Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 1556 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakshi BR and Chatterjee R (1998) Unification of neural and statistical methods as applied to materials structure-property mapping, J. Alloys Compounds, 279(1): 39–46.

    Google Scholar 

  2. Bezdek JC (1993) Editorial-fuzzy models: What are they and why, IEEE Trans. on Fuzzy Systems, vol. 1, pp. 1–5.

    MATH  Google Scholar 

  3. Brown M and Harris C (1994) Neuro-fuzzy adaptive modelling and control, Prentice Hall, New York.

    Google Scholar 

  4. Buckley JJ and Hayashi Y (1994) Fuzzy neural networks, In: Fuzzy Sets, Neural Networks and Soft Computing, edited by Yager R and Zadeh L, Van Nostrand Reinhold, New York.

    Google Scholar 

  5. Chak CK, Feng G and Ma J (1998) An adaptive fuzzy-neural network for MIMO system model approximation in high-dimensional spaces, IEEE Trans. on System, Man and Cybernetics, 28: 436–446.

    Google Scholar 

  6. Chen M and Linkens DA (1998) A fast fuzzy modeling approach using clustering neural networks, In Proc. IEEE world congress on Intell. Computat. 2: 1406–1411.

    Google Scholar 

  7. Chen M Linkens DA (2001), A systematic neuro-fuzzy modelling framework with application to material property prediction, IEEE Trans. on SMC, B 31(5): 781–790.

    Google Scholar 

  8. Cho KB and Wang BH (1996) Radial basis function based adaptive fuzzy systems and their application to system identification and prediction, Fuzzy Sets System., 83: 325–339.

    MathSciNet  Google Scholar 

  9. Fuller R (1995) Neural-fuzzy systems, Abo Akademi.

    Google Scholar 

  10. Gupta MM (1994) Fuzzy neural networks: Theory and Applications, Proceedings of SPIE, vol. 2353, pp. 303–325.

    Google Scholar 

  11. Gustafson DE, Kessel WC (1979) Fuzzy clustering with fuzzy covariance matrix, Proc. of the IEEE CDC, San Diego, 761–766.

    Google Scholar 

  12. Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm, IEEE Trans. on Neural Networks, 5(6): 989–993.

    Article  Google Scholar 

  13. Hodgson PD (1996) Microstructure modeling for property prediction and control, J. of Materials Process Technology, 60: 27–33.

    Google Scholar 

  14. Jang JSR (1993) ANFIS: Adaptive Network Based Fuzzy Inference System, IEEE Trans. on SMC., 23(3): 665–685

    MathSciNet  Google Scholar 

  15. Jang JSR, Sun CT (1995) Neuro-fuzzy modelling and control, Proc. of IEEE, 83: 378–406.

    Google Scholar 

  16. Kim D, Kim C (1997) Forecasting time series with genetic fuzzy predictor ensemble, IEEE Trans. on Fuzzy Systems, 5(4): 523–535.

    Google Scholar 

  17. Kosko B (1992) Neural networks and fuzzy systems, Prentice Hall, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  18. Kulkarni AD (1998) Neural-fuzzy models for multi-spectral image analysis, Internat. J. of Applied Intelligence, 8: 173–187

    Google Scholar 

  19. Kulkarni AD (2001) Computer vision and fuzzy-neural systems, Upper Saddle River, New Jersey: Prentice Hall PTR.

    Google Scholar 

  20. Lai JH and Lin CT (1999) Application of neural fuzzy network to pyrometer correction and temperature control in rapid thermal processing, IEEE Trans. Fuzzy Systems, 7(2):160–174.

    Google Scholar 

  21. Lee SH, Kim I (1994) Time series analysis using fuzzy learning, Proc. of Intern. Conf. on Neural Information Processing, Seoul, Korea, 6: 1577–1582.

    Google Scholar 

  22. Li X, Dong S, Venuvinod PK (2000) Hybrid Learning for tool wear monitoring, Int. J. Adv. Manufacturing Technology, 16: 303–307.

    Google Scholar 

  23. Lin CT and Lee CSG (1991) Neural networks based fuzzy logic and control systems, IEEE Trans. On Computers, vol. 40, pp. 1320–1336.

    MathSciNet  Google Scholar 

  24. MATLAB (1998) Fuzzy logic toolbox, user’s guide, The Math Works Inc., vers. 5.2

    Google Scholar 

  25. Mitra S, Hayashi Y (2000) Neuro-fuzzy rule generation: survey in soft computing framework, IEEE Trans. on Neural Networks, 11(3): 748–768.

    Article  Google Scholar 

  26. Nauck D, Klawonn F and Kruse R (1997) Foundations of neuro-fuzzy systems, Wiley, Chichester, U.K.

    Google Scholar 

  27. Nie J (1997) Nonlinear time-series forecasting: A fuzzy-neural approach, Neurocomputing, 16(1997): 63–76.

    Article  Google Scholar 

  28. Pal SK and Mitra S (1992) Multilayer perceptron, fuzzy sets and classification, IEEE Trans. On Neural Networks, 2(5): 683–697.

    Google Scholar 

  29. Palit AK and Babuska R (2001) Efficient training algorithm for Takagi-Sugeno type neuro-fuzzy network, Proc. of FUZZ-IEEE, Melbourne, Australia, vol. 3: 1367–1371.

    Google Scholar 

  30. Palit AK and Popovic D (1999) Forecasting chaotic time series using neuro-fuzzy approach, Proc. of IEEE-IJCNN, Washington DC, USA, vol. 3: 1538–1543.

    Google Scholar 

  31. Palit AK and Popovic D (1999) Fuzzy logic based automatic rule generation and forecasting of time series, Proc. of FUZZ-IEEE, Seoul, Korea, vol. 1: 360–365.

    Google Scholar 

  32. Palit AK and Popovic D (2000) Intelligent processing of time series using neurofuzzy adaptive genetic approach, Proc. of IEEE-ICIT, Goa, India, vol. 1:141–146.

    Google Scholar 

  33. Palit AK and Popovic D (2000) Nonlinear combination of forecasts using artificial neural network, fuzzy logic and neuro-fuzzy Approaches, Proc. of FUZZ-IEEE, San Antonio, Texas, USA, vol. 2: 566–571.

    Google Scholar 

  34. Palit AK, Doeding G, Anheier W, Popovic D (2002) Backpropagation based training algorithm for Takagi-Sugeno type MIMO neuro-fuzzy network to forecast electrical load time series, Proc. of FUZZ-IEEE, Honolulu, Hawai, USA. vol. 1: 86–91.

    Google Scholar 

  35. Park HS, Oh SK, Ahn TC and Pedrycz W (1999) A study on multi-layer based fuzzy polynomial inference system based on an extended GMDH algorithm, Proc. of FUZZIEEE, Seoul, Korea, vol. 1: 354–359

    Google Scholar 

  36. Pedrycz W (1995) Fuzzy sets engineering, CRC Press, Boca Raton, Florida.

    MATH  Google Scholar 

  37. Pickering FB (1978) Physical metallurgy and the design of steels, Applied Science, London, U.K.

    Google Scholar 

  38. Roubos H, Setnes M (2001) Compact and transparent fuzzy models and classifiers through iterative complexity reduction, IEEE Trans. on Fuzzy System, 9(4): 516–524

    Google Scholar 

  39. Setnes M, Babuska R, Kaymark U, et al., (1998) Similarity measures in fuzzy rule base simplification, IEEE trans. on SMC., B-28: 376–386

    Google Scholar 

  40. Setnes M, Roubos JA (2000) GA-fuzzy modelling and classification: complexity and performance, IEEE Trans. on Fuzzy Systems, 8(5): 509–522

    Google Scholar 

  41. Takagi and Hayashi (1991) NN-driven fuzzy reasoning, Internat. J. of Approximate Reasoning, 5(3): 191–212.

    MATH  Google Scholar 

  42. Wang L and Yen J (1999) Extracting fuzzy rules for system modelling using a hybrid of genetic algorithms and Kalman filter, Fuzzy Sets System, 101: 353–362

    Article  MathSciNet  Google Scholar 

  43. Wang LX (1994) Adaptive fuzzy systems and control: design and stability analysis, Englewood Cliffs, New Jersey: Prentice Hall.

    Google Scholar 

  44. Wang LX and Mendel JM (1992a) Fuzzy basis functions, universal approximation, and orthogonal least squares learning, IEEE Trans. on Neural Network, 3: 807–814.

    Google Scholar 

  45. Wang LX and Mendel JM (1992b) Back-propagation fuzzy system as nonlinear dynamic system identifiers, Proc. of FUZZ-IEEE, vol. 2: 1409–1418.

    Google Scholar 

  46. Wang LX and Mendel JM (1992c) Generating fuzzy rules by learning from examples, IEEE Trans. on SMC, 22(6): 1414–1427.

    MathSciNet  Google Scholar 

  47. Xiaosong D, Popovic D, Schulz-Ekloff G (1995) Oscillation resisting in the learning of backpropagation neural networks, Proc. of 3rd IFAC/IFIP workshop on algorithm and architectures for real-time control, Ostend, Belgium.

    Google Scholar 

  48. Yen J and Wang L (1998) Application of statistical information criteria for optimal fuzzy model construction, IEEE Trans. on Fuzzy System, 6(3): 362–371.

    Google Scholar 

  49. Yen J and Wang L (1999) Simplifying fuzzy rule-based models using orthogonal transformation methods, IEEE Trans. on SMC, 29(1): 13–24.

    Google Scholar 

  50. Zhang J and Morris AJ (1999) Recurrent neuro-fuzzy networks for nonlinear process modelling, IEEE Trans. on Neural Networks, 10: 313–326.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2005). Neuro-fuzzy Approach. In: Computational Intelligence in Time Series Forecasting. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/1-84628-184-9_6

Download citation

  • DOI: https://doi.org/10.1007/1-84628-184-9_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-948-7

  • Online ISBN: 978-1-84628-184-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics