Skip to main content

THE ARCHITECTURE OF COMPLEXITY: FROM WWW TO CELLULAR METABOLISM

  • Conference paper
Dynamics of Complex Interconnected Systems: Networks and Bioprocesses

Part of the book series: NATO Science Series II ((NAII,volume 232))

Abstract

Recent studies of complex systems indicate that real networks are far from random, instead having a highly robust, large-scale architecture that is governed by strict organizational principles. Here, we will focus on cellular networks, discussing their scale-free and hierarchical features. We will first discuss a few central network models, before illustrating the major network characteristics using examples primarily from bacterial metabolic networks. Additionally, as the interactions in real networks have unequal strengths, we discuss the interplay between network topology and reaction fluxes in cellular metabolic networks, as provided by the flux balance method. We find that the utilization of the metabolic networks is both globally and locally highly inhomogeneous, dominated by “hot-spots” that represent connected set of high-flux pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, R. & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Rev. Mod. Phys. 74, p47–97.

    Article  ADS  Google Scholar 

  • Albert, R., Jeong, H. & Barabási, A.-L (1999). Diameter of the World-Wide Web. Nature, 401, p130–1.

    Article  ADS  Google Scholar 

  • Albert, R., Jeong, H. & Barabási, A.-L. (2000). Attack and error tolerance of complex networks. Nature, 406, p378–82.

    Article  ADS  Google Scholar 

  • Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N. & Barabási, A.-L. (2004). Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature, 427, p839– 843.

    Article  ADS  Google Scholar 

  • Anderson, M.H., Ensher, J.R., Matthews, M.R. Wieman, C.E.&Cornell, E.A. (1995). Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269, p198– 201.

    Article  ADS  Google Scholar 

  • Anderson, P. W. (1972). More Is Different. Science, 177, p393–6.

    Article  ADS  Google Scholar 

  • Barabási, A.-L. & Albert, R., (1999). Emergence of scaling in random networks. Science, 286, p509–12.

    Article  MathSciNet  Google Scholar 

  • Barrat, A., Barthelemy, M., Pastor-Satorras, R. & Vespignani, A. (2004). The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA, 101, p3747.

    Article  ADS  Google Scholar 

  • Barthelemy, M., Gondran, B. & Guichard, E. (2003). Spatial structure of the Internet traffic. Physica A, 319, p633–42.

    Article  ADS  MATH  Google Scholar 

  • Bianconi G.&Barabási. A.-L. (2001). Bose-Einstein condensation in complex networks. Phys. Rev. Lett., 86, 5632.

    Article  ADS  Google Scholar 

  • Bradley, C.C., Sackett, C.A., Tollett, J.J. & Hulet, R.G. (1995). Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75, p1687– 90.

    Article  ADS  Google Scholar 

  • Bollobas, B. (1985). Random Graphs. Academic Press, London.

    MATH  Google Scholar 

  • Bornholdt, S. & Schuster, H. G. (2003). Handbook of graphs and networks: From the genome to the Internet. Wiley-VCH, Berlin, Germany.

    MATH  Google Scholar 

  • Broder, A., Kumar, R., Maghoul, F., Raghavan, P, Rajalopagan, S., Stata, R., Tomkins, A. & Wiener, J. (2000). Graph structure in the web. Comput. Netw., 33, p309–20.

    Article  Google Scholar 

  • Burge, C.B. (2001). Chipping away at the transcriptome. Nature Genet., 27, p232–4.

    Article  Google Scholar 

  • Caron, H., van Schaik, B., van der Mee, M., Baas, F., Riggins, G., van Sluis, P., Hermus, M.C., van Asperen, R., Boon, K., Voute, P.A., Heisterkamp, S., van Kampen, A. & Versteeg, R. (2001). The human transcriptome map: Clustering of highly expressed genes in chromosomal domains. Science, 291, p1289–92.

    Article  ADS  Google Scholar 

  • Dandekar, T., Schuster, S., Snel, B., Huynen, M. & Bork, P. (1999). Pathway alignment: application to the comparative analysis of glycolytic enzymes. Biochem. J. 343, p115– 124.

    Article  Google Scholar 

  • Derrida, B. & Flyvbjerg, H. (1987). Statistical properties of randomly broken objects and of multivalley structures in disordered-systems. J. Phys. A: Math. Gen., 20, p5273–88 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  • Dorogovtsev, S.N., Goltsev, A.V. & Mendes, J.F.F. (2002). Pseudofractal scale-free web. Phys. Rev. E, 65, 066122.

    Article  ADS  Google Scholar 

  • Dorogovtsev, S.N. & Mendes, J.F.F. (2003) Evolution of networks: From biological nets to the Internet and WWW. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Edwards, J. S., Ibarra, R. U. & Palsson, B. O. (2001). In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19, p125–30.

    Article  Google Scholar 

  • Edwards, J. S. & Palsson, B. O. (2000). The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97, p5528–33.

    Article  ADS  Google Scholar 

  • Edwards, J. S., Ramakrishna, R. & Palsson, B. O. (2002). Characterizing the metabolic phenotype: A phenotype phase plane analysis. Biotechn. Bioeng. 77, 27–36.

    Article  Google Scholar 

  • Emmerling, M., Dauner, M., Ponti, A., Fiaux, J., Hochuli, M., Szyperski, T., Wuthrich, K., Bailey, J.E. & Sauer, U. (2002). Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J Bacteriol., 184, p152–64.

    Article  Google Scholar 

  • Erdos, P. & Renyi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 5, p17–61.

    MathSciNet  Google Scholar 

  • Faloutsos, M., Faloutsos, P. & Faloutsos, C. (1999). On power-law relationships of the Internet topology. Comput. Commun. Rev., 29, p251–62.

    Article  Google Scholar 

  • Flajolet, M., Rotondo, G., Daviet, L., Bergametti, F., Inchauspe, G., Tiollais, P., Transy, C. & Legrain, P. (2000). A genomic approach to the hepatitis C virus. Gene, 242, p369–79.

    Article  Google Scholar 

  • Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G. & Superti-Furga, G. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415, p141–7.

    Article  ADS  Google Scholar 

  • Greiner, M., Regal, C.A. & Jin, D.S. (2003). Emergence of a molecular Bose-Einstein condensate from a Fermi gas. Nature, 426, p537–40.

    Article  ADS  Google Scholar 

  • Hartwell, L.H., Hopfield, J.J., Leibler, S. & Murray, A.W. (1999). From molecular to modular cell biology. Nature, 402, C47–52.

    Article  Google Scholar 

  • Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L.Y., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, M., Hogue, C.W.V., Figeys, D. & Tyers, M. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 415, p180–3.

    Article  ADS  Google Scholar 

  • Holme, P., Huss, M. & Jeong, H. (2003). Subnetwork hierarchies of biochemical pathways. Bioinformatics. 19, p532–9.

    Article  Google Scholar 

  • Ibarra, R. U., Edwards, J. S. & Palsson, B. O. (2002). Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, p186–9.

    Article  ADS  Google Scholar 

  • Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. & Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci., 98, p4569–74.

    Article  ADS  Google Scholar 

  • Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Yamamoto, K., Kuhara, S. & Sakaki, Y. (2000). Towards a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl. Acad. Sci., 97, p1143–47.

    Article  ADS  Google Scholar 

  • Jeong, H., Mason, S.P., Barabási, A.-L. & Oltvai, Z.N. (2001). Lethality and centrality in protein networks. Nature, 411, p41–2.

    Article  ADS  Google Scholar 

  • Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. & Barabási, A.-L. (2000). The large-scale organization of metabolic networks. Nature, 407, p651–4.

    Article  ADS  Google Scholar 

  • Kochen, M. (ed.) (1989). The small-world. Ablex, Norwood, N.J.

    Google Scholar 

  • Lauffenburger, D. (2000). Cell signaling pathways as control modules: Complexity for simplicity. Proc. Natl. Acad. Sci., 97, p5031–33.

    Article  ADS  Google Scholar 

  • Lawrence, S. & Giles, C. L. (1999). Accessibility of information on the web. Nature, 400, p107–9.

    Article  ADS  Google Scholar 

  • Legget, A.J. (2001) Bose-Einstein consdensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys., 73, p307–56.

    Article  ADS  Google Scholar 

  • Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E. Aberg, Y. (2001). The web of human sexual contacts. Nature, 411, p907–8.

    Article  ADS  Google Scholar 

  • Milgram, S. (1967). The small-world problem. Psychology Today, 2, p60–7.

    Google Scholar 

  • Montoya, J.M. & Sole, R.V. (2002). Small-world patterns in food webs. J. Theor. Biol., 214, p405–12.

    Article  Google Scholar 

  • Newman, M.E.J. (2001). The structure of scientific collaboration networks. Proc. Natl. Acad. Sci., 98, p404–9.

    Article  ADS  MATH  Google Scholar 

  • Newman, M.E.J. (2002). Assortative mixing in networks. Phys. Rev. Lett., 89, 208701.

    Article  ADS  Google Scholar 

  • Newman, M.E.J. (2003). Mixing patterns in networks. Phys. Rev. E., 67, 026126.

    Article  MathSciNet  ADS  Google Scholar 

  • Pandey, A. & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405, p837– 46.

    Article  Google Scholar 

  • Pastor-Satorras, R., Vazquez, A. & Vespignani, A. (2001). Phys. Rev. Lett., 87, 258701.

    Article  ADS  Google Scholar 

  • Pastor-Satorras, R. & Vespignani, A. (2004). Evolution and structure of the Internet: A statistical physics approach. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Rain, J.-C., Selig, L., DeReuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schächter, V., Chemama, Y., Labigne, A. & Legrain, P. (2001). The protein-protein interaction map of Helicobacter pylori. Nature, 409, p211–15.

    Article  ADS  Google Scholar 

  • Rao, C.V. & Arkin, A.P. (2001). Control motifs for intracellular regulatory networks. Annu. Rev. Biomed. Eng., 3, p391.

    Article  Google Scholar 

  • Ravasz, E. & Barabási, A.-L. (2003). Hierarchical organization in complex networks. Phys. Rev. E,67, 026112.

    Article  ADS  Google Scholar 

  • Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N. & Barabási, A.-L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297, p1551–5.

    Article  ADS  Google Scholar 

  • Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B 4, p131–134.

    Article  ADS  Google Scholar 

  • Schuster, S., Fell, D. A. & Dandekar, T. (2000). A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechn. 18, p326–332.

    Article  Google Scholar 

  • Schwikowski, B., Uetz, P., & Fields, S. (2000). A network of protein-protein interactions in yeast. Nature Biotechn., 18, p1257–61.

    Article  Google Scholar 

  • Segre, D., Vitkup, D. & Church, G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci., 99, p15112–7.

    Article  ADS  Google Scholar 

  • Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. & Gilles, E. D. (2002). Metabolic network structure determines key aspects of functionality and regulation. Nature 420, p190–193.

    Article  ADS  Google Scholar 

  • Strogatz, S.H. (2001). Exploring complex networks. Nature, 410, p268–76.

    Article  ADS  Google Scholar 

  • Uetz, P., Giot, L., Cagney, G., Mansfield, T., Judson, R., Knight, J., Lockshorn, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M.J., Johnston, M., Fields, S. & Rothberg, J.M. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 403, p623–27.

    Article  ADS  Google Scholar 

  • Vázquez, A., Pastor-Satorras, R. & Vespignani, A. (2002). Large-scale topological and dynamical properties of the Internet. Phys. Rev. E, 65, 066130.

    Article  ADS  Google Scholar 

  • Walhout, A., Sordella, R., Lu, X., Hartley, J., Temple, G., Brasch, M., Thierry-Mieg, N., & Vidal, M. (2000). Protein interaction mapping in C. elegans using proteins involved in vulva development. Science, 287, p116–22.

    Article  ADS  Google Scholar 

  • Wasserman, S. & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge.

    Google Scholar 

  • Watts, D.J. & Strogatz, S.H. (1998). Collective dynamics of small-world networks. Nature, 393, p440–2.

    Article  ADS  Google Scholar 

  • Yook, S.-H., Jeong, H., Barabási, A.-L. & Tu, Y. (2001). Weighted evolving networks. Phys. Rev. Lett., 86, p5835–38.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

ALMAAS, E., BARABÁSI, AL. (2006). THE ARCHITECTURE OF COMPLEXITY: FROM WWW TO CELLULAR METABOLISM. In: Skjeltorp, A.T., Belushkin, A.V. (eds) Dynamics of Complex Interconnected Systems: Networks and Bioprocesses. NATO Science Series II, vol 232. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5030-5_7

Download citation

Publish with us

Policies and ethics