Skip to main content

Integration of Signaling Pathways Via Smad Proteins

  • Chapter
Smad Signal Transduction

Part of the book series: Proteins and Cell Regulation ((PROR,volume 5))

  • 1210 Accesses

Abstract

TGF-β ligands are involved in most aspects of embryonic development and post-natal homeostasis and numerous examples of crosstalk with other signaling pathways have been described. The Smad proteins are the most extensively characterized signal transducers downstream of the TGF-β superfamily of secreted growth factors. In most cases, Smad proteins have been shown to mediate this crosstalk via the formation of DNA-bound transcriptional complexes with transducers of other pathways, thereby modifying promoter selectivity and transcriptional output. We will examine the ability of Smads to integrate the signaling output of TGF-β ligands with other signaling pathways through direct interactions with other signal transducers

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akman, H.O., Zhang, H., Siddiqui, M.A., Solomon, W., Smith, E.L., and Batuman, O.A., 2001, Response to hypoxia involves transforming growth factor-β 2 and Smad proteins in human endothelial cells. Blood 98: 3324-3331.

    Article  PubMed  CAS  Google Scholar 

  • Aranda, A., and Pascual, A., 2001, Nuclear hormone receptors and gene expression. Physiol Rev 81: 1269-1304.

    PubMed  CAS  Google Scholar 

  • Aurrekoetxea-Hernandez, K., and Buetti, E., 2004, Transforming growth factor β enhances the glucocorticoid response of the mouse mammary tumor virus promoter through Smad and GA-binding proteins. J Virol 78: 2201-2211.

    Article  PubMed  CAS  Google Scholar 

  • Barrios-Rodiles, M., Brown, K.R., Ozdamar, B., Bose, R., Liu, Z., Donovan, R.S., Shinjo, F., Liu, Y., Dembowy, J., Taylor, I.W., Luga, V., Przulj, N., Robinson, M., Suzuki, H., Hayashizaki, Y., Jurisica, I., and Wrana, J.L., 2005, High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307: 1621-1625.

    Article  PubMed  CAS  Google Scholar 

  • Bastida, M.F., Delgado, M.D., Wang, B., Fallon, J.F., Fernandez-Teran, M., and Ros, M.A., 2004, Levels of Gli3 repressor correlate with Bmp4 expression and apoptosis during limb development. Dev Dyn 231: 148-160.

    Article  PubMed  CAS  Google Scholar 

  • Berger, J.P., Akiyama, T.E., and Meinke, P.T., 2005, PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26: 244-251.

    Article  PubMed  CAS  Google Scholar 

  • Bitzer, M., von Gersdorff, G., Liang, D., Dominguez-Rosales, A., Beg, A.A., Rojkind, M., and Böttinger, E.P., 2000, A mechanism of suppression of TGF-β/SMAD signaling by NF-κB/RelA. Genes Dev 14: 187-197.

    PubMed  CAS  Google Scholar 

  • Blokzijl, A., Dahlqvist, C., Reissmann, E., Falk, A., Moliner, A., Lendahl, U., and Ibanez, C.F., 2003, Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol 163: 723-728.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H., Brown, C.W., and Matzuk, M.M., 2002, Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr Rev 23: 787-823.

    Article  PubMed  CAS  Google Scholar 

  • Chipuk, J.E., Cornelius, S.C., Pultz, N.J., Jorgensen, J.S., Bonham, M.J., Kim, S.J., and Danielpour, D., 2002, The androgen receptor represses transforming growth factor-β signaling through interaction with Smad3. J Biol Chem 277: 1240-1248.

    Article  PubMed  CAS  Google Scholar 

  • Chou, W.C., Prokova, V., Shiraishi, K., Valcourt, U., Moustakas, A., Hadzopoulou-Cladaras, M., Zannis, V.I., and Kardassis, D., 2003, Mechanism of a transcriptional cross talk between transforming growth factor-β-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4. Mol Biol Cell 14: 1279-1294.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M.M., Jr., 2003, The hedgehog signaling network. Am J Med Genet A 123: 5-28.

    Article  PubMed  Google Scholar 

  • Colland, F., Jacq, X., Trouplin, V., Mougin, C., Groizeleau, C., Hamburger, A., Meil, A., Wojcik, J., Legrain, P., and Gauthier, J.M., 2004, Functional proteomics mapping of a human signaling pathway. Genome Res 14: 1324-1332.

    Article  PubMed  CAS  Google Scholar 

  • Cordenonsi, M., Dupont, S., Maretto, S., Insinga, A., Imbriano, C., and Piccolo, S., 2003, Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with Smads. Cell 113: 301-314.

    Article  PubMed  CAS  Google Scholar 

  • Dahlqvist, C., Blokzijl, A., Chapman, G., Falk, A., Dannaeus, K., Ibanez, C.F., and Lendahl, U., 2003, Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development 130: 6089-6099.

    Article  PubMed  CAS  Google Scholar 

  • Dai, P., Shinagawa, T., Nomura, T., Harada, J., Kaul, S.C., Wadhwa, R., Khan, M.M., Akimaru, H., Sasaki, H., Colmenares, C., and Ishii, S., 2002, Ski is involved in transcriptional regulation by the repressor and full-length forms of Gli3. Genes Dev 16: 2843-2848.

    Article  PubMed  CAS  Google Scholar 

  • Drissi, M.H., Li, X., Sheu, T.J., Zuscik, M.J., Schwarz, E.M., Puzas, J.E., Rosier, R.N., and O’Keefe, R.J., 2003, Runx2/Cbfa1 stimulation by retinoic acid is potentiated by BMP2 signaling through interaction with Smad1 on the collagen X promoter in chondrocytes. J Cell Biochem 90: 1287-1298.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, N.R., Winnier, G.E., Hargett, L.K., Schrick, J.J., Fogo, A.B., and Hogan, B.L., 1997, Haploin-sufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol 188: 235-247.

    Article  PubMed  CAS  Google Scholar 

  • Edlund, S., Bu, S., Schuster, N., Aspenström, P., Heuchel, R., Heldin, N.-E., ten Dijke, P., Heldin, C.-H., and Landström, M., 2003, Transforming growth factor-β (TGF-β)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-β-activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol Biol Cell 14: 529-544.

    Article  PubMed  CAS  Google Scholar 

  • Edlund, S., Lee, S.Y., Grimsby, S., Zhang, S., Aspenström, P., Heldin, C.-H., and Landström, M., 2005, Interaction between Smad7 and β-catenin: importance for transforming growth factor β-induced apoptosis. Mol Cell Biol 25: 1475-1488.

    Article  PubMed  CAS  Google Scholar 

  • Feng, X.H., and Derynck, R., 2005, Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21: 659-693.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Pol, J.A., Talkad, V.D., Klos, D.J., and Hamilton, P.D., 1987, Suppression of the EGF-dependent induction of c-Myc proto-oncogene expression by transforming growth factor β in a human breast carcinoma cell line. Biochem Biophys Res Commun 144: 1197-1205.

    Article  PubMed  CAS  Google Scholar 

  • Fu, M., Zhang, J., Zhu, X., Myles, D.E., Willson, T.M., Liu, X., and Chen, Y.E., 2001, Peroxisome proliferator-activated receptor gamma inhibits transforming growth factor β-induced connective tissue growth factor expression in human aortic smooth muscle cells by interfering with Smad3. J Biol Chem 276: 45888-45894.

    Article  PubMed  CAS  Google Scholar 

  • Furuhashi, M., Yagi, K., Yamamoto, H., Furukawa, Y., Shimada, S., Nakamura, Y., Kikuchi, A., Miyazono, K., and Kato, M., 2001, Axin facilitates Smad3 activation in the transforming growth factor β signaling pathway. Mol Cell Biol 21: 5132-5141.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, S., May, M.J., and Kopp, E.B., 1998, NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16: 225-260.

    Article  PubMed  CAS  Google Scholar 

  • Harris, S.L., and Levine, A.J., 2005, The p53 pathway: positive and negative feedback loops. Oncogene 24: 2899-2908.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, S.A., Zarnegar, M., Sharma, M., Yang, F., Peehl, D.M., ten Dijke, P., and Sun, Z., 2001, SMAD3 represses androgen receptor-mediated transcription. Cancer Res 61: 2112-2118.

    PubMed  CAS  Google Scholar 

  • He, T.C., Sparks, A.B., Rago, C., Hermeking, H., Zawel, L., da Costa, L.T., Morin, P.J., Vogelstein, B., and Kinzler, K.W., 1998, Identification of c-Myc as a target of the APC pathway. Science 281: 1509-1512.

    Article  PubMed  CAS  Google Scholar 

  • Hu, M.C., Piscione, T.D., and Rosenblum, N.D., 2003, Elevated SMAD1/β-catenin molecular complexes and renal medullary cystic dysplasia in ALK3 transgenic mice. Development 130: 2753-2766.

    Article  PubMed  CAS  Google Scholar 

  • Hu, M.C., and Rosenblum, N.D., 2005, Smad1, β-catenin and Tcf4 associate in a molecular complex with the Myc promoter in dysplastic renal tissue and cooperate to control Myc transcription. Development 132: 215-225.

    Article  PubMed  CAS  Google Scholar 

  • Hussein, S.M., Duff, E.K., and Sirard, C., 2003, Smad4 and β-catenin co-activators functionally interact with lymphoid-enhancing factor to regulate graded expression of Msx2. J Biol Chem 278: 48805-48814.

    Article  PubMed  CAS  Google Scholar 

  • Ingham, P.W., and McMahon, A.P., 2001, Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15: 3059-3087.

    Article  PubMed  CAS  Google Scholar 

  • Ionescu, A.M., Drissi, H., Schwarz, E.M., Kato, M., Puzas, J E., McCance, D.J., Rosier, R.N., Zuscik, M.J., and O’Keefe, R.J., 2004, CREB Cooperates with BMP-stimulated Smad signaling to enhance transcription of the Smad6 promoter. J Cell Physiol 198: 428-440.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, F., Itoh, S., Goumans, M.-J., Valdimarsdottir, G., Iso, T., Dotto, G.P., Hamamori, Y., Kedes, L., Kato, M., and ten Dijke P., 2004, Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J 23: 541-551.

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto, T., Oshima, K., Seng, T., Feng, X., Oo, M.L., Hamaguchi, M., and Matsuda, S., 2002, STAT and SMAD signaling in cancer. Histol Histopathol 17: 887-895.

    PubMed  CAS  Google Scholar 

  • Jenkins, B.J., Grail, D., Nheu, T., Najdovska, M., Wang, B., Waring, P., Inglese, M., McLoughlin, R.M., Jones, S.A., Topley, N., Baumann, H., Judd, L.M., Giraud, A.S., Boussioutas, A., Zhu, H.J., and Ernst, M., 2005, Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-β signaling. Nat Med 11: 845-852.

    Article  PubMed  CAS  Google Scholar 

  • Ji, M., and Andrisani, O.M., 2005, High-level activation of cyclic AMP signaling attenuates bone morphogenetic protein 2-induced sympathoadrenal lineage development and promotes melanogenesis in neural crest cultures. Mol Cell Biol 25: 5134-5145.

    Article  PubMed  CAS  Google Scholar 

  • Jian, H., Shen, X., Liu, I., Semenov, M., He, X., and Wang, X.F. 2006, Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev 20: 666-674.

    Article  PubMed  CAS  Google Scholar 

  • Jono, H., Shuto, T., Xu, H., Kai, H., Lim, D.J., Gum, J.R., Jr., Kim, Y.S., Yamaoka, S., Feng, X.-H., and Li, J.D., 2002, Transforming growth factor-β-Smad signaling pathway cooperates with NF-kappa B to mediate nontypeable Haemophilus influenzae-induced MUC2 mucin transcription. J Biol Chem 277: 45547-45557.

    Article  PubMed  CAS  Google Scholar 

  • Kadesch, T., 2004, Notch signaling: the demise of elegant simplicity. Curr Opin Genet Dev 14: 506-512.

    Article  PubMed  CAS  Google Scholar 

  • Kanamoto, T., Hellman, U., Heldin, C.-H., and Souchelnytskyi, S., 2002, Functional proteomics of transforming growth factor-β 1-stimulated Mv1Lu epithelial cells: Rad51 as a target of TGFβ-dependent regulation of DNA repair. EMBO J 21: 1219-1230.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H.Y., Huang, K.E., Chang, S.Y., Ma, W.L., Lin, W.J., and Chang, C., 2002, Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4. J Biol Chem 277: 43749-43756.

    Article  PubMed  CAS  Google Scholar 

  • Kardassis, D., Pardali, K., and Zannis, V.I., 2000, SMAD proteins transactivate the human ApoCIII promoter by interacting physically and functionally with hepatocyte nuclear factor 4. J Biol Chem 275: 41405-41414.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S., Koga, T., Isobe, M., Kern, B.E., Yokochi, T., Chin, Y.E., Karsenty, G., Taniguchi, T., and Takayanagi, H., 2003, Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev 17: 1979-1991.

    Article  PubMed  CAS  Google Scholar 

  • Kimelman, D., and Griffin, K.J., 2000, Vertebrate mesendoderm induction and patterning. Curr Opin Genet Dev 10: 350-356.

    Article  PubMed  CAS  Google Scholar 

  • Kintscher, U., Lyon, C., Wakino, S., Bruemmer, D., Feng, X., Goetze, S., Graf, K., Moustakas, A., Staels, B., Fleck, E., Hsueh, W.A., and Law, R.E., 2002, PPARα inhibits TGF-β-induced β5-integrin transcription in vascular smooth muscle cells by interacting with Smad4. Circ Res 91: e35-44.

    Article  PubMed  CAS  Google Scholar 

  • Klein, T., and Arias, A.M., 1999, The vestigial gene product provides a molecular context for the interpretation of signals during the development of the wing in Drosophila. Development 126: 913-925.

    PubMed  CAS  Google Scholar 

  • Labbé, E., Letamendia, A., and Attisano, L., 2000, Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-β and wnt pathways. Proc Natl Acad Sci U S A 97: 8358-8363.

    Article  PubMed  Google Scholar 

  • Lei, S., Dubeykovskiy, A., Chakladar, A., Wojtukiewicz, L., and Wang, T.C., 2004, The murine gastrin promoter is synergistically activated by transforming growth factor-β/Smad and Wnt signaling pathways. J Biol Chem 279: 42492-42502.

    Article  PubMed  CAS  Google Scholar 

  • Letterio, J.J., and Roberts, A.B., 1998, Regulation of immune responses by TGF-β. Annu Rev Immunol 16: 137-161.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F., Massagué, J., and Ruiz i Altaba, A., 1998, Carboxy-terminally truncated Gli3 proteins associate with Smads. Nat Genet 20: 325-326.

    Article  PubMed  CAS  Google Scholar 

  • Long, J., Wang, G., Matsuura, I., He, D., and Liu, F., 2004, Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3). Proc Natl Acad Sci U S A 101: 99-104.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Rovira, T., Chalaux, E., Rosa, J.L., Bartrons, R., and Ventura, F., 2000, Interaction and functional cooperation of NF-κB with Smads. Transcriptional regulation of the junB promoter. J Biol Chem 275: 28937-28946.

    Article  PubMed  CAS  Google Scholar 

  • Luo, K., 2004, Ski and SnoN: negative regulators of TGF-β signaling. Curr Opin Genet Dev 14: 65-70.

    Article  PubMed  CAS  Google Scholar 

  • Massagué, J., 2000, How cells read TGF-β signals. Nat Rev Mol Cell Biol 1: 169-178.

    Article  PubMed  Google Scholar 

  • Matsuda, T., Yamamoto, T., Muraguchi, A., and Saatcioglu, F., 2001, Cross-talk between transforming growth factor-β and estrogen receptor signaling through Smad3. J Biol Chem 276: 42908-42914.

    Article  PubMed  CAS  Google Scholar 

  • Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, D., Bradley, P., Bork, P., Bucher, P., Cerutti, L., Copley, R., Courcelle, E., Das, U., Durbin, R., Fleischmann, W., Gough, J., Haft, D., Harte, N., Hulo, N., Kahn, D., Kanapin, A., Krestyaninova, M., Lonsdale, D., Lopez, R., Letunic, I., Madera, M., Maslen, J., McDowall, J., Mitchell, A., Nikolskaya, A.N., Orchard, S., Pagni, M., Ponting, C.P., Quevillon, E., Selengut, J., Sigrist, C.J., Silventoinen, V., Studholme, D.J., Vaughan, R., and Wu, C.H., 2005, InterPro, progress and status in 2005. Nucleic Acids Res 33: D201-205.

    Article  PubMed  CAS  Google Scholar 

  • Mullor, J.L., Sanchez, P., and Altaba, A.R., 2002, Pathways and consequences: Hedgehog signaling in human disease. Trends Cell Biol 12: 562-569.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, K., Yanagisawa, M., Arakawa, H., Kimura, N., Hisatsune, T., Kawabata, M., Miyazono, K., and Taga, T., 1999, Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284: 479-482.

    Article  PubMed  CAS  Google Scholar 

  • Nawshad, A., LaGamba, D., and Hay, E. D, 2004, Transforming growth factor β (TGFβ) signaling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch Oral Biol 49: 675-689.

    Article  PubMed  CAS  Google Scholar 

  • Nishita, M., Hashimoto, M.K., Ogata, S., Laurent, M.N., Ueno, N., Shibuya, H., and Cho, K.W., 2000, Interaction between Wnt and TGF-β signaling pathways during formation of Spemann’s organizer. Nature 403: 781-785.

    Article  PubMed  CAS  Google Scholar 

  • Nusse, R., 2005, Wnt signaling in disease and in development. Cell Res 15: 28-32.

    Article  PubMed  CAS  Google Scholar 

  • Paez-Pereda, M., Giacomini, D., Refojo, D., Nagashima, A.C., Hopfner, U., Grubler, Y., Chervin, A., Goldberg, V., Goya, R., Hentges, S.T., Low, M.J., Holsboer, F., Stalla, G.K., and Arzt, E., 2003, Involvement of bone morphogenetic protein 4 (BMP-4) in pituitary prolactinoma pathogenesis through a Smad/estrogen receptor crosstalk. Proc Natl Acad Sci U S A 100: 1034-1039.

    Article  PubMed  CAS  Google Scholar 

  • Pendaries, V., Verrecchia, F., Michel, S., and Mauviel, A., 2003, Retinoic acid receptors interfere with the TGF-β/Smad signaling pathway in a ligand-specific manner. Oncogene 22: 8212-8220.

    Article  PubMed  CAS  Google Scholar 

  • Periyasamy, S., and Sanchez, E.R., 2002, Antagonism of glucocorticoid receptor transactivity and cell growth inhibition by transforming growth factor-β through AP-1-mediated transcriptional repression. Int J Biochem Cell Biol 34: 1571-1585.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, A.B., and Sporn, M.B., 1992, Mechanistic interrelationships between two superfamilies: the steroid/retinoid receptors and transforming growth factor-β. Cancer Surv 14: 205-220.

    PubMed  CAS  Google Scholar 

  • Ruas, J.L., and Poellinger, L., 2005, Hypoxia-dependent activation of HIF into a transcriptional regulator. Semin Cell Dev Biol 16: 514-522.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Elsner, T., Botella, L.M., Velasco, B., Corbi, A., Attisano, L., and Bernabeu, C., 2001, Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. J Biol Chem 276: 38527-38535.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Elsner, T., Ramirez, J.R., Sanz-Rodriguez, F., Varela, E., Bernabeu, C., and Botella, L. M, 2004, A cross-talk between hypoxia and TGF-β orchestrates erythropoietin gene regulation through SP1 and Smads. J Mol Biol 336: 9-24.

    Article  PubMed  CAS  Google Scholar 

  • Sarker, K.P., Wilson, S.M., and Bonni, S., 2005, SnoN is a cell type-specific mediator of transforming growth factor-β responses. J Biol Chem 280: 13037-13046.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, T., Suzuki, H., Yagi, K., Furuhashi, M., Yao, R., Susa, S., Noda, T., Arai, Y., Miyazono, K., and Kato, M., 2003, Lymphoid enhancer factor 1 makes cells resistant to transforming growth factor β-induced repression of c-Myc. Cancer Res 63: 801-806.

    PubMed  CAS  Google Scholar 

  • Schiller, M., Verrecchia, F., and Mauviel, A., 2003, Cyclic adenosine 3′,5′-monophosphate-elevating agents inhibit transforming growth factor-β-induced SMAD3/4-dependent transcription via a protein kinase A-dependent mechanism. Oncogene 22: 8881-8890.

    Article  PubMed  CAS  Google Scholar 

  • Skillington, J., Choy, L., and Derynck, R., 2002, Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J Cell Biol 159: 135-146.

    Article  PubMed  CAS  Google Scholar 

  • Song, C.Z., Tian, X., and Gelehrter, T.D., 1999, Glucocorticoid receptor inhibits transforming growth factor-β signaling by directly targeting the transcriptional activation function of Smad3. Proc Natl Acad Sci U S A 96: 11776-11781.

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam, N., Leong, G.M., Cock, T.A., Flanagan, J.L., Fong, C., Eisman, J.A., and Kouzmenko, A.P., 2001, Cross-talk between 1,25-dihydroxyvitamin D3 and transforming growth factor-β signaling requires binding of VDR and Smad3 proteins to their cognate DNA recognition elements. J Biol Chem 276: 15741-15746.

    Article  PubMed  CAS  Google Scholar 

  • Takebayashi-Suzuki, K., Funami, J., Tokumori, D., Saito, A., Watabe, T., Miyazono, K., Kanda, A., and Suzuki, A., 2003, Interplay between the tumor suppressor p53 and TGF β signaling shapes embryonic body axes in Xenopus. Development 130: 3929-3939.

    Article  PubMed  CAS  Google Scholar 

  • Takizawa, T., Ochiai, W., Nakashima, K., and Taga, T., 2003, Enhanced gene activation by Notch and BMP signaling cross-talk. Nucleic Acids Res 31: 5723-5731.

    Article  PubMed  CAS  Google Scholar 

  • Taskén, K., and Aandahl, E.M., 2004, Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 84: 137-167.

    Article  PubMed  Google Scholar 

  • Tewari, M., Hu, P.J., Ahn, J.S., Ayivi-Guedehoussou, N., Vidalain, P.O., Li, S., Milstein, S., Armstrong, C.M., Boxem, M., Butler, M.D., Busiguina, S., Rual, J.F., Ibarrola, N., Chaklos, S.T., Bertin, N., Vaglio, P., Edgley, M.L., King, K.V., Albert, P.S., Vandenhaute, J., Pandey, A., Riddle, D.L., Ruvkun, G., and Vidal, M., 2004, Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-β signaling network. Mol Cell 13: 469-482.

    Article  PubMed  CAS  Google Scholar 

  • Ulloa, L., Doody, J., and Massagué, J., 1999, Inhibition of transforming growth factor-β/SMAD signaling by the interferon-gamma/STAT pathway. Nature 397: 710-713.

    Article  PubMed  CAS  Google Scholar 

  • Valdimarsdottir, G., Goumans, M.-J., Rosendahl, A., Brugman, M., Itoh, S., Lebrin, F., Sideras, P., and ten Dijke, P., 2002, Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 106: 2263-2270.

    Article  PubMed  CAS  Google Scholar 

  • Veeman, M.T., Axelrod, J.D., and Moon, R.T., 2003, A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell 5: 367-377.

    Article  PubMed  CAS  Google Scholar 

  • Verrecchia, F., and Mauviel, A., 2004, TGF-β and TNF-α: antagonistic cytokines controlling type I collagen gene expression. Cell Signal 16: 873-880.

    Article  PubMed  CAS  Google Scholar 

  • Verrecchia, F., Pessah, M., Atfi, A., and Mauviel, A., 2000, Tumor necrosis factor-α inhibits transforming growth factor-β/Smad signaling in human dermal fibroblasts via AP-1 activation. J Biol Chem 275: 30226-30231.

    Article  PubMed  CAS  Google Scholar 

  • Waddell, D.S., Liberati, N.T., Guo, X., Frederick, J.P., and Wang, X.F., 2004, Casein kinase Iepsilon plays a functional role in the transforming growth factor-β signaling pathway. J Biol Chem 279: 29236-29246.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Song, K., Sponseller, T.L., and Danielpour, D., 2005, Novel function of androgen receptor-associated protein 55/Hic-5 as a negative regulator of Smad3 signaling. J Biol Chem 280: 5154-5162.

    Article  PubMed  CAS  Google Scholar 

  • Warner, D.R., Greene, R.M., and Pisano, M.M., 2005a, Cross-talk between the TGFβ and Wnt signaling pathways in murine embryonic maxillary mesenchymal cells. FEBS Lett 579: 3539-3546.

    Article  CAS  Google Scholar 

  • Warner, D.R., Greene, R.M., and Pisano, M.M., 2005b, Interaction between Smad 3 and Dishevelled in murine embryonic craniofacial mesenchymal cells. Orthod Craniofac Res 8: 123-130.

    Article  CAS  Google Scholar 

  • Warner, D.R., Pisano, M.M., and Greene, R.M., 2003a, Nuclear convergence of the TGFβ and cAMP signal transduction pathways in murine embryonic palate mesenchymal cells. Cell Signal 15: 235-242.

    Article  CAS  Google Scholar 

  • Warner, D.R., Roberts, E.A., Greene, R.M., and Pisano, M.M., 2003b, Identification of novel Smad binding proteins. Biochem Biophys Res Commun 312: 1185-1190.

    Article  CAS  Google Scholar 

  • Weng, A.P., and Aster, J.C., 2004, Multiple niches for Notch in cancer: context is everything. Curr Opin Genet Dev 14: 48-54.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, D.S., Ogden, S.K., Stratton, S.A., Piechan, J.L., Nguyen, T.T., Smulian, G.A., and Barton, M.C., 2005, A direct intersection between p53 and transforming growth factor β pathways targets chromatin modification and transcription repression of the alpha-fetoprotein gene. Mol Cell Biol 25: 1200-1212.

    Article  PubMed  CAS  Google Scholar 

  • Willert, J., Epping, M., Pollack, J.R., Brown, P.O., and Nusse, R., 2002, A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol 2: 8.

    Article  PubMed  Google Scholar 

  • Williams, J.G., 2000, STAT signaling in cell proliferation and in development. Curr Opin Genet Dev 10: 503-507.

    Article  PubMed  CAS  Google Scholar 

  • Wu, L., Wu, Y., Gathings, B., Wan, M., Li, X., Grizzle, W., Liu, Z., Lu, C., Mao, Z., and Cao, X., 2003, Smad4 as a transcription corepressor for estrogen receptor alpha. J Biol Chem 278: 15192-15200.

    Article  PubMed  CAS  Google Scholar 

  • Xanthos, J.B., Kofron, M., Tao, Q., Schaible, K., Wylie, C., and Heasman, J., 2002, The roles of three signaling pathways in the formation and function of the Spemann Organizer. Development 129: 4027-4043.

    PubMed  CAS  Google Scholar 

  • Yamamoto, T., Saatcioglu, F., and Matsuda, T., 2002, Cross-talk between bone morphogenic proteins and estrogen receptor signaling. Endocrinology 143: 2635-2642.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Kawabata, M., Miyazono, K., and Kato, S., 1999, Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 283: 1317-1321.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa, M., Takizawa, T., Ochiai, W., Uemura, A., Nakashima, K., and Taga, T., 2001, Fate alteration of neuroepithelial cells from neurogenesis to astrocytogenesis by bone morphogenetic proteins. Neurosci Res 41: 391-396.

    Article  PubMed  CAS  Google Scholar 

  • Zavadil, J., Cermak, L., Soto-Nieves, N., and Böttinger, E.P., 2004, Integration of TGF-β/Smad and Jagged1/Notch signaling in epithelial-to-mesenchymal transition. EMBO J 23: 1155-1165.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Akman, H.O., Smith, E.L., Zhao, J., Murphy-Ullrich, J.E., and Batuman, O.A., 2003, Cellular response to hypoxia involves signaling via Smad proteins. Blood 101: 2253-2260.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Duan, C.J., Binkley, C., Li, G., Uhler, M.D., Logsdon, C.D., and Simeone, D.M., 2004, A transforming growth factor β-induced Smad3/Smad4 complex directly activates protein kinase A. Mol Cell Biol 24: 2169-2180.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, S., Lechpammer, S., Greenberger, J.S., and Glowacki, J., 2005, Hypoxia inhibition of adipocytogenesis in human bone marrow stromal cells requires transforming growth factor-β/Smad3 signaling. J Biol Chem 280: 22688-22696.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Labbé, E., Attisano, L. (2006). Integration of Signaling Pathways Via Smad Proteins. In: Dijke, P.t., Heldin, CH. (eds) Smad Signal Transduction. Proteins and Cell Regulation, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4709-6_15

Download citation

Publish with us

Policies and ethics