Skip to main content

The Chernobyl Accident and Its Aquatic Impacts on the Surrounding Area

  • Chapter
Chernobyl – What Have We Learned?

Part of the book series: Environmental Pollution ((EPOL,volume 12))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarkrog A. 1998. “A retrospect of anthropogenic radioactivity in the global marine environment.” Radiation Protection Dosimetry, Vol. 75, pp. 23-31.

    CAS  Google Scholar 

  • Bechtel, Battelle, and EDF. 2003. Environmental Impact Assessment for NSC. Bechtel Inc., San Francisco.

    Google Scholar 

  • Belyaev ST, VF Demin, VA Kutkov, VG Bariakhtar, and EP Petriaev. March 1996. “Characteristics of the Development of the Radiological Situation Resulting from the Accident, Intervention Levels and Countermeasures.” The radiological consequences of the Chernobyl accident, proceedings of the first international conference, A Karaoglou et al. (Eds.). EUR 16544 EN, Luxemburg, pp. 19-28.

    Google Scholar 

  • Bobovnikova TI, KP Makhonko, AA Siverina, FA Rabotnova, and AA Volokitin. 1991. “Physical chemical forms of radionuclides in atmospheric fallout after Chernobyl accident and their transformation in soil.” Atomnaya Energiya, Vol. 5, pp. 449–454 (in Russian).

    Google Scholar 

  • Borovoy AA et al. 1998. The Shelter current safety analysis and situation development forecasts: Final Report. TACIS, European Commission.

    Google Scholar 

  • Borsilov VA, AV Konoplev, CK Revina, TI Bobovnikova, PM Liutik, YV Shveikin, and AV Sherbak. 1988. “Experimental study of the radionuclides washed out as result of Chernobyl Accident.” Meteorology and Hydrology,Vol. 11, pp. 43-53 (in Russian).

    Google Scholar 

  • Brittain JE, A Storruste, and E Larsen. 1991. “Radiocaesium in Brown Trout (Salmo trutta) from a subalpine lake ecosystem after the Chernobyl reactor accident.” J. Environmental Radioactivity, Vol. 14, pp. 181-191.

    Google Scholar 

  • Bucley MJ, D Bugai, L Dutton, M Gerchikov, V Kashparov, A Ledenev, O Voitsekhovich, D Weiss, and M Zheleznyak. 2002. Drawing up and Evaluating Remediation Strategies for the Chernobyl Cooling Pond. C6476/TR/001/2002, Final Report, NNC Ltd.

    Google Scholar 

  • Bugai DA, RD Waters, SP Dzhepo, and AS Skalskiy. 1996. “Risks from radionuclide migration to groundwater in the Chernobyl 30-km zone.” Health Physics,Vol. 71, pp. 9-18.

    Article  CAS  Google Scholar 

  • Bugai DA, SP Dzhepo, and AS Skalskiy. 1998. “Prognoses of geomigration, risk assessment and water protection principles to be developed for mitigation of groundwater radioactive contamination at the CEZ.” Radiogeoecology of the water bodies at the Chernobyl affected areas,Chapter 6, Vol. 2, pp. 218-252.

    Google Scholar 

  • Bulgakov AA, AV Konoplev, VE Popov, and AV Stcherbak. 1990. “Dynamic of the long-lived radionuclide wash-off from soils at the area around Chernobyl NPP.” Pochvovedenie, Vol. 4, pp. 47-54 (in Russian).

    Google Scholar 

  • Bulgakov AA and AV Konoplev. 1996. “Basic transformation processes of chemical species in soil and bottom sediments.” Modeling and study of the mechanisms of the transfer of radioactive material from terrestrial ecosystems to and in water bodies around Chernobyl, U Sansone and O Voitsekhovich (Eds.). CEC-CIC Joint Programme on the Consequences of the Chernobyl Accident, Experimental Collaboration Project No 3, Final Report. Luxemburg, pp. 122-135.

    Google Scholar 

  • Bulgakov AA, AV Konoplev, VV Kanivets, and OV Voitsekhovich. 2001. “Modeling the long-term dynamics of radionuclides in rivers.” ECORAD-2001, Aix-de-Provence, 2:649-654.

    Google Scholar 

  • Bulgakov AA, AV Konoplev, JT Smith, J Hilton, RNJ Comans, GV Laptev, and BF Christyuk. 2002. “Modeling the long-term dynamics of radiocaesium in a closed lake system.”J. Environmental Radioactivity, Vol. 61, pp. 41-53.

    Article  CAS  Google Scholar 

  • Bulgakov AA, AV Konoplev, EV Samokhvalova, and GV Laptev. 2004. “Parameters of radiocesium sorption by bottom sediments in Kozhanovskoe and Svyatoe lakes in the Bryansk region of Russian Federation.” Meteorology and Hydrology,Vol. 2, pp. 64-71 (in Russian).

    Google Scholar 

  • Comans RNJ and DE Hockley. 1992. “Kinetics of caesium sorption on illite.” Geochimica et Cosmochimica Acta, Vol. 56, pp. 1157-1164.

    Article  CAS  Google Scholar 

  • COMETES. 2002. Implementing computerised methodologies to evaluate the effectiveness of countermeasures for restoring radionuclide contaminated fresh water ecosystems, L Monte (Ed.). Project Report ERB IC15-CT98-203, COMETES. Italy.

    Google Scholar 

  • Dreicer M, A Aarkrog, R Alexakhih, L Anspauh, NP Arkhipov, and KJ Jonsson. 1996. “Consequences of the Chernobyl accident for the natural and human environments.” Proc. International Conference on One Decade after Chernobyl: Summing up the Consequences of the Accident, International Atomic Energy Agency, Vienna, pp. 319-361.

    Google Scholar 

  • Eremeev VN, TV Chudinovskih, and GF Batrakov. 1993. “Artificial radioactivity of the Black Sea.” UNESCO Marine Science Series, Vol. 59, p. 95.

    Google Scholar 

  • Eremeev VN, LM Ivanov, AD Kirwan, and TM Margolina. 1995. “Amount of 137Cs and 134Cs radionuclides in the Black Sea produced by the Chernobyl accident.” Journal of Environmental Radioactivity, Vol. 27, pp. 49-63.

    Article  CAS  Google Scholar 

  • Elliott JM, J Hilton, E Rigg, PA Tullett, DJ Swift, DP Leonard. 1992. “Sources of variation in post-Chernobyl radiocaesium in fish from two Cumbrian lakes (northwest England).” J Applied Ecology,Vol. 29, pp. 108-119.

    Article  CAS  Google Scholar 

  • Fleishaman DG, VA Nikiforov, AA Saulus, and VT Kotov. 1994. “137Cs in fish of some lakes and rivers of the Bryansk region and Northwest Russia in 1990-1992.” J. Environmental Radioactivity, Vol. 24, pp. 145-158.

    Article  Google Scholar 

  • Hadderingh RH, GM Van Aerssen, IN Ryabov, OA Koulikov, and N Belova. 1997. “Contamination of fish with 137Cs in Kiev reservoir and old river bed of Pripyat near Chernobyl.” Freshwater and Estuarine Radioecology, G Desmet, R Blust, RNJ Comans, J Fernandez, J Hilton, and A de Bettencourt (Eds.). Elsevier Studies in Environmental Science, Amsterdam, Vol. 68, pp. 339-351.

    Google Scholar 

  • Håkanson L. 1991. “Radioactive caesium in fish in Swedish lakes after Chernobyl–Geographical distributions, trends, models, and remedial measures.” The Chernobyl Fallout in Sweden–Results from a Research Programme on Environmental Radiology, L Moberg (Ed.). Swedish Radiation Protection Institute, pp. 239-281

    Google Scholar 

  • Håkanson L and T Andersson. 1992. “Remedial measures against radioactive caesium in Swedish lake fish after Chernobyl. Aquatic Sciences, Vol. 54, pp. 141-164.

    Article  Google Scholar 

  • Hansen HJM and A Aarkrog. 1990. “A different surface geology in Denmark, the Faroe Islands, and Greenland influences the radiological contamination of drinking water.” Water Research,Vol. 24, pp. 1137-1141.

    Article  CAS  Google Scholar 

  • Holly FM Jr, JC Yong, P Schwarz, J Schaefer, SH Hsu, and R Einhelig. 1990. “Numerical Simulation of Unsteady Water and Sediment Movement in Multiply Connected Networks of Mobile-Bed Channels.” Report No. 343, Iowa Institute of Hydraulic Research, University of Iowa, Iowa City.

    Google Scholar 

  • IAEA. 2004. “Marine Environmental Assessment of the Black Sea. Working Material.” Final Report, Regional Technical Co. Operation Project RER/2/003, IAEA, Vienna.

    Google Scholar 

  • Izrael YA, SN Vakulovskoy, VA Vetrov, VN Petrov, FY Rovinskiy, and ED Stukin. 1990. “Chernobyl: Radioactive contamination of the environment.” Hydrometeoizdat, pp. 356.

    Google Scholar 

  • Jonssons KJ. 1996. “Consequence of the Chernobyl accident for the natural and human environments.” Proc. International Conference on One Decade after Chernobyl: Summing up the Consequences of the Accident.” IAEA, Vienna, pp. 319–361.

    Google Scholar 

  • Kanivets VV. 1996. “Analysis of main tendencies in radiation state development at the Dnieper’s aquatic system.” Visnik agrarian science, Vol. 4, pp. 40-56 (in Russian).

    Google Scholar 

  • Kanivets VV, OV Voitsekhovich, VG Simov, and ZA Golubeva. 1999. “The post-Chernobyl amount of 137Cs and 90Sr in the Black Sea. J. Env. Research, Vol. 43, pp. 121-135.

    CAS  Google Scholar 

  • Kanivets VV and OV Voitsekhovich. 2000. “Radioactive contamination of the bottom sediment of the Chernobyl cooling pond.” Proc of UHMIH,Vol. 248, pp. 154-171, Kiev, Ukraine (in Russian).

    Google Scholar 

  • Kashparov VA, DH Oughton, VP Protsak, SI Zvarisch, and SE Levchuk. 1999. “Kinetics of fuel particle weathering and 90Sr mobility in the Chernobyl 30 km exclusion zone.” Health Physics,Vol. 76, pp. 251-259.

    Article  CAS  Google Scholar 

  • Kashparov VA, SM Lundin, and YV Khomutinin. 2001. “Soil contamination with 90Sr in the near zone of the Chernobyl accident.” J. Env. Radioactivity, Vol. 56, pp. 285-298.

    Article  CAS  Google Scholar 

  • Konoplev AV and TI Bobovnikova. 1990. “Comparative analysis of chemical forms of long-lived radionuclides and their migration and transformation in the environment following the Kyshtym and Chernobyl accidents.” Proc. of Seminar on Comparative Assessment of the Environmental Impact of Radionuclides Released during Three Major Nuclear Accidents: Kyshtym, Windscale, Chernobyl. CEC, Luxemburg, pp. 371-395.

    Google Scholar 

  • Konoplev AV. 1992. “Behaviour of long-lived radionuclides in a soil-water system.” Analyst, Vol. 117, pp. 1041-1047.

    Article  CAS  Google Scholar 

  • Konoplev AV, R Comans, J Hilton, J Madruga, A Bulgakov, O Voitsekhovich. and J Smith. March 1996. “Phisico-Chemical and hydraulic mechanisms of radionuclides mobilisation in aquatic systems.” The radiological consequences of Chernobyl accident. Proceedings of the first international conference, A Karaoglou et al. (Eds.). European Commission, Luxemburg, pp. 137-146.

    Google Scholar 

  • Konoplev AV, AA Bulgakov, VG Zhirnov, et al. 1998. “Study of the behaviour of 137Cs and 90Sr in Svyatoe and Kozhanovskoe lakes in the Bryansk region.” Meteorology and Hydrology, Vol. 11 (in Russian).

    Google Scholar 

  • Konoplev AV, G Deville-Cavelin, OV Voitsekhovich, et al. 2002. “Transfer of Chernobyl 137Cs and 90Sr by surface runoff.” Proc. of ECORAD-2001, Aix-de-Provence, Vol. 1, pp. 315-318.

    Google Scholar 

  • Koulikov AO and IN Ryabov. 1992. “Specific caesium activity in freshwater fish and the size effect.” Science of the Total Environment, Vol. 112, pp. 125-142.

    Article  CAS  Google Scholar 

  • Kryshev II and TG Sazykina. 1994. “Accumulation factors and biogeochemical aspects of migration of radionuclides in aquatic ecosystems in the areas impacted by the Chernobyl accident.” Radiochimica Acta, Vol. 66/67, pp. 381-384.

    CAS  Google Scholar 

  • Kryshev II. 1995. “Radioactive contamination of aquatic ecosystems following the Chernobyl accident.” J. Environmental Radioactivity, Vol. 27, pp. 207-219.

    Article  CAS  Google Scholar 

  • Kudelsky AV, JT Smith, SV Ovsiannikova, and J Hilton. 1996. “Mobility of Chernobyl–derived 137Cs in a peatbog system within the catchment of the Pripyat River, Belarus.” Science of the Total Environment, Vol. 188, pp. 101-113.

    Article  CAS  Google Scholar 

  • Kudelsky AV, JT Smith, and AA Petrovich. 2002. “An experiment to test the addition of potassium to a non-draining lake as a countermeasure to 137Cs accumulation in fish.” Radioprotection – Colloques, Vol. 37, pp. 621-626.

    Google Scholar 

  • Kuzmenko MI, VD Romanenko, VV Derevets, OM Volkova, et al. 2001. Impact of radionuclide contamination on to hydrobionts of the Chernobyl Exclusion Zone, p. 318.

    Google Scholar 

  • Likhtarev IA, LN Kovgan, P Jacob, and LR Anspaugh. 2002. “Chernobyl accident: Retrospective and prospective estimates of external dose of the population of Ukraine.” Health Phys., Vol. 82, pp. 290–303.

    Article  CAS  Google Scholar 

  • Nasvit OI, MI Fomovskiy, and VG Klenus. 1997. “Radionuclides in hydrobionts of the water bodies in the CEZ.” Radiogeoecology of water bodies at the Chernobyl Exclusion zone. K: Chernobylinterinform, Vol. 1. Monitoring of radioactive contamination of the natural water in Ukraine, pp. 215-222.

    Google Scholar 

  • Nasvit OI. 2002. “Radioecological Situation in the Cooling Pond of Chernobyl NPP.” Recent Research Activity about Chernobyl NPP Accident in Belarus, Ukraine and Russia. KURAI-KR-79, 74-85, Kyoto University, Japan.

    Google Scholar 

  • Nies H and SP Nielsen. 1996. “Radioactivity in the Baltic Sea.” Radionuclides in the oceans. Inputs and Inventories. IPSN, pp. 219-231.

    Google Scholar 

  • NRBU-97. 2001. Radiation Safety Standards of Ukraine.

    Google Scholar 

  • Onishi Y, G Whelan, and RL Skaggs. 1983. Development of a Multimedia Radionuclide Exposure Assessment Methodology for Low-Level Waste Management. PNL-3370, Pacific Northwest National Laboratory, Richland, Washington.

    Google Scholar 

  • Polikarpov GG, VI Timoschuk, LG Kulebakina, and NA Stokozov. 1991. “90Sr and 137Cs in surface water of the Dnieper River, Black Sea, and Aegean Sea in 1987–1988.” J. Environment Radioactivity, Vol. 13, pp. 25-38.

    Google Scholar 

  • Romanenko VD, MI Kuzmenko, and NY Evtushenko. 1992. “Radioactive and chemical contamination of the Dnieper and its reservoirs after Chernobyl accident.” Naukova Dumka, Kiev, p. 316.

    Google Scholar 

  • Ryabov IN. 1992. “Analysis of countermeasures to prevent intake of radionuclides via consumption of fish from the region affected by the Chernobyl accident.” Proc. Int. Seminar on Intervention Levels and Countermeasures for Nuclear Accidents. EUR 14469, Luxemburg: European Commission, pp. 379-390.

    Google Scholar 

  • Ryabov I, N Belova, L Pelgunova, et al. 1996. “Radiological phenomena of the Kojanovskoe Lake.” The Radiological Consequences of the Chernobyl Accident, Proceedings of the First International Conference, A Karaoglou, G Desmet, GN Kelly, et al. (Eds.). EUR 16544, pp. 213-216.

    Google Scholar 

  • Sandalls FI, MG Segal, and NV Victorova. 1993. “Hot particles from Chernobyl: A review.” J. Environmental Radioactivity, Vol. 18, pp. 5-22.

    Article  CAS  Google Scholar 

  • Sansone U and OV Voitsekhovich. 1996. Modeling and study of the mechanisms of the transfer of radioactive material from terrestrial ecosystems to and in water bodies around Chernobyl. Final Report, Experimental Collaboration Project No. 3, EUR 16529, European Commission, DG XII, Brussels-Luxemburg.

    Google Scholar 

  • Santschi PH, S Bollhalder, S Zingg, A Luck, and K Farrenkother. 1990. “The self-cleaning capacity of surface water after radionuclide fallout. Evidence from European lakes after Chernobyl 1986-88.” Environ. Sci. Technol., Vol. 24, pp. 519-527.

    Article  CAS  Google Scholar 

  • Shestopalov VN. 2002. Chernobyl disaster and groundwater. Balkema Publishers, p. 289.

    Google Scholar 

  • Smith JT, RNJ Comans, and DG Elder. 1999. “Radiocaesium removal from European lakes and reservoirs: key processes determined from 16 Chernobyl contaminated lakes.” Water Research, Vol. 33, pp. 3762-3774.

    Article  CAS  Google Scholar 

  • Smith JT, RT Clarke, and R Saxèn. 2000. “Time dependent behaviour of radiocaesium: a new method to compare the mobility of weapons test and Chernobyl derived fallout.” J. Environmental Radioactivity, Vol. 49, pp. 65-83.

    Article  CAS  Google Scholar 

  • Smith JT, AV Kudelsky AV, IN Ryabov, and RH Hadderingh. 2000. “Radiocaesium concentration factors of Chernobyl-contaminated fish: a study of the influence of potassium, and ‘blind’ testing of a previously developed model.” J. Environ. Radioactivity, 48:359-369.

    Article  CAS  Google Scholar 

  • Smith JT, AV Konoplev, AA Bulgakov, RNJ Comans, MA Cross, B Khristuk, A De Koning, AV Kudelsky, MJ Madruga, OV Voitsekhovich, and G Zibold. 2001. Dorset Centre for Ecology and Hydrology; AQUASCOPE Final Report. European Commission project IC15-CT98-0205, p. 114.

    Google Scholar 

  • Smith JT, AV Kudelsky, IN Ryabov, SE Daire, L Boyer, RJ Blust, JA Fernandez, RH Hadderingh, and OV Voitsekhovich. 2002. “Uptake and elimination of radiocaesium in fish and the “size effect.” J. Environmental Radioactivity, Vol. 62, pp. 145-164.

    Article  CAS  Google Scholar 

  • Sobotovitch EV, GN Bondarenko, LV Kononenko, et al. 2002. Geochemistry of technogenic radionuclides. Naukova Dumka, Kiev, p. 332 (in Russian).

    Google Scholar 

  • TRANSAQUA. 2003. “Transfer in Aquatic Ecosystems.” Final report of the French-German Initiative for Chernobyl, CD database, IRSN, Cadarach.

    Google Scholar 

  • United Nations. 2000. Sources and Effects of Ionizing Radiation. Report to the General Assembly by the Committee on Effects of Atomic Radiation, New York, II:451-566.

    Google Scholar 

  • UNDP. 2001. Water Quality Evaluation and Prediction in the Areas Affected by the Chernobyl Accident. Bryansk Region. Final Project Report, p. 64.

    Google Scholar 

  • UNDP. 2003. Radioactive contamination of the Dnieper River basin: Contribution to the transboundary diagnostic analysis and recommendation for the strategic action plan. Summary report, Regional technical cooperation project RER/9/072, IAEA, Vienna, p. 24.

    Google Scholar 

  • UNSCEAR. 1988. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly by the UN Scientific Committee on Effects of Atomic Radiation, New York, pp. 309–374.

    Google Scholar 

  • UNSCEAR. 2000. Sources and Effects of Ionizing Radiation. Report to the General Assembly, (with Scientific Annexes). UN Scientific Committee on the Effects of Atomic Radiation, Vol. II, pp. 451-566.

    Google Scholar 

  • U.S. Department of Energy (DOE). 1987. Health and Environmental Consequences of the Chernobyl Nuclear Power Plant Accident. Prepared by the Interlaboratory Task Group on Health and Environmental Aspects of the Soviet Nuclear Accident for the DOE Office of Health and Environmental Research, Washington, D.C.

    Google Scholar 

  • Vakulovskij SM, OV Voitsekhovich, IY Katrich, and VI Medinets. 1990. “Radioactive contamination of water system in the area affected by releases from Chernobyl accident.” Proc. of the IAEA, UNEP, FAO, WHO Symposium, Vol. 1, pp. 231-246. Vienna.

    Google Scholar 

  • Vakulovsky SM, AI Nikitin, VB Chumichev, IY Katrich, OV Voitsekhovich, VI Medinets, VV Pisarev, LA Bovkum, and ES Khersonsky. 1994. “Caesium-137 and Strontium-90 contamination of water bodies in areas affected by releases from Chernobyl Nuclear Power Plant accident: an overview.” J. Environmental Radioactivity, Vol. 23, pp. 103-122.

    Article  CAS  Google Scholar 

  • Voitsekhovich OV. 1991. “Radioactive contamination of the Dnieper basin.” Nature, Vol. 5, pp. 52-56 (in Russian).

    Google Scholar 

  • Voitsekhovich OV, VA Borzilov, and AV Konoplev. 1991. “Hydrological Aspects of Radionuclide Migration in Water Bodies Following the Chernobyl Accident.” Proc. of Seminar on Comparative Assessment of the Environmental Impact of Radionuclides Released during Three Major Nuclear Accidents: Kyshtym, Windscale, Chernobyl, Vol. 2. Commission of European Communities, Radiation Protection-53, EUR 13574, Luxemburg, pp. 527-548.

    Google Scholar 

  • Voitsekhovich OV, MJ Zheleznyak, and Y Onishi. 1994.Chernobyl nuclear accident hydrological analyses and emergency evaluation of radionuclide distribution in the Dnieper River, Ukraine during the 1993 summer flood. PNL-9980, Pacific Northwest National Laboratory, Richland, Washington.

    Google Scholar 

  • Voitsekhovich OV, U Sansone, MJ Zheleznyak, and DA Bugai. 1996. “Water quality management of contaminated areas and its effect on doses from aquatic pathways.” The radiological consequences of Chernobyl accident. Proceedings of the first international conference,A Karaoglou et al. (Eds.). European Commission, Luxemburg, pp. 401-410.

    Google Scholar 

  • Voitsekhovich OV et al. 1997. Radiogeoecology of water bodies at the Chernobyl affected zone. Vol. 1. Monitoring of radioactive contamination of the natural water in Ukraine, p. 297.

    Google Scholar 

  • Voitsekhovich OV, VM Shestopalov, AS Skalskiy, and VV Kanivets. 2001. Monitoring of surface and groundwater contamination after Chernobyl accident. Kiev, p. 147.

    Google Scholar 

  • Voitsekhovich OV, GV Laptev, OB Kostezh, and VV Kanivets. 2002. “Assessment of the rate of sedimentation in the Black Sea using isotope dating techniques.” Proc of UHMI, pp. 221-231 (in Russian).

    Google Scholar 

  • Zarubin OL and OL Zalisskiy. 2000. “Fish radioactive contamination in the Chernobyl cooling pond.” Bulletin of the ecological state in the CEZ, Vol. 16, pp. 39-43 (in Russian).

    Google Scholar 

  • Zarubin OL and OL Zalisskiy. 2002. “Radioactive contamination of algae and aquatic plants in the Pripyat River.” Bulletin of the ecological state in the CEZ, Vol. 19, pp. 39-45 (in Russian).

    Google Scholar 

  • Zheleznyak MJ and OV Voitsekhovich. 1990. “Mathematical Modeling of Radionuclide Dispersion in Surface Waters after the Chernobyl Accident to Evaluate the Effectiveness of Water Protection Measures.” Proc. Seminar on Comparative Assessment of the Environmental Impacts of Radionuclides Released During Three Major Accidents: Kyshtym, Windscale, and Chernobyl, Vol. 2. Radiation Protection 53, EUR 13574, CEC, Luxembourg, 401-410.

    Google Scholar 

  • Zheleznyak MJ, R Demchenko, S Khursin, Y Kuzmenko, P Tkalich, and N Vitjuk. 1992. “Mathematical modeling of radionuclide dispersion in the Pripyat-Dnieper aquatic system after the Chernobyl accident.” The Science of the Total Environment, 112:89-114.

    Article  CAS  Google Scholar 

  • Zibold G, A Forschner, J Drissner, E Klement, R Miller, and M Walser. 1998. “Time-dependency of the caesium-137 concentration factor in pike from Lake Vorsee.” Proceedings of the UIR Topical Meeting, Mol, Belgium.

    Google Scholar 

  • Zibold G, S Kaminski, E Klemt, and JT Smith. 2002. “Time-dependency of the 137Cs activity concentration in freshwater lakes, measurement and prediction.” Radioprotection – Colloques, Vol. 37, pp. 75-80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Voitsekhovich, O.V., Kanivets, V., Onishi, Y. (2007). The Chernobyl Accident and Its Aquatic Impacts on the Surrounding Area. In: Onishi, Y., Voitsekhovich, O.V., Zheleznyak, M.J. (eds) Chernobyl – What Have We Learned?. Environmental Pollution, vol 12. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5349-5_2

Download citation

Publish with us

Policies and ethics