Skip to main content

Welding Technology

  • Chapter
Welding Robots
  • 2440 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.7 References

  1. Aoki A,. Takeichi M,. Seto M,. Yamaguchi S, (2004), Development of GTAW robot system for aluminum frame, IIW Doc XII-1814-04.

    Google Scholar 

  2. Johnson M,. Fountain C,. Castner H, (2000), GTAW fluxes for increased penetration in nickel based alloys and titanium, IIW Doc. XII-1617-00.

    Google Scholar 

  3. Norrish, J, Advanced welding processes, Institute of Physics Publishing, 1992

    Google Scholar 

  4. Hichen G K, Gas-tungsten arc welding, ASM Handbook, Vol 6, Welding, Brazing and Soldering, pp 190–194.

    Google Scholar 

  5. Chen Y, Nie ZR, Zhou ML, Zhang JX, Zuo TY. The research and development of tungsten electrodes without radioactivity, International Symposium on Ecomaterials held in conjunction with the 39th Annual Conference on Metallurgists of CIM, AUG 20–23, 2000 ENVIRONMENT CONSCIOUS MATERIALS-ECOMATERIALS, 699–702, 2000

    Google Scholar 

  6. Tusek J., Suban M. (1999), TIG welding in a mixture of argon, helium and hydrogen, IIW SG-212-948-99.

    Google Scholar 

  7. Shirali, A. A., Mills, K. C., The effect of welding parameters on penetration in GTA welds, Welding J. 72(7) 1993, pp. 347s–353s.

    Google Scholar 

  8. Lancaster, J.F., Mills, K.C., Recommendations for the avoidance of variable penetration in gas tungsten arc welding, IIW Doc 212-796-91.

    Google Scholar 

  9. Pierce, S. W., Burgardt, P., Olson, D. L., Thermocapillary and arc phenomena in stainless steel welding, Welding J., 78(2) 1999, pp. 45s–52s.

    Google Scholar 

  10. Paillard, P., Saindrenan, J., Effect of activating fluxes on the penetration capability of the TIG welding arc: study of fluid-flow phenomena in weld pools and the energy concentration in the anode spot of a TIG arc plasma, Materials Science Forum 426-4, Ed. Chandra, T., Torralba, J.M., Sakai, T., 4087–4092, 2003.

    Google Scholar 

  11. Watanabe H., Butsusaki Y., Nagashima T (2004), Development of ultra-narrow gap hot wire GTA welding process, IIW Doc. XII-1810-04.

    Google Scholar 

  12. GTAW process with dual shielding gas, IIW Doc. XI-455-86, 1986.

    Google Scholar 

  13. Jarvis, B.L., Ahmed, N.U., Sc. and Tech. Weld. Joining, 2000, 5(1), 1–7.

    Google Scholar 

  14. Holliday, D B, Gas-metal arc welding, ASM Handbook, Vol 6, Welding, Brazing and Soldering, pp 180–185.

    Google Scholar 

  15. Grist, F J, Farrel, W and Lawrence, G S, Power sources, ASM Handbook, Vol 6, Welding, Brazing and Soldering, pp. 36–44.

    Google Scholar 

  16. Hancock, R and Johnsen, M, Developments in guns and torches, Welding J (2004), 83(5), pp. 29–32.

    Google Scholar 

  17. Lyttle, K A, Shielding gases, ASM Handbook, Vol 6, Welding, Brazing and Soldering, pp.64–69.

    Google Scholar 

  18. Temrat P, Poopat, B., Preliminary study of effect of GMAW’s pulse shape on weld profile, Proceedings of the IIW Asian Pacific International Congress, Singapore, 29 Oct.–1 Nov. 2002, publ. by The Welding Technology Institute of Australia (WTIA), ISBN 0-909539-99-5, vol. ST 3/4, paper No 37.

    Google Scholar 

  19. Bohme D., Nentwig A., Knoch R., A high efficiency welding process-the double wire welding, Proceedings of the 1996 IIW International Congress, Auckland, 07–09 February 1996, pp. 1393–1407

    Google Scholar 

  20. Rayes, M, Walz, C and Sepold, G, The influence of various hybryd welding parameters on bead geometry, Welding J (2004), 83(5), pp. 147s–153s.

    Google Scholar 

  21. Messler, R, Whats’s next for hybrid welding, Welding J (2004), 83(3), pp. 30–34.

    Google Scholar 

  22. Mazumder, J, Laser beam welding, ASM Handbook, Vol 6, Welding, Brazing and Soldering, pp. 263–269.

    Google Scholar 

  23. Zacharia, T, David, S.A., Vitek, J. M. and Debroy, T., Weld pool development during GTA and Laser beam welding of type 304 stainless steel, Part I and II, Welding J. 68(12) 1989, pp. 499s–519s.

    Google Scholar 

  24. Mazumder, J, Procedure development and practice considerationsfor laser-beam welding, ASM Handbook, Vol 6, Welding, Brazing and Soldering, pp. 874–880.

    Google Scholar 

  25. Katayama S., Seto N., Mizutani M., Matsunawa A. (2000), Interaction between plasma and laser beam, and its effect on keyhole dynamics in high power C02 laser welding, IIW Docs IV-765-00, SG-212-976-00

    Google Scholar 

  26. Faerber, M.G., Gases for laser cutting and welding, Proceedings of the 2000 IIW International Congress, Melbourne, 29 Oct.–2 Nov. 2000

    Google Scholar 

  27. Kawahito, Y., Katayama, S., In-process monitoring and adaptive control in laser microspot lap welding of aluminum alloy, Proceedings of the IIW 2004 Int. Conf. “Technical trends and future prospectives of welding technology for transportation, land, sea, air and space”, Osaka, 15–16 July 2004, pp. 433–438.

    Google Scholar 

  28. Kraft, T., Chang, J., Hoult, A., Lee, S., Migliore, L., New advances in laser materials processing, Proceedings of the 2000 IIW International Congress, Melbourne, 29 Oct.–2 Nov. 2000 (ICRA-2000-37).

    Google Scholar 

  29. ROFIN Laser Diodes, General catalog, http://www.rofin.com (Laser Diodes), 2004.

    Google Scholar 

  30. Bryden, B. G., Welding of plastics with high power diode laser, Industrial Robot 31(1) 2004, 30–33.

    Article  Google Scholar 

  31. Linnert, G. E., Welding Metallurgy, Fourth Edition (1994), AWS.

    Google Scholar 

  32. Matsuyama, K., Evaluation of electrode tip life using various types of aluminum alloy sheets for automobile body in resistance spot welding with dome and radius electrode tips, IIW Doc III-1125-98.

    Google Scholar 

  33. Procedure development and process considerations for resistance welding, ASM Handbook, Vol 6, Welding, Brazing and Soldering, pp.833–850.

    Google Scholar 

  34. Welding Handbook, Volume 2, Welding Processes, Eigth edition, AWS.

    Google Scholar 

  35. Seo, D. W., Jeon, Y.B., Lim, J.K., Effect of electric weld current on spatter reduction in spot welding process, 5th Int. Conf. on Fracture and Strength of Solids/2nd Int. Conf. on Physics and Chemistry of Fracture and Failure Prevention, Oct. 20–22, 2003, Advances in Fracture and Failure Prevention, PTS 1 and 2, 1623–1628, 2004

    Google Scholar 

  36. Chang, B.H., Zhou, Y., Numerical study on the effect of electrode force in small-scale resistance spot welding, 9th Int. Man. Conf., Aug 16–17, 2000, J Mater Process Tech 139(1–3) 2003, 635–641.

    Article  Google Scholar 

  37. Kimchi, M., Workman, D., Gould, J.E., Advanced welding techniques for aluminum alloys, Welding in the World, July 2002, vol. 46, Special issue, pp. 157–168.

    Google Scholar 

  38. Karagoulis, M.J., Resistance seam welding, ASM Handbook, Vol 6, Welding, Brazing and Soldering, pp.238–246.

    Google Scholar 

  39. Thomas, W. M., Nicholas, E. D., Needham, M. G., Templesmith, Dawes, C. J., Friction stir butt welding, International patent application PCT/GB92/02203, GB Patent application 9125978.8. US Patent 5.460.317, 1001.

    Google Scholar 

  40. C. M. Chen, R. Kovacevic, Finite element modeling of friction stir welding — thermal and thermomechanical analysis, Int. J. Machine Tools and Manufacture 43 (2003) 1319–1326.

    Article  Google Scholar 

  41. Khandkar, M. Z. H., Khan, J. A., Reynolds, A. P., Prediction of temperature distribution and thermal history during friction stir welding: an input torque based model, to appear in Science and Technology of Welding and Joining.

    Google Scholar 

  42. Colligan, K., Material flow behaviour during friction stir welding of aluminum, Welding J. 78(7) 1999, pp. 229–237.

    Google Scholar 

  43. Li, Y., Murr, L. E., McClure, J. C., Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum, Materials Science and Engineering A271 (1999), pp. 213–223.

    Article  Google Scholar 

  44. Fonda, R. W., Bingert, J. F., Colligan, K. J., Development of grain structure during friction stir welding, Scripta Materialia 51 (2004), pp. 243–248.

    Article  Google Scholar 

  45. Thomas, W. M., Threadgill, P. L. and Nicholas, E. D., Feasibility of friction stir welding steel, Science and Technology of Welding and Joining (1999), vol. 4(6), pp. 365–372.

    Article  Google Scholar 

  46. Cook, G. E., Smartt, H. B., Mitchell, J. E., Strauss, A. M., Crawford, R., Controlling robotic friction stir welding, Welding J. 82(6) 2003, pp. 28–34.

    Google Scholar 

  47. ESAB Genaral Catalog, www.esab.com, 2005.

    Google Scholar 

  48. Thomas, W.M. and Dolby, R. E. 2003, Friction stir welding developments, Proc. 6th Int. Conf. on Trends in Welding Research. Eds. S. A. David, T. DebRoy, J. C. Lippold, H. B. Smartt and J. M. Vitek, pp. 203–211. ASM International.

    Google Scholar 

  49. Thomas, W. M., Staines, D. G., Norris, J. M., Frias, R., Friction stir welding — Tools and development, FSW Seminar, Porto, Portugal, TWI 3/12/02.

    Google Scholar 

  50. Dawes, C., Thomas, W, Development of improved tool designs for friction stir welding of aluminum, 1st Int. Sym. On Frictio Stir Welding, Thousand Oaks, California, USA (1999).

    Google Scholar 

  51. Strombeck, A., Schilling, C., dos Santos, J., Robotic friction stir welding, GKSS Workshop, Reibruhrschweissen, Geesthacht, Germany, 2002.

    Google Scholar 

  52. R. Leal and A. Loureiro; Defects formation in friction stir welding of aluminum alloys; Materials Science Fórum Vols. 455–456 (2004) 299–302.

    Article  Google Scholar 

  53. Kohn, G., Greenberg, Y., Makover, I., Muntz, A., Laser-assisted friction stir welding, Welding J. 81(2) 2002, pp. 46–48.

    Google Scholar 

  54. Sakano, R., Murakami, K., Yamashita, K., Hyoe, T., Fujimoto, M., Inuzuka, M., Nagao, M., Kashiki, H., Development of spot FSW robot systems for automobile body members, 3rd Int. Sym. on Friction Stir Welding, Port Islands, Kobe, Japan 2001.

    Google Scholar 

  55. The Welding Institute, UK, http://www.twi.co.uk/

    Google Scholar 

  56. http://www.cpwr.com/hazpdfs/kfwelding.PDF

    Google Scholar 

  57. Matsuyama, K. I., Improving working environment in resistance spot welding, IIW Doc III-1248-03.

    Google Scholar 

  58. Ueyama, T., Tong, H., Harada, S., Passmore, R., Ushio, M., “AC pulsed GMAW improves sheet metal joining”, Welding J. 84(2) 2005, pp. 40–46.

    Google Scholar 

  59. Xie, J., “Dual beam laser welding”, Welding J. 81(10) 2002, pp. 223s–230s.

    Google Scholar 

  60. Villafuerte, J., “Advances in robotic welding technology”, Welding J. 84(1) 2005, pp. 28–33.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2006). Welding Technology. In: Welding Robots. Springer, London. https://doi.org/10.1007/1-84628-191-1_2

Download citation

  • DOI: https://doi.org/10.1007/1-84628-191-1_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-953-1

  • Online ISBN: 978-1-84628-191-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics