Skip to main content

Detection of Fungi by Mannose-based Recognition Receptors

  • Chapter
Immunology of Fungal Infections

Abstract

Fungi characteristically display mannose groups on the surface of their cell wall. These mannose residues are crucial for cell wall integrity and fungal viability. They constitute Pathogen-Associated-Molecular-Patterns (PAMPs) that can be detected by specific recognition receptors expressed by mammalian antigen-presenting cells. Fungal mannosylation, the mammalian membrane receptors that have evolved to detect fungal mannose groups and the immune responses resulting from fungal recognition by these receptors are the topics of this chapter. It consists of four parts. First, we give an introduction into fungal mannosylation to lay the ground for understanding mannose-based fungal recognition receptors. In the second part of the chapter we describe common features of mannose receptors. We then focus on two membranous mannose-receptors for which fungal binding has been demonstrated, the dendritic cell specific ICAM-3 grabbing non-integrin receptor (DC-SIGN) and the classic Mannose Receptor (MR). Finally, we give an outlook into potential therapeutic applications by targeting DC-SIGN and MR to prevent and treat fungal infections

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cambi, A. and Figdor, C.G. (2003) Dual function of, C-type lectin-like receptors in the immune system. Curr. Opin. Cell. Biol. 15(5), 539–46.

    Article  PubMed  CAS  Google Scholar 

  • Cambi, A. and Figdor, C.G. (2005) Levels of complexity in pathogen recognition by C-type lectins. Curr. Opin. Immunol. 17(4), 345–51.

    Article  PubMed  CAS  Google Scholar 

  • Cambi, A., Gijzen, K., de Vries, J.M., Torensma, R., Joosten, B., Adema, G.J., Netea, M.G., Kullberg, B.J., Romani, L. and Figdor, C.G. (2003) The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol. 33, 532–38.

    Article  CAS  Google Scholar 

  • Cambi, A., de Lange, F., van Maarseveen, N.M., Nijhuis, M., Joosten, B., van Dijk, E.M., de Bakker, B.I., Fransen, J.A., Bovee-Geurts, P.H., van Leeuwen, F.N., Van Hulst, N.F. and Figdor, C.G. (2004) Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells. J. Cell. Biol. 164(1), 145–55.

    Article  PubMed  CAS  Google Scholar 

  • Cambi, A., Koopman, M. and Figdor, C.G. (2005) How C-type lectins detect pathogens. Cell. Microbiol. 7(4), 481–88.

    Article  PubMed  CAS  Google Scholar 

  • Chieppa, M., Bianchi, G., Doni, A., Del Prete, A., Sironi M., Laskarin, G., Monti, P., Piemonti, L., Biondi, A., Mantovani, A., Introna, M. and Allavena, P. (2003) Cross-linking of the mannose receptor on monocytes-derived dendritic cells activates and anti-inflammatory immunosuppressive program. J. Immunol. 171, 4552–60.

    PubMed  CAS  Google Scholar 

  • DeFife, K.M., Jenney, C.R., McNally, A.K., Colton, E. and Anderson, J.M. (1997) Interleukin-13 induces human monocytes/macrophage fusion and macrophage mannose receptor expression. J. Immunol. 158, 3385–90.

    PubMed  CAS  Google Scholar 

  • Doyle, A.G., Herbein, G., Montaner, L.J., Minty, A.J., Caput, D., Ferara, P. and Gordon, S. (1994) Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. Eur. J. Immunol. 24, 1441–45.

    Article  PubMed  CAS  Google Scholar 

  • East, L. and Isacke, C.M. (2002) The mannose receptor family. Biochim. Biophys. Acta. 1572(2–3), 364–86.

    PubMed  CAS  Google Scholar 

  • Engering, A., Geijtenbeek, T.B., van Vliet, S.J., Wijers, M., van Liempt, E., Demaurex, N., Lanzavecchia, A., Fransen, J., Figdor, C.G., Piguet, V. and van Kooyk, Y. (2002) The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J. Immunol. 168(5), 2118–26.

    PubMed  CAS  Google Scholar 

  • Ernst, J.F. and Prill, SK. (2001) O-glycosylation. Med. Mycol. 39(suppl 1): 67–74.

    CAS  Google Scholar 

  • Ezekowitz, R.A., Williams, D.J, Koziel, H., Armstrong, M.Y., Warner, A., Richards, F.F. and Rose, R.M. (1991) Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nature 351(6322), 155–58.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, H., Mitchell, D.A., Drickamer, K., Weis, W.I (2001) Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294, 2163–66.

    Article  PubMed  CAS  Google Scholar 

  • Feizi, T. and Chai, W. (2004) Oligosaccharide microarrays to decipher the glyco code. Nat. Rev. Mol. Cell. Biol. 5(7), 582–8.

    Article  PubMed  CAS  Google Scholar 

  • Fiete, D.J., Beranek, M.C., Baenziger, J.U (1998) A cysteine-rich domain of the “mannose” receptor mediates GalNAc-4-SO4 binding. Proc. Natl. Acad. Sci. USA 95(5), 2089–93.

    Article  PubMed  CAS  Google Scholar 

  • Figdor, C.G., van Kooyk, Y., Adema, G.J (2002) C-type lectin receptors on dendritic cells and Langerhans cells. Nat. Rev. Immunol. 2(2), 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, I.P., Takahashi, K., Koziel, H., Fardin, B., Harmsen, A. and Ezekowitz, R.A. (2000) Pneumocystis carinii enhances soluble mannose receptor production by macrophages. Microbes. Infect. 2(11), 1305–10.

    Article  PubMed  CAS  Google Scholar 

  • Gantner, B.N., Simmons, R.M. and Underhill, D.M. (2005) Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO. J. 24(6), 1277–86.

    Article  PubMed  CAS  Google Scholar 

  • Garner, R.E., Rubanowice, K., Sawyer, R.T. and Hudson, J.A. (1994) Secretion of TNF-alpha by alveolar macrophages in response to Candida albicans mannan. J. Leukoc. Biol. 55(2), 161–8.

    PubMed  CAS  Google Scholar 

  • Geijtenbeek, T.B., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Adema, G.J., van Kooyk, Y. and Figdor, C.G. (2000a) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–85.

    Article  CAS  Google Scholar 

  • Geijtenbeek, T.B., Krooshoop, D.J., Bleijs, D.A., van Vliet, S.J., van Duijnhoven, G.C., Grabovsky, V., Alon, R., Figdor, C.G. and van Kooyk, Y. (2000b) DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat. Immunol. 1(4), 353–57.

    Article  CAS  Google Scholar 

  • Geijtenbeek, T.B., Van Vliet, S.J., Koppel, E.A., Sanchez-Hernandez, M., Vandenbroucke-Grauls, C.M., Appelmelk, B. and Van Kooyk, Y. (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197(1), 7–17.

    Article  PubMed  CAS  Google Scholar 

  • Granelli-Piperno, A., Pritsker, A., Pack, M., Shimeliovich, I., Arrighi, J.F., Park, C.G., Trumpfheller, C., Piguet, V., Moran, T.M. and Steinman, R.M. (2005) Dendritic Cell-Specific Intercellular Adhesion Molecule 3-Grabbing Nonintegrin/CD209 Is Abundant on Macrophages in the Normal Human Lymph Node and Is Not Required for Dendritic Cell Stimulation of the Mixed Leukocyte Reaction. J. Immunol. 175(7), 4265–73.

    PubMed  CAS  Google Scholar 

  • Guo, Y., Feinberg, H., Conroy, E., Mitchell, D.A., Alvarez, R., Blixt, O., Taylor, M.E., Weis, W.I. and Drickamer, K. (2004) Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol. 11(7), 591–98.

    Article  PubMed  CAS  Google Scholar 

  • Herscovics, A. and Orlean, P. (1993) Glycoprotein biosynthesis in yeast. FASEB. J. 7, 540–50.

    PubMed  CAS  Google Scholar 

  • Jordens, R., Thompson, A., Amons, R. and Koning, F. (1999) Human dendritic cells shed a functional, soluble form of the mannose receptor. Int. Immunol. 11(11), 1775–80.

    Article  PubMed  CAS  Google Scholar 

  • Karbassi, A., Becker, J.M., Foster, J.S. and Moore, R.N. (1987) Enhanced killing of Candida albicans by murine macrophages treated with macrophage colony-stimulating factor: evidence for augmented expression of mannose receptors. J. Immunol. 139(2), 417–21.

    PubMed  CAS  Google Scholar 

  • Larsen, F., Madsen, H.O., Sim, R.B., Koch, C. and Garred, P. (2004) Disease-associated mutations in human mannose-binding lectin compromise oligomerization and activity of the final protein. J. Biol. Chem. 279(20), 21302–11.

    Article  PubMed  CAS  Google Scholar 

  • Le Cabec, V., Emorine, L.J., Toesca, I., Cougoule, C. and Maridonneau-Parini, I. (2005) The human macrophage mannose receptor is not a professional phagocytic receptor. J. Leukoc. Biol. 77(6), 934–43.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R.T., Ichikawa, Y., Fay, M., Drickamer, K., Shao, M.C. and Lee, Y.C. (1991) Ligand-binding characteristics of rat serum-type mannose-binding protein (MBP-A). Homology of binding site architecture with mammalian and chicken hepatic lectins. J. Biol. Chem. 266, 4810–15.

    PubMed  CAS  Google Scholar 

  • Lee, S.J., Evers, S., Roeder, D., Parlow, A.F., Risteli, J., Risteli, L., Lee, Y.C., Feizi, T., Langen, H. and Nussenzweig, M.C. (2002) Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295(5561), 1898–901.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.J., Zheng, N.Y., Clavijo, M. and Nussenzweig, M.C. (2003) Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect. Immun. 71(1), 437–45.

    Article  PubMed  CAS  Google Scholar 

  • Limper, A.H., Hoyte, J.S. and Standing, J.E. (1997) The role of alveolar macrophages in Pneumocystis carinii degradation and clearance from the lung. J. Clin. Invest. 99(9), 2110–17.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, M.K., Schlesinger, L.S. and Levitz, S.M. (2002) Optimal T cell responses to Cryptococcus neoformans mannoprotein are dependent on recognition of conjugated carbohydrates by mannose receptors. J. Immunol. 168(6), 2872–79.

    PubMed  CAS  Google Scholar 

  • Marodi, L., Korchak, H.M. and Johnston, R.B Jr. (1991) Mechanisms of host defense against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages. J. Immunol. 146(8), 2783–9.

    PubMed  CAS  Google Scholar 

  • Martinez-Pomares, L., Mahoney, J.A., Kaposzta, R., Linehan, S.A., Stahl, P.D. and Gordon, S. (1998) A functional soluble form of the murine mannose receptor is produced by macrophages in vitro and is present in mouse serum. J. Biol. Chem. 273(36), 23376–80.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Pomares, L., Reid, D.M., Brown, G.D., Taylor, P.R., Stillion, R.J., Linehan, S.A., Zamze, S., Gordon, S. and Wong, S.Y. (2003) Analysis of mannose receptor regulation by IL-4, IL-10, and proteolytic processing using novel monoclonal antibodies. J. Leukoc. Biol. 73, 604–13.

    Article  PubMed  CAS  Google Scholar 

  • Masuoka, J. (2004) Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin. Microbiol. Rev. 17(2), 281–310.

    Article  PubMed  CAS  Google Scholar 

  • McGinnis, M.R. and Tyring, S.K. (1996) Introduction to Mycology. In: Baron, S. (ed) Medical Microbiology, 4th edn, online, The University of Texas Medical Branch at Galveston.

    Google Scholar 

  • Medzhitov, R. and Janeway, C. Jr. (2000) Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Mi, Y., Shapiro, S.D. and Baenziger, J.U. (2002) Regulation of lutropin circulatory half-life by the mannose/N-acetylgalactosamine-4-SO4 receptor is critical for implantation in vivo. J. Clin. Invest. 109(2), 269–76.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, T.G. and Perfect, J.R. (1995) Cryptococcosis in the era of AIDS–100 years after the discovery of Cryptococcus neoformans. Clin. Microbiol. Rev. 8(4), 515–48.

    PubMed  CAS  Google Scholar 

  • Mitchell, D.A., Fadden, A.J. and Drickamer, K. (2001) A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J. Biol. Chem. 276, 28939–45.

    Article  PubMed  CAS  Google Scholar 

  • Mullin, N.P., Hitchen, P.G. and Taylor, M.E. (1997) Mechanism of Ca2+ and monosaccharide binding to a C-type carbohydrate-recognition domain of the macrophage mannose receptor. J. Biol. Chem. 272(9), 5668–81.

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka, K., Takahara, K., Tanaka, K., Yoshida, H., Steinman, R.M., Saitoh, S., Akashi-Takamura, S., Miyake, K., Kang, Y.S., Park, C.G. and Inaba, K. (2005) Association of SIGNR1 with TLR4-MD-2 enhances signal transduction by recognition of LPS in gram-negative bacteria. Int. Immunol. 17(7), 827–36.

    Article  PubMed  CAS  Google Scholar 

  • Netea, M.G., Gijzen, K., Coolen, N., Verschueren, I., Figdor, C., Van der Meer, J.W., Torensma, R. and Kullberg, B.J. (2004) Human dendritic cells are less potent at killing Candida albicans than both monocytes and macrophages. Microbes. Infect. 6(11), 985–89.

    Article  PubMed  CAS  Google Scholar 

  • Newman, S.L. and Holly, A. (2001) Candida albicans is phagocytosed, killed, and processed for antigen presentation by human dendritic cells. Infect. Immun. 69(11), 6813–22.

    Article  PubMed  CAS  Google Scholar 

  • O’Riordan, D.M., Standing, J.E. and Limper, A.H. (1995) Pneumocystis carinii glycoprotein A binds macrophage mannose receptors. Infect. Immun. 63(3), 779–84.

    PubMed  CAS  Google Scholar 

  • Pietrella, D., Corbucci, C., Perito, S., Bistoni, G. and Vecchiarelli, A. (2005) Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation. Infect. Immun. 73(2), 820–27.

    Article  PubMed  CAS  Google Scholar 

  • Romani, L., Bistoni, F. and Puccetti, P. (2002) Fungi, dendritic cells and receptors: a host perspective of fungal virulence. Trends Microbiol. 11, 508–14.

    Article  Google Scholar 

  • Saville, S.P., Lazzell, A.L., Monteagudo, C., Lopez-Ribot, J.L. (2003) Engineered control of cell morphology in vivo reveals distinctroles for yeast and filamentous forms of Candida albicans during infection. Eukaryot. Cell 2, 1053–60.

    Article  PubMed  CAS  Google Scholar 

  • Savolainen, J., Rantala, A., Nermes, M., Lehtonen, L. and Viander, M. (1996) Enhanced IgE response to Candida albicans in postoperative invasive candidiasis. Clin. Exp. Allergy 26(4), 452–60.

    Article  PubMed  CAS  Google Scholar 

  • Serrano-Gomez, D., Dominguez-Soto, A., Ancochea, J., Jimenez-Heffernan, J.A., Leal, J.A. and Corbi, A.L. (2004) Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J. Immunol. 173(9), 5635–43.

    PubMed  CAS  Google Scholar 

  • Shepherd, V.L., Konish, M.G. and Stahl, P. (1985) Dexamethasone increases expression of mannose receptors and decreases extracellular lysosomal enzyme accumulation in macrophages. J. Biol. Chem. 260, 160–64.

    PubMed  CAS  Google Scholar 

  • Sheriff, S., Chang, C.Y. and Ezekowitz, R.A. (1994) Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple alpha-helical coiled-coil. Nat. Struct. Biol. 1(11), 789–94.

    Article  PubMed  CAS  Google Scholar 

  • Soilleux, E.J., Morris, L.S., Leslie, G., Chehimi, J., Luo, Q., Levroney, E., Trowsdale, J., Montaner, L.J., Doms, R.W., Weissman, D., Coleman, N. and Lee, B. (2002) Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J. Leukoc. Biol. 71(3), 445–57.

    PubMed  CAS  Google Scholar 

  • Spiro, R.G. (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4), 43R–56R.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, P.D., Rodman, J.S., Miller, M.J. and Schlesinger, P.H (1978) Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc. Natl. Acad. Sci. U.S.A. 75, 1399–1403.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, P., Schlesinger, P.H., Sigardson, E., Rodman, J.S. and Lee, Y.C. (1980) Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling. Cell 19(1), 207–15.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg, S. (1994) The emerging fungal threat. Science 266(5191), 1632–34.

    Article  PubMed  CAS  Google Scholar 

  • Strahl-Bolsinger, S., Gentsch, M. and Tanner, W. (1999) Protein O-mannosylation. Biochim. Biophys. Acta. 1426, 297–307.

    PubMed  CAS  Google Scholar 

  • Su, Y., Bakker, T., Harris, J., Tsang, C., Brown, G.D., Wormald, M.R., Gordon, S., Dwek, R.A., Rudd, P.M. and Martinez-Pomares, L. (2005) Glycosylation influences the lectin activities of the macrophage mannose receptor. J. Biol. Chem. 280(38), 32811–20.

    Article  PubMed  CAS  Google Scholar 

  • Swain, S.D., Lee, S.J., Nussenzweig, M.C. and Harmsen, A.G. (2003) Absence of the macrophage mannose receptor in mice does not increase susceptibility to Pneumocystis carinii infection in vivo. Infect. Immun. 71(11), 6213–21.

    Article  PubMed  CAS  Google Scholar 

  • Syme, R.M., Spurrell, J.C., Amankwah, E.K., Green, F.H. and Mody, C.H. (2002) Primary dendritic cells phagocytose Cryptococcus neoformans via mannose receptors and Fcgamma receptor II for presentation to T lymphocytes. Infect. Immun. 70(11), 5972–81.

    Article  PubMed  CAS  Google Scholar 

  • Tacken, P.J., de Vries, I.J., Gijzen, K., Joosten, B., Wu, D., Rother, R.P., Faas, S.J., Punt, C.J., Torensma, R., Adema, G.J. and Figdor, C.G (2005) Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood 106(4), 1278–85.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, K., Kaisho, T. and Akira, S. (2003) Toll-like receptors. Annu. Rev. Immunol. 21, 335–76.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M.E., Bezouska, K. and Drickamer, K. (1992) Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. J. Biol. Chem. 267(3), 1719–26.

    PubMed  CAS  Google Scholar 

  • Taylor, P.R., Brown, G.D., Herre, J., Williams, D.L., Willment, J.A. and Gordon, S. (2004) The role of SIGNR1 and the beta-glucan receptor (dectin-1) in the nonopsonic recognition of yeast by specific macrophages. J. Immunol. 172(2), 1157–62.

    PubMed  CAS  Google Scholar 

  • Taylor, P.R., Gordon, S. and Martinez-Pomares, L. (2005) The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol. 26(2), 104–10.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, C.F., Jr. and Limper, A.H. (2004) Pneumocystis pneumonia. N. Engl. J. Med. 350(24), 2487–98.

    Article  PubMed  CAS  Google Scholar 

  • van Gisbergen, K.P., Sanchez-Hernandez, M., Geijtenbeek, T.B. and van Kooyk, Y. (2005) Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J. Exp. Med. 201(8), 1281–92.

    Article  PubMed  CAS  Google Scholar 

  • Wallis, R. and Drickamer, K. (1999) Molecular determinants of oligomer formation and complement fixation in mannose-binding proteins. J. Biol. Chem. 274(6), 3580–9.

    Article  PubMed  CAS  Google Scholar 

  • Wileman, T., Boshans, R.L., Schlesinger, P. and Stahl, P. (1984) Monensin inhibits recycling of macrophage mannose-glycoprotein receptors and ligand delivery to lysosomes. Biochem. J. 220(3), 665–75.

    PubMed  CAS  Google Scholar 

  • Zhang, L., Ikegami, M., Crouch, E.C., Korfhagen, T.R. and Whitsett, J.A. (2001) Activity of pulmonary surfactant protein-D (SP-D) in vivo is dependent on oligomeric structure. J. Biol. Chem. 276(22), 19214–19.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Tachado, S.D., Patel, N., Zhu, J., Imrich, A., Manfruelli, P., Cushion, M., Kinane, T.B. and Koziel, H. (2005) Negative regulatory role of mannose receptors on human alveolar maceophage proinflammatory cytokine release in vitro. J. Leukoc. Biol. 78(3), 665–674.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.J. Adema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Meyer-Wentrup, F., Cambi, A., Figdor, C., Adema, G. (2007). Detection of Fungi by Mannose-based Recognition Receptors. In: Brown, G.D., Netea, M.G. (eds) Immunology of Fungal Infections. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5492-0_13

Download citation

Publish with us

Policies and ethics