum album gen. nov. and sp. nov., a bacterium obligate for thermophily and n-alkane substrates. Arch Microbiol 137:286–290

    CAS  Google Scholar 

  434. Perry J (2006) The genus Thermomicrobium. In: Dworkin M et al (eds) The prokaryotes. Springer, New York

    Google Scholar 

  435. Feitkenhauer H, Müller R, Märkl H (2003) Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60–70°C by Thermus and Bacillus spp. Biodegradation 14:367–372

    CAS  Google Scholar 

  436. Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K (2008) Tranquillimonas alkanivorans gen. nov., sp. nov., an alkane-degrading bacterium isolated from Semarang Port in Indonesia. Int J Syst Evol Microbiol 58:2118–2121

    CAS  Google Scholar 

  437. Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K (2009) Tropicimonas isoalkanivorans gen. nov., sp. nov., a branched-alkane-degrading bacterium isolated from Semarang Port in Indonesia. Int J Syst Evol Microbiol 59:388–391

    CAS  Google Scholar 

  438. Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K (2009) Tropicibacter naphthalenivorans gen. nov., sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from Semarang Port in Indonesia. Int J Syst Evol Microbiol 59:392–396

    CAS  Google Scholar 

  439. Hedlund BP, Staley JT (2001) Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int J Syst Evol Microbiol 51:61–66

    CAS  Google Scholar 

  440. Geiselbrecht AD, Herwig RP, Deming JW, Staley JT (1996) Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget sound sediments. Appl Environ Microbiol 62:3344–3349

    CAS  Google Scholar 

  441. Lang S, Gilbon A, Syldatk C, Wagner F (1984) Comparison of interfacial active properties of glycolipis from microorganisms. In: Mittal KL, Lindman B (eds) Surfactants in solution. Plenum Press, New York

    Google Scholar 

  442. Sar N, Rosenberg E (1983) Emulsifier production by Acinetobacter calcoaceticus strains. Curr Microbiol 9:309–313

    CAS  Google Scholar 

  443. Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2697–2702

    CAS  Google Scholar 

  444. Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R et al (1995) Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244

    CAS  Google Scholar 

  445. Käppeli O, Finnerty WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J Bacteriol 140:707–712

    Google Scholar 

  446. Salehizadeh H, Mohammadizad S (2009) Microbial enhanced oil recovery using biosurfactant produced by Alcaligenes faecalis. Iran J Biotechnol 7:216–223

    CAS  Google Scholar 

  447. Passeri A, Schmidt M, Haffner T, Wray V, Lang S, Wagner F (1992) Marine biosurfactants. IV. Production, characterization and biosynthesis of an anionic glucose lipid from the marine bacterial strain MM1. Appl Microbiol Biotechnol 37:281–286

    CAS  Google Scholar 

  448. Zheng C, Li Z, Su J, Zhang R, Liu C, Zhao M (2012) Characterization and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1. J Appl Microbiol 113:44–51

    CAS  Google Scholar 

  449. Li Z-Y, Lang S, Wagner F, Witte L, Wray V (1984) Formation and identification of interfacial-active glycolipids from resting microbial cells. Appl Environ Microbiol 48:610–617

    CAS  Google Scholar 

  450. Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408

    CAS  Google Scholar 

  451. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    CAS  Google Scholar 

  452. Bordoloi NK, Konwar BK (2008) Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. Colloids Surf B Biointerfaces 63:73–82

    CAS  Google Scholar 

  453. Horowitz S, Currie JK (1990) Novel dispersants of silicon carbide and aluminum nitride. J Dispers Sci Technol 11:637–659

    CAS  Google Scholar 

  454. McInerney MJ, Jenneman GE, Knapp RM, Menzie DE (1985) Biosurfactant and enhanced oil recovery. United States, US Patent 4522261

    Google Scholar 

  455. Folmsbee M, Duncan K, Han SO, Nagle D, Jennings E, McInerney M (2006) Re-identification of the halotolerant, biosurfactant-producing Bacillus licheniformis strain JF-2 as Bacillus mojavensis strain JF-2. Syst Appl Microbiol 29:645–649

    CAS  Google Scholar 

  456. Cooper DG, Zajic JE (1980) Surface-active compounds from microorganisms. In: Perlman D (ed) Advances in applied microbiology. Academic Press, New York

    Google Scholar 

  457. Gurjar M, Khire JM, Khan MI (1995) Bioemulsifier production by Bacillus stearothermophilus VR-8 isolate. Lett Appl Microbiol 21:83–86

    CAS  Google Scholar 

  458. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    CAS  Google Scholar 

  459. Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336–341

    CAS  Google Scholar 

  460. Oberbremer A, Müller-Hurtig R (1989) Aerobic stepwise hydrocarbon degradation and formation of biosurfactants by an original soil population in a stirred reactor. Appl Microbiol Biotechnol 31:582–586

    CAS  Google Scholar 

  461. Oberbremer A, Müller-Hurtig R, Wagner F (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl Microbiol Biotechnol 32:485–489

    CAS  Google Scholar 

  462. McCaffrey WC, Cooper DG (1995) Sophorolipids production by Candida bombicola using self-cycling fermentation. J Ferment Bioeng 79:146–151

    CAS  Google Scholar 

  463. Cirigliano MC, Carman GM (1984) Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 48:747–750

    CAS  Google Scholar 

  464. Cooper DG, Zajic JE, Gerson DF (1979) Production of surface-active lipids by Corynebacterium lepus. Appl Environ Microbiol 37:4–10

    CAS  Google Scholar 

  465. Kebbouche-Gana S, Gana M, Khemili S, Fazouane-Naimi F et al (2009) Isolation and characterization of halophilic Archaea able to produce biosurfactants. J Ind Microbiol Biotechnol 36:727–738

    CAS  Google Scholar 

  466. Calvo C, Martinez-Checa F, Mota A, Bejar V, Quesada E (1998) Effect of cations, pH and sulfate content on the viscosity and emulsifying activity of the Halomonas eurihalina exopolysaccharide. J Ind Microbiol Biotechnol 20:205–209

    CAS  Google Scholar 

  467. Trebbau de Acevedo G, McInerney MJ (1996) Emulsifying activity in thermophilic and extremely thermophilic microorganisms. J Ind Microbiol 16:1–7

    CAS  Google Scholar 

  468. Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    CAS  Google Scholar 

  469. Parra J, Guinea J, Manresa M, Robert M et al (1989) Chemical characterization and physicochemical behavior of biosurfactants. J Am Oil Chem Soc 66:141–145

    CAS  Google Scholar 

  470. Tahzibi A, Kamal F, Assadi MM (2004) Improved production of rhamnolipids by a Pseudomonas aeruginosa mutant. Iran Biomed J 8:25–31

    CAS  Google Scholar 

  471. Raza Z, Rehman A, Khan M, Khalid Z (2007) Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes. Biodegradation 18:115–121

    CAS  Google Scholar 

  472. Ishigami Y, Gama Y, Ishii F, Choi YK (1993) Colloid chemical effect of polar head moieties of a rhamnolipid-type biosurfactant. Langmuir 9:1634–1636

    CAS  Google Scholar 

  473. Tuleva BK, Ivanov GR, Christova NE (2002) Biosurfactant production by a new Pseudomonas putida strain. Zeitschrift für Naturforschung, 57c:356–360

    Google Scholar 

  474. Mercade M, Manresa M (1994) The use of agroindustrial by-products for biosurfactant production. J Am Oil Chem Soc 71:61–64

    CAS  Google Scholar 

  475. Syldatk C, Lang S, Matulovic U, Wagner F (1985) Production of four interracial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Zeitschrift für Naturforschung, 40c:61–67

    Google Scholar 

  476. Ciapina E, Melo W, Santa AL, Santos A, Freire D, Pereira N (2006) Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source. Appl Biochem Biotechnol 131:880–886

    Google Scholar 

  477. Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl Environ Microbiol 44:864–870

    CAS  Google Scholar 

  478. Espuny M, Egido S, Rodón I, Manresa A, Mercadé M (1996) Nutritional requirements of a biosurfactant producing strain Rhodococcus sp 51T7. Biotechnol Lett 18:521–526

    CAS  Google Scholar 

  479. Ramsay BA, Margaritias A, Zajic JE, Cooper DG (1983) Rhodochrous bacteria: biosurfactant production and demulsifying ability. In: Zajic JE et al (eds) Microbial enhanced oil recovery. Pennwell Publishing Co, Tulsa

    Google Scholar 

  480. Oh SG, Shah DO (1993) Effect of counterions on the interfacial tension and emulsion droplet size in the oil/water/dodecyl sulfate system. J Phys Chem 97:284–286

    CAS  Google Scholar 

  481. Hommel R, Stiiwer O, Stuber W, Haferburg D, Kleber HP (1987) Production of water-soluble surface-active exolipids by Torulopsis apicola. Appl Microbiol Biotechnol 26:199–205

    CAS  Google Scholar 

  482. Hommel RK (1990) Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biodegradation 1:107–119

    CAS  Google Scholar 

  483. Stüwer O, Hommel R, Haferburg D, Kleber HP (1987) Production of crystalline surface-active glycolipids by a strain of Torulopsis apicola. J Biotechnol 6:259–269

    Google Scholar 

  484. Cooper DG, Paddock DA (1984) Production of a biosurfactant from Torulopsis bombicola. Appl Environ Microbiol 47:173–176

    CAS  Google Scholar 

  485. Göbbert U, Lang S, Wagner F (1984) Sophorose lipid formation by resting cells of Torulopsis bombicola. Biotechnol Lett 6:225–230

    Google Scholar 

Download references

Acknowledgments

We are indebted to the anonymous reviewer for helpful comments as well as to Matthew Yates of the Pennsylvania State University for correcting the English language of this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Siegert .

Editor information

Editors and Affiliations

Appendix

Appendix

See Tables A.1, A.2 and A.3.

Table A.1 Microbial strains that were isolated from oilfields and their growth conditions
Table A.2 Microbial isolates that are able to degrade hydrocarbons
Table A.3 Values for the surface tension and the interfacial tension (γ) for certain microbial strains and pure surfactants

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siegert, M., Sitte, J., Galushko, A., Krüger, M. (2013). Starting Up Microbial Enhanced Oil Recovery. In: Schippers, A., Glombitza, F., Sand, W. (eds) Geobiotechnology II. Advances in Biochemical Engineering/Biotechnology, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_256

Download citation

Publish with us

Policies and ethics