Skip to main content

Accelerated Atherogenesis and Antiphospholipid Antibodies

  • Chapter
Hughes Syndrome

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low-density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low-density lipoprotein phospholipids. Proc Natl Acad Sci U S A 1984;81:3883–3887.

    Article  PubMed  CAS  Google Scholar 

  2. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989;320:915–924.

    Article  PubMed  CAS  Google Scholar 

  3. Steinberg D. Low-density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997;272:20963–20966.

    Article  PubMed  CAS  Google Scholar 

  4. Heinecke JW. Mechanisms of oxidative damage of low-density lipoprotein in human atherosclerosis. Curr Opin Lipid 1997;8:268–274.

    Article  CAS  Google Scholar 

  5. Hughes GRV, Harris EN, Gharavi AE. The anticardiolipin syndrome. J Rheumatol 1986;13:486–489.

    PubMed  CAS  Google Scholar 

  6. Harris EN, Gharavi AE, Boey ML, et al. Anticardiolipin antibodies: detection by radioimmunoassay and association with thrombosis in systemic lupus erythematosus. Lancet 1983;2:1211–1214.

    Article  PubMed  CAS  Google Scholar 

  7. McNeil HP, Simpson RJ, Chesterman CN, Krilis SA. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: β2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci U S A 1990;87:4120–4124.

    Article  PubMed  CAS  Google Scholar 

  8. Galli M, Comfurius P, Maassen C, et al. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet 1990;335:1544–1547.

    Article  PubMed  CAS  Google Scholar 

  9. Matsuura E, Igarashi Y, Fujimoto M, Ichikawa K, Koike T. Anticardiolipin cofactor(s) and differential diagnosis of autoimmune disease. Lancet 1990;336:177–178.

    Article  PubMed  CAS  Google Scholar 

  10. Matsuura E, Igarashi Y, Fujimoto M, et al. Heterogeneity of anticardiolipin antibodies defined by the anticardiolipin cofactor. J Immunol 1992;148:3885–3891.

    PubMed  CAS  Google Scholar 

  11. Matsuura E, Igarashi Y, Yasuda T, Triplett DA, Koike T. Anticardiolipin antibodies recognize β2-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface. J Exp Med 1994;179:457–462.

    Article  PubMed  CAS  Google Scholar 

  12. George J, Harats D, Gilburd B, et al. Immunolocalization of β2-glycoprotein I (apolipoprotein H) to human atherosclerotic plaques: potential implications for lesion progression. Circulation 1999;99:2227–2230.

    PubMed  CAS  Google Scholar 

  13. Vaarala O, Alfthan G, Jauhiainen M, Leirisalo-Repo M, Aho K, Palosuo T. Crossreaction between antibodies to oxidised low-density lipoprotein and to cardiolipin in systemic lupus erythematosus. Lancet 1993;341:923–925.

    Article  PubMed  CAS  Google Scholar 

  14. Tinahones FJ, Cuadrado MJ, Khamashta MA, et al. Lack of cross reaction between antibodies to β2-glycoprotein-I and oxidized low-density lipoprotein in patients with antiphospholipid syndrome. Br J Rheumatol 1998;37:746–749.

    Article  PubMed  CAS  Google Scholar 

  15. Romero FI, Amengual O, Atsumi T, Khamashta MA, Tinahones FJ, Hughes GRV. Arterial disease in lupus and secondary antiphospholipid syndrome: Association with anti-β2-glycoprotein I antibodies but not with antibodies against oxidized low-density lipoprotein. Br J Rheumatol 1998;37:883–888.

    Article  PubMed  CAS  Google Scholar 

  16. Kobayashi K, Kishi M, Atsumi T, et al. Circulating oxidized LDL forms complexes with β2-glycoprotein I: implication as an atherogenic autoantigen. J Lipid Res 2003;44:716–726.

    Article  PubMed  CAS  Google Scholar 

  17. Hasunuma Y, Matsuura E, Makita Z, Katahira T, Nishi S, Koike T. Involvement of β2-glycoprotein I and anticardiolipin antibodies in oxidatively modified low-density lipoprotein uptake by macrophages. Clin Exp Immunol 1997;107:569–573.

    Article  PubMed  CAS  Google Scholar 

  18. Kobayashi K, Matsuura E, Liu Q, et al. A specific ligand for β2-glycoprotein I mediates autoantibody-dependent uptake of oxidized low density lipoprotein by macrophages. J Lipid Res 2001;42:697–709.

    PubMed  CAS  Google Scholar 

  19. Liu Q, Kobayashi K, Inagaki J, et al. ω-carboxyl variants of 7-ketocholesteryl esters are ligands for β2-glycoprotein I and mediate antibody-dependent uptake of oxidized LDL by macrophages. J Lipid Res 2002;43:1486–1495.

    Article  PubMed  CAS  Google Scholar 

  20. Chang MK, Bergmark C, Laurila A, et al. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci U S A 1999;96:6353–6358.

    Article  PubMed  CAS  Google Scholar 

  21. Horkko S, Bird DA, Miller E, et al. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 1999;103:117–128.

    PubMed  CAS  Google Scholar 

  22. Binder CJ, Horkko S, Dewan A, et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 2003;9:736–743.

    Article  PubMed  CAS  Google Scholar 

  23. Rose N, Afanasyeva M. Autoimmunity: busting the atheorsclerotic plaque. Nat Med 2003;9:641–642.

    Article  PubMed  CAS  Google Scholar 

  24. Cushing SD, Berliner JA, Valente AJ, et al. Minimally modified low-density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A 1990;87:5134–5138.

    Article  PubMed  CAS  Google Scholar 

  25. Rajavashisth TB, Andalibi A, Territo MC, et al. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 1990;344:254–257.

    Article  PubMed  CAS  Google Scholar 

  26. Nakata A, Miyagawa J, Yamashita S, et al. Localization of heparin-binding epidermal growth factor-like growth factor in human coronary arteries. Possible roles of HB-EGF in the formation of coronary atherosclerosis. Circulation 1996;94:2778–2786.

    PubMed  CAS  Google Scholar 

  27. Frostegard J, Wu R, Haegerstrand A, Patarroyo M, Lefvert AK, Nilsson J. Mononuclear leukocytes exposed to oxidized low density lipoprotein secrete a factor that stimulates endothelial cells to express adhesion molecules. Atherosclerosis 1993;103:213–219.

    Article  PubMed  CAS  Google Scholar 

  28. Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998;394:200–203.

    Article  PubMed  CAS  Google Scholar 

  29. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low-density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 1979;76:333–337.

    Article  PubMed  CAS  Google Scholar 

  30. Yamamoto T, Davis CG, Brown MS, et al. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 1984;39:27–38.

    Article  PubMed  CAS  Google Scholar 

  31. Brown MS, Goldstein JL. Scavenger cell receptor shared. Nature 1985;316:680–681.

    Article  PubMed  CAS  Google Scholar 

  32. Kodama T, Reddy P, Kishimoto C, Krieger M. Purification and characterization of a bovine acetyl low-density lipoprotein receptor. Proc Natl Acad Sci U S A 1998;85:9238–9242.

    Article  Google Scholar 

  33. Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 1990;343:531–535.

    Article  PubMed  CAS  Google Scholar 

  34. Elomaa O, Kangas M, Sahlberg C, et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 1995;80:603–609.

    Article  PubMed  CAS  Google Scholar 

  35. Elomaa O, Sankala M, Pikkarainen T, et al. Structure of the human macrophage MARCO receptor and characterization of its bacteria-binding region. J Biol Chem 1998;273:4530–4538.

    Article  PubMed  CAS  Google Scholar 

  36. Ramprasad MP, Fischer W, Witztum JL, Sambrano GR, Quehenberger O, Steinberg D. The 94-to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc Natl Acad Sci U S A 1995;92:9580–9584.

    Article  PubMed  CAS  Google Scholar 

  37. Sambrano GR, Steinberg D. Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine. Proc Natl Acad Sci U S A 1995;92:1396–1400.

    Article  PubMed  CAS  Google Scholar 

  38. Rigotti A, Acton SL, Krieger M. The class B scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids J Biol Chem 1995;270:16221–16224.

    Article  PubMed  CAS  Google Scholar 

  39. Sawamura T, Kume N, Aoyama T, et al. An endothelial receptor for oxidized low-density lipoprotein. Nature 1997;386:73–77.

    Article  PubMed  CAS  Google Scholar 

  40. Minami M, Kume N, Shimaoka T, et al. Expression of SR-PSOX, a novel cell-surface scavenger receptor for phosphatidylserine and oxidized LDL in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2001;21:1796–1800.

    PubMed  CAS  Google Scholar 

  41. Shimaoka T, Kume N, Minami M, et al. Molecular cloning of a novel scavenger receptor for oxidized low-density lipoprotein, SR-PSOX, on macrophages. J Biol Chem 2000;275:40663–40666.

    Article  PubMed  CAS  Google Scholar 

  42. Fong LG, Parthasarathy S, Witztum JL, Steinberg D. Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100. J Lipid Res 1997;28:1466–1477.

    Google Scholar 

  43. Esterbauer H, Jurgens G, Quehenberger O, Koller E. Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res 1987;28:495–509.

    PubMed  CAS  Google Scholar 

  44. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR. Cell 1998;93:229–240.

    Article  PubMed  CAS  Google Scholar 

  45. Weidtmann A, Scheithe R, Hrboticky N, Pietsch A, Lorenz R, Siess W. Mildly oxidized LDL induces platelet aggregation through activation of phsopholipase A2. Arterioscler Thromb Vasc Biol 1995;15:1131–1138.

    PubMed  CAS  Google Scholar 

  46. Kritharides L, Jessup W, Gifford J, Dean RT. A method for defining the stages of low density lipoprotein oxidation by the separation of cholesterol and cholesteryl ester-oxidation products using HPLC. Anal Biochem 1993;213:79–89.

    Article  PubMed  CAS  Google Scholar 

  47. van Heek M, Schmitt D, Toren P, Cathcart MK, DiCorleto PE. Cholesteryl hydroperoxyoctadecadienoate from oxidized low-density lipoprotein inactivated platelet-derived growth factor. J Biol Chem 1998;273:19405–19410.

    Article  PubMed  Google Scholar 

  48. Brown AJ, Leong SL, Dean RT, Jessup W. 7-Hydroperoxycholesterol and its products in oxidized low-density lipoprotein and human atherosclerotic plaque. J Lipid Res 1997;38:1730–1745.

    PubMed  CAS  Google Scholar 

  49. Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis 1999;142:1–28.

    Article  PubMed  CAS  Google Scholar 

  50. Kamido H, Kuksis A, Marai L, Myher JJ. Identification of cholesterol-bound aldehydes in copper-oxidized low-density lipoprotein. FEBS Lett 1992;304:269–272.

    Article  PubMed  CAS  Google Scholar 

  51. Kamido H, Kuksis A, Marai L, Myher JJ. Lipid ester-bound aldehydes among copper-catalyzed peroxidation products of human plasma lipoproteins. J Lipid Res 1995;36:1876–1886.

    PubMed  CAS  Google Scholar 

  52. Hoppe G, Ravandi A, Herrera D, Kuksis A, Hoff HF. Oxidation products of cholesteryl linoleate are resistant to hydrolysis in macrophages, form complexes with proteins, and are present in human atherosclerotic lesions. J Lipid Res 1997;38:1347–1360.

    PubMed  CAS  Google Scholar 

  53. Kleinveld HA, Hak-Lemmers HLM, Stalenhoef AFH, Demacker PNM. Improved measurement of low-density-lipoprotein susceptibility to copper-induced oxidation: application of a short procedure for isolating low-density lipoprotein. Clin Chem 1992;38:2066–2072.

    PubMed  CAS  Google Scholar 

  54. Parthasarathy S, Fong LG, Quinn MT, Steinberg D. Oxidative modification of LDL: comparison between cell-mediated and copper-mediated modification. Eur Heart J 1990;11(suppl E):83–87.

    PubMed  CAS  Google Scholar 

  55. Yla-Herttuala S, Palinski W, Rosenfeld ME, et al. Evidence for presence of oxidatively modified low-density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 1989;85:1086–1095.

    Google Scholar 

  56. Ehrenwald E, Chisolm GM, Fox PL. Intact ceruloplasmin oxidatively modifies low-density lipoprotein. J Clin Invest 1994;93:1493–1501.

    Article  PubMed  CAS  Google Scholar 

  57. Lamb D, Leake DS. Acidic pH enables caeruloplasmin to catalyse the modification of low-density lipoprotein. FEBS Lett 1994;338:122–126.

    Article  PubMed  CAS  Google Scholar 

  58. Bouma B, de Groot PG, van den Elsen JM, et al. Adhesion mechanism of human β2-glycoprotein I to phospholipids based on its crystal structure. EMBO J 1999;18:5166–5174.

    Article  PubMed  CAS  Google Scholar 

  59. Hoshino M, Hagihara Y, Nishii I, Yamazaki T, Kato H, Goto Y. Identification of the phospholipid-binding site of human β2-glycoprotein I domain V by heteronuclear magnetic resonance. J Mol Biol 2000;304:927–939.

    Article  PubMed  CAS  Google Scholar 

  60. Inanc M, Radway-Bright EL, Isenberg DA. β2-glycoprotein I and anti-β2-glycoprotein I antibodies: where are we now? Br J Rheumatol 1997;36:1247–1257.

    Article  PubMed  CAS  Google Scholar 

  61. Sheng Y, Kandiah DA, Krilis SA. β2-glycoprotein I: Target antigen for ‘antiphospholipid’ antibodies. Immunological and molecular aspects. Lupus 1998;7:S5–S9.

    Article  PubMed  CAS  Google Scholar 

  62. Merrill JT, Zhang HW, Shen C, et al. Enhancement of protein S anticoagulant function by β2-glycoprotein I, a major target antigen of antiphospholipid antibodies: β2-glycoprotein I interferes with binding of protein S to its plasma inhibitor, C4b-binding protein. Thromb Haemost 1999;81:748–757.

    PubMed  CAS  Google Scholar 

  63. Hashimoto Y, Kawamura M, Ichikawa K, et al. Anticardiolipin antibodies in NZW x BXSB F1 mice. A model of antiphospholipid syndrome. J Immunol 1992;149:1063–1068.

    PubMed  CAS  Google Scholar 

  64. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999;340:115–126.

    Article  PubMed  CAS  Google Scholar 

  65. Steinberg D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 2002;8:1211–1217.

    Article  PubMed  CAS  Google Scholar 

  66. Virella G, Atchley DH, Koskinen S, Zheng D, Lopes-Virella M. Pro-atherogenic and pro-inflammatory properties of immune complexes prepared with purified human oxLDL antibodies and human oxLDL. Clin Immunol 2002;105:81–92.

    Article  PubMed  CAS  Google Scholar 

  67. Berliner JA, Heinecke JW. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 1996;20:707–727.

    Article  PubMed  CAS  Google Scholar 

  68. McMurray HF, Parthasarathy S, Steinberg D. Oxidatively modified low-density lipoprotein is a chemoattractant for human T lymphocytes. J Clin Invest 1993;92:1004–1008.

    PubMed  CAS  Google Scholar 

  69. Salonen JT, Yla-Herttuala S, Yamamoto R, et al. Autoantibodies against oxidized LDL and progression of carotid atherosclerosis. Lancet 1992;339:883–887.

    Article  PubMed  CAS  Google Scholar 

  70. Vaarala O. Antiphospholipid antibodies and atherosclerosis. Lupus 1996;5:442–447.

    PubMed  CAS  Google Scholar 

  71. Ames PRJ, Alves J, Murat I, Isenberg DA, Nourooz-Zadeh J. Oxidative stress in systemic lupus erythematosus and allied conditions with vascular involvement. Rheumatology 1999;38:529–534.

    Article  PubMed  CAS  Google Scholar 

  72. Ames PRJ, Tommasino C, Alves J, et al. Antioxidant susceptibility of pathogenic pathways in subjects with antiphospholipid antibodies: a pilot study. Lupus 2000;9:688–695.

    Article  PubMed  CAS  Google Scholar 

  73. Durrington PN, Mackness B, Mackness MI. Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol 2001;21:473–480.

    PubMed  CAS  Google Scholar 

  74. Lambert M, Boullier A, Hachulla E, et al. Paraoxonase activity is dramatically decreased in patients positive for anticardiolipin antibodies. Lupus 2000;9:299–300.

    Article  PubMed  CAS  Google Scholar 

  75. Delgado Alves J, Ames PR, Donohue S, et al. Antibodies to high-density lipoprotein and β2-glycoprotein I are inversely correlated with paraoxonase activity in systemic lupus erythematosus and primary antiphospholipid syndrome. Arthritis Rheum 2002;46:2686–2694.

    Article  PubMed  CAS  Google Scholar 

  76. Belogh Z, Seres I, Harangi M, Kovacs P, Kakuk G, Paragh G. Gemfibrozil increases paraoxonase activity in type 2 diabetic patients: a new hypothesis of the beneficial action of fibrates? Diabetes Metab 2001;27:604–610.

    Google Scholar 

  77. Meroni PL, Raschi E, Testoni C, et al. Statins prevent endothelial cell activation induced by antiphospholipid (anti-β2-glycoprotein I) antibodies. Effect on the proadhesive and proinflammatory phenotype. Arthritis Rheum 2001;44:2870–2878.

    Article  PubMed  CAS  Google Scholar 

  78. Ferro D, Iuliano L, Violi F, Valesini G, Conti F. Antioxidant treatment decreases the titer of circulating anticardiolipin antibodies. Arthritis Rheum 2002;46:3110–3112.

    Article  PubMed  CAS  Google Scholar 

  79. Pratico D, Ferro D, Rokach J, et al. Ongoing prothrombotic state in patients with antiphospholipid antibodies: a role for increased lipid peroxidation. Blood 1999;93:3401–3407.

    PubMed  CAS  Google Scholar 

  80. Hurt-Camejo E, Paredes S, Masana L, et al. Elevated levels of small, low-density lipoprotein with high affinity for arterial matrix components in patients with rheumatoid arthritis. Possible contribution of phospholipase A2 to this atherogenic profile. Arthritis Rheum 2001;44:2761–2767.

    Article  PubMed  CAS  Google Scholar 

  81. Van Doornum S, McColl G, Wicks IP. Accelerated atherosclerosis. An extraarticular feature of rheumatoid arthritis? Arthritis Rheum 2002;46:862–873.

    Article  PubMed  Google Scholar 

  82. Ward MM. Premature morbidity from cardiovascular and cerebrovascular diseases in women with systemic lupus erythematosus. Arthritis Rheum 1999;42:338–346.

    Article  PubMed  CAS  Google Scholar 

  83. Aranow C, Ginzler EM. Epidemiology of cardiovascular disease in systemic lupus erythematosus. Lupus 2000;9:166–169.

    Article  PubMed  CAS  Google Scholar 

  84. Esdaile JM, Abrahamowicz M, Grodzicky T, et al. Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum 2001;44:2331–2337.

    Article  PubMed  CAS  Google Scholar 

  85. Schattner A, Liang MH. The cardiovascular burden of lupus; a complex challenge. Arch Intern Med 2003;163:1507–1510.

    Article  PubMed  Google Scholar 

  86. Harris EN, Chan JKH, Asherson RA, Hughes GRV. Thrombosis, recurrent fetal loss and thrombocytopenia — predictive value of the anticardiolipin antibody test. Arch Intern Med 1986;146:2153–2156.

    Article  PubMed  CAS  Google Scholar 

  87. Ginsburg KS, Liang MH, Newcomer L, et al. Anticardiolipin antibodies and the risk for ischemic stroke and venous thrombosis. Ann Intern Med 1992;117:997–1002.

    PubMed  CAS  Google Scholar 

  88. Cervera R, Piette JC, Font J, et al, Euro-Phospholipid Project Group. Antiphospholipid syndrome. Clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. Arthritis Rheum 2002;46:1019–1027.

    Article  PubMed  Google Scholar 

  89. Roubey RA. Autoantibodies to phospholipid-binding plasma proteins: a new view of lupus anticoagulants and other “antiphospholipid” autoantibodies. Blood 1994;84:2854–2867.

    PubMed  CAS  Google Scholar 

  90. Vaarala O. Antiphospholipid antibodies in myocardial infarction. Lupus 1998;7:S132–S134.

    Article  PubMed  CAS  Google Scholar 

  91. Brey RL, Abbott RD, Curb JD, et al. β2-glycoprotein I dependent anticardiolipin antibodies and the risk of ischemic stroke and myocardial infarction. Stroke 2001;32:1701–1706.

    PubMed  CAS  Google Scholar 

  92. Tsutsumi A, Matsuura E, Ichikawa K, et al. Antibodies to β2-glycoprotein I and clinical manifestations in patients with systemic lupus erythematosus. Arthritis Rheum 1996;39:1466–1474.

    PubMed  CAS  Google Scholar 

  93. Lopez LR, Dier, KJ, Lopez D, Merrill JT, Fink CA. Anti-β2-glycoprotein I and antiphosphatidylserine antibodies are predictors of arterial thrombosis in patients with antiphospholipid syndrome. Am J Clin Pathol 2004;121:142–149.

    Article  PubMed  CAS  Google Scholar 

  94. Petri M. Autoimmune thrombosis. In: Asherson RA, Cervera R, Piette J, Schoenfeld Y, eds. The antiphospholipid syndrome. Amsterdam: Elsevier Science; 2002:11–20.

    Google Scholar 

  95. Thomas RH. Hypercoagulability syndromes. Arch Intern Med 2001;161:2433–2439.

    Article  PubMed  CAS  Google Scholar 

  96. Wahl DG, Guillemin F, de Maistre E, Perret C, Lecompte T, Thibaut G. Risk for venous thrombosis related to antiphospholipid antibodies in systemic lupus erythematosus: a meta analysis. Lupus 1997;6:467–473.

    PubMed  CAS  Google Scholar 

  97. Shah NM, Khamashta MA, Atsumi T, Hughes GRV. Outcome of patients with anticardiolipin antibodies: a 10 year follow-up of 52 patients. Lupus 1998;7:3–6.

    Article  PubMed  CAS  Google Scholar 

  98. Khamashta MA, Cuadrado MJ, Mujic F, Taub NA, Hunt BJ, Hughes GRV. The management of thrombosis in the antiphospholipid-antibody syndrome. N Engl J Med 1995;332:993–997.

    Article  PubMed  CAS  Google Scholar 

  99. Lopez D, Garcia-Valladares I, Palafox-Sanchez C, et al. Oxidized low-density lipoprotein/β2-glycoprotein I complexes and autoantibodies to oxLig-1/β2-glycoprotein I in patients with systemic lupus erythematosus and antiphospholipid syndrome. Am J Clin Pathol 2004;121:426–436.

    Article  PubMed  CAS  Google Scholar 

  100. Lopez D, Kobayashi K, Merrill JT, Matsuura E, Lopez LR. IgG Autoantibodies against β2-glycoprotein I complexed with a lipid ligand derived from oxidized low-density lipoprotein are associated with arterial thrombosis in antiphospholipid syndrome. Clin Dev Immunol 2003;10:203–211.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Matsuura, E., Kobayashi, K., Lopez, L.R. (2006). Accelerated Atherogenesis and Antiphospholipid Antibodies. In: Khamashta, M.A. (eds) Hughes Syndrome. Springer, London. https://doi.org/10.1007/1-84628-009-5_40

Download citation

  • DOI: https://doi.org/10.1007/1-84628-009-5_40

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-873-2

  • Online ISBN: 978-1-84628-009-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics