Skip to main content

Regulation of Smad Functions Through Ubiquitination and Sumoylation Pathways

  • Chapter
Smad Signal Transduction

Part of the book series: Proteins and Cell Regulation ((PROR,volume 5))

Abstract

Post-translational modifications by the ubiquitin and ubiquitin-like pathways have recently emerged as common mechanisms to regulate the turnover and functions of many transcription factors. Improper modifications of these regulatory proteins may play an important role in the initiation and/or progression of human diseases. Recent evidence suggests that stability, activity and signaling strength of Smads are fine-tuned via various post-translational modifications including, ubiquitination and sumoylation. Critical functions of the modifications are underscored by their functional consequence in TGF-β antiproliferative and transcriptional responses. Thus the modification of Smads may control diverse developmental processes and the pathogenesis of many diseases including cancer, autoimmune diseases, and fibrotic diseases. In this chapter, we will focus on the functions and underlying mechanisms of ubiquitin and SUMO modifications on Smads

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J., 2003, The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29 Suppl 1: 3-9.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, E.A., Palecek, J., Sergeant, J., Taylor, E., Lehmann, A.R., and Watts, F.Z., 2005, Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol Cell Biol 25: 185-196.

    Article  PubMed  CAS  Google Scholar 

  • Bai, S., Shi, X., Yang, X., and Cao, X., 2000, Smad6 as a transcriptional corepressor. J Biol Chem 275: 8267-8270.

    Article  PubMed  CAS  Google Scholar 

  • Bai, Y., Yang, C., Hu, K., Elly, C., and Liu, Y.C., 2004, Itch E3 ligase-mediated regulation of TGF-β signaling by modulating smad2 phosphorylation. Mol Cell 15: 825-831.

    Article  PubMed  CAS  Google Scholar 

  • Bitzer, M., von Gersdorff, G., Liang, D., Dominguez-Rosales, A., Beg, A.A., Rojkind, M., and Böttinger, E.P., 2000, A mechanism of suppression of TGF-β/SMAD signaling by NF-kappa B/RelA. Genes Dev 14: 187-197.

    PubMed  CAS  Google Scholar 

  • Bonni, S., Wang, H.R., Causing, C.G., Kavsak, P., Stroschein, S.L., Luo, K., and Wrana, J.L., 2001, TGF-β induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol 3: 587-595.

    Article  PubMed  CAS  Google Scholar 

  • Burger, A.M., and Seth, A.K., 2004, The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer 40: 2217-2229.

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover, A., 2005, Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6: 79-87.

    Article  PubMed  CAS  Google Scholar 

  • Desterro, J.M., Rodriguez, M.S., and Hay, R.T., 1998, SUMO-1 modification of IκBα inhibits NF-κB activation. Mol Cell 2: 233-239.

    Article  PubMed  CAS  Google Scholar 

  • Di Guglielmo, G.M., Le Roy, C., Goodfellow, A.F., and Wrana, J.L., 2003, Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat Cell Biol 5: 410-421.

    Article  PubMed  CAS  Google Scholar 

  • Dupont, S., Zacchigna, L., Cordenonsi, M., Soligo, S., Adorno, M., Rugge, M., and Piccolo, S., 2005, Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 121: 87-99.

    Article  PubMed  CAS  Google Scholar 

  • Ebisawa, T., Fukuchi, M., Murakami, G., Chiba, T., Tanaka, K., Imamura, T., and Miyazono, K., 2001, Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276: 12477-12480.

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa, H., Yamamoto, T., Togawa, A., Ohashi, N., Fujigaki, Y., Oda, T., Uchida, C., Kitagawa, K., Hattori, T., Suzuki, S., Kitagawa, M., and Hishida, A., 2004, Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proc Natl Acad Sci U S A 101: 8687-8692.

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi, M., Fukai, Y., Masuda, N., Miyazaki, T., Nakajima, M., Sohda, M., Manda, R., Tsukada, K., Kato, H., and Kuwano, H., 2002, High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Res 62: 7162-7165.

    PubMed  CAS  Google Scholar 

  • Fukuchi, M., Imamura, T., Chiba, T., Ebisawa, T., Kawabata, M., Tanaka, K., and Miyazono, K., 2001, Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of Roc1 and associated proteins. Mol Biol Cell 12: 1431-1443.

    PubMed  CAS  Google Scholar 

  • Girdwood, D.W., Tatham, M.H., and Hay, R.T., 2004, SUMO and transcriptional regulation. Semin Cell Dev Biol 15: 201-210.

    Article  PubMed  CAS  Google Scholar 

  • Gong, L., Millas, S., Maul, G.G., and Yeh, E.T., 2000, Differential regulation of sentrinized proteins by a novel sentrin- specific protease. J Biol Chem 275: 3355-3359.

    Article  PubMed  CAS  Google Scholar 

  • Grönroos, E., Hellman, U., Heldin, C.-H., and Ericsson, J., 2002, Control of Smad7 stability by competition between acetylation and ubiquitination. Mol Cell 10: 483-493.

    Article  PubMed  Google Scholar 

  • Gruendler, C., Lin, Y., Farley, J., and Wang, T., 2001, Proteasomal degradation of Smad1 induced by bone morphogenetic proteins. J Biol Chem 276: 46533-46543.

    Article  PubMed  CAS  Google Scholar 

  • Hanyu, A., Ishidou, Y., Ebisawa, T., Shimanuki, T., Imamura, T., and Miyazono, K., 2001, The N domain of Smad7 is essential for specific inhibition of transforming growth factor-β signaling. J Cell Biol 155: 1017-1027.

    Article  PubMed  CAS  Google Scholar 

  • Hata, A., Lagna, G., Massagué, J., and Hemmati-Brivanlou, A., 1998, Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 12: 186-197.

    PubMed  CAS  Google Scholar 

  • Hay, R.T., 2005, SUMO: a history of modification. Mol Cell 18: 1-12.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Abdollah, S., Qiu, Y., Cai, J., Xu, Y.-Y., Grinnell, B., Richardson, M., Topper, J., Gimbrone, M., Jr., Wrana, J.L., and Falb, D., 1997, The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of the TGFβ signaling. Cell 89: 1165-1173.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, A., 2005, The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 12: 1191-1197.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, A., and Ciechanover, A., 1982, Mechanisms of intracellular protein breakdown. Annu Rev Biochem 51: 335-364.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser, M., 2001, SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107: 5-8.

    Article  PubMed  CAS  Google Scholar 

  • Horiki, M., Imamura, T., Okamoto, M., Hayashi, M., Murai, J., Myoui, A., Ochi, T., Miyazono, K., Yoshikawa, H., and Tsumaki, N., 2004, Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia. J Cell Biol 165: 433-445.

    Article  PubMed  CAS  Google Scholar 

  • Imamura, T., Takase, M., Nishihara, A., Oeda, E., Hanai, J., Kawabata, M., and Miyazono, K., 1997, Smad6 inhibits signalling by the TGF-β superfamily. Nature 389: 622-626.

    Article  PubMed  CAS  Google Scholar 

  • Imoto, S., Sugiyama, K., Muromoto, R., Sato, N., Yamamoto, T., and Matsuda, T., 2003, Regulation of transforming growth factor-β signaling by protein inhibitor of activated STAT, PIASy through Smad3. J Biol Chem 278: 34253-34258.

    Article  PubMed  CAS  Google Scholar 

  • Ingham, R.J., Colwill, K., Howard, C., Dettwiler, S., Lim, C.S., Yu, J., Hersi, K., Raaijmakers, J., Gish, G., Mbamalu, G., Taylor, L., Yeung, B., Vassilovski, G., Amin, M., Chen, F., Matskova, L., Winberg, G., Ernberg, I., Linding, R., O’Donnell, P., Starostine, A., Keller, W., Metalnikov, P., Stark, C., and Pawson, T., 2005, WW domains provide a platform for the assembly of multiprotein networks. Mol Cell Biol 25: 7092-7106.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, P.K., 2001, A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev 15: 3053-3058.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E.S., 2004, Protein modification by SUMO. Annu Rev Biochem 73: 355-382.

    Article  PubMed  CAS  Google Scholar 

  • Kagey, M.H., Melhuish, T.A., and Wotton, D., 2003, The polycomb protein Pc2 is a SUMO E3. Cell 113: 127-137.

    Article  PubMed  CAS  Google Scholar 

  • Kavsak, P., Rasmussen, R.K., Causing, C.G., Bonni, S., Zhu, H., Thomsen, G.H., and Wrana, J.L., 2000, Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF β receptor for degradation. Mol Cell 6: 1365-1375.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B.C., Lee, H.J., Park, S.H., Lee, S.R., Karpova, T.S., McNally, J.G., Felici, A., Lee, D.K., and Kim, S.J., 2004, Jab1/CSN5, a component of the COP9 signalosome, regulates transforming growth factor β signaling by binding to Smad7 and promoting its degradation. Mol Cell Biol 24: 2251-2262.

    Article  PubMed  CAS  Google Scholar 

  • Knuesel, M., Wan, Y., Xiao, Z., Holinger, E., Lowe, N., Wang, W., and Liu, X., 2003, Identification of novel protein-protein interactions using a versatile Mammalian tandem affinity purification expression system. Mol Cell Proteomics 2: 1225-1233.

    Article  PubMed  CAS  Google Scholar 

  • Koinuma, D., Shinozaki, M., Komuro, A., Goto, K., Saitoh, M., Hanyu, A., Ebina, M., Nukiwa, T., Miyazawa, K., Imamura, T., and Miyazono, K., 2003, Arkadia amplifies TGF-β superfamily signalling through degradation of Smad7. EMBO J 22: 6458-6470.

    Article  PubMed  CAS  Google Scholar 

  • Komuro, A., Imamura, T., Saitoh, M., Yoshida, Y., Yamori, T., Miyazono, K., and Miyazawa, K., 2004, Negative regulation of transforming growth factor-β (TGF-β) signaling by WW domain-containing protein 1 (WWP1). Oncogene 23: 6914-6923.

    Article  PubMed  CAS  Google Scholar 

  • Kotaja, N., Karvonen, U., Janne, O.A., and Palvimo, J.J., 2002, PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 22: 5222-5234.

    Article  PubMed  CAS  Google Scholar 

  • Kuratomi, G., Komuro, A., Goto, K., Shinozaki, M., Miyazawa, K., Miyazono, K., and Imamura, T., 2005, NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-β (transforming growth factor-β) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-β type I receptor. Biochem J 386: 461-470.

    Article  PubMed  CAS  Google Scholar 

  • Lee, P.S., Chang, C., Liu, D., and Derynck, R., 2003, Sumoylation of Smad4, the common Smad mediator of transforming growth factor-β family signaling. J Biol Chem 278: 27853-27863.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., Xin, H., Xu, X., Huang, M., Zhang, X., Chen, Y., Zhang, S., Fu, X.Y., and Chang, Z., 2004, CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription. Mol Cell Biol 24: 856-864.

    Article  PubMed  CAS  Google Scholar 

  • Li, S.J., and Hochstrasser, M., 1999, A new protease required for cell-cycle progression in yeast. Nature 398: 246-251.

    Article  PubMed  CAS  Google Scholar 

  • Liang, M., Liang, Y.Y., Wrighton, K., Ungermannova, D., Wang, X.P., Brunicardi, F.C., Liu, X., Feng, X.H., and Lin, X., 2004a, Ubiquitination and proteolysis of cancer-derived Smad4 mutants by SCFSkp2. Mol Cell Biol 24: 7524-7537.

    Article  CAS  Google Scholar 

  • Liang, M., Melchior, F., Feng, X.H., and Lin, X., 2004b, Regulation of Smad4 sumoylation and transforming growth factor-β signaling by protein inhibitor of activated STAT1. J Biol Chem 279: 22857-22865.

    Article  CAS  Google Scholar 

  • Liang, Y.Y., Lin, X., Liang, M., Brunicardi, F.C., ten Dijke, P., Chen, Z., Choi, K.W., and Feng, X.H., 2003, dSmurf selectively degrades decapentaplegic-activated MAD, and its overexpression disrupts imaginal disc development. J Biol Chem 278: 26307-26310.

    Article  PubMed  CAS  Google Scholar 

  • Lin, X., Liang, M., and Feng, X.-H., 2000, Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in TGF-β signaling. J Biol Chem 275: 36818-36822.

    Article  PubMed  CAS  Google Scholar 

  • Lin, X., Liang, M., Liang, Y.Y., Brunicardi, F.C., and Feng, X.H., 2003a, SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J Biol Chem 278: 31043-31048.

    Article  CAS  Google Scholar 

  • Lin, X., Liang, M., Liang, Y.Y., Brunicardi, F.C., Melchior, F., and Feng, X.H., 2003b, Activation of transforming growth factor-β signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4. J Biol Chem 278: 18714-18719.

    Article  CAS  Google Scholar 

  • Lin, X., Liang, Y.-Y., Sun, B., Liang, M., Brunicardi, F.C., Shi, Y., Shi, Y., and Feng, X.-H., 2003c, Smad6 recruits transcription corepressor CtBP to repress bone morphogenetic protein-induced transcription. Mol Cell Biol 23: 9081-9093.

    Article  CAS  Google Scholar 

  • Lin, X., Sun, B., Liang, M., Liang, Y.Y., Gast, A., Hildebrand, J., Brunicardi, F.C., Melchior, F., and Feng, X.H., 2003d, Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell 11: 1389-1396.

    Article  CAS  Google Scholar 

  • Lin, Y., Martin, J., Gruendler, C., Farley, J., Meng, X., Li, B.Y., Lechleider, R., Huff, C., Kim, R.H., Grasser, W.A., Paralkar, V., and Wang, T., 2002, A novel link between the proteasome pathway and the signal transduction pathway of the bone morphogenetic proteins (BMPs). BMC Cell Biol 3: 15.

    Article  PubMed  Google Scholar 

  • Liu, B., Mink, S., Wong, K.A., Stein, N., Getman, C., Dempsey, P.W., Wu, H., and Shuai, K., 2004, PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol 5: 891-898.

    Article  PubMed  CAS  Google Scholar 

  • Lo, R.S., and Massagué, J., 1999, Ubiquitin-dependent degradation of TGF-β-activated Smad2. Nat Cell Biol 1: 472-478.

    Article  PubMed  CAS  Google Scholar 

  • Long, J., Matsuura, I., He, D., Wang, G., Shuai, K., and Liu, F., 2003, Repression of Smad transcriptional activity by PIASy, an inhibitor of activated STAT. Proc Natl Acad Sci U S A 100: 9791-9796.

    Article  PubMed  CAS  Google Scholar 

  • Long, J., Wang, G., He, D., and Liu, F., 2004a, Repression of Smad4 transcriptional activity by SUMO modification. Biochem J 379: 23-29.

    Article  CAS  Google Scholar 

  • Long, J., Wang, G., Matsuura, I., He, D., and Liu, F., 2004b, Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3). Proc Natl Acad Sci U S A 101: 99-104.

    Article  CAS  Google Scholar 

  • Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F., 1997, A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88: 97-107.

    Article  PubMed  CAS  Google Scholar 

  • Matunis, M.J., Coutavas, E., and Blobel, G., 1996, A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135: 1457-1470.

    Article  PubMed  CAS  Google Scholar 

  • McCabe, B.D., Hom, S., Aberle, H., Fetter, R.D., Marques, G., Haerry, T.E., Wan, H., O’Connor, M.B., Goodman, C.S., and Haghighi, A.P., 2004, Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron 41: 891-905.

    Article  PubMed  CAS  Google Scholar 

  • McDonough, H., and Patterson, C., 2003, CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8: 303-308.

    Article  PubMed  CAS  Google Scholar 

  • Melchior, F., Schergaut, M., and Pichler, A., 2003, SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem Sci 28: 612-618.

    Article  PubMed  CAS  Google Scholar 

  • Morén, A., Hellman, U., Inada, Y., Imamura, T., Heldin, C.-H., and Moustakas, A., 2003, Differential ubiquitination defines the functional status of the tumor suppressor Smad4. J Biol Chem 278: 33571-33582.

    Article  PubMed  Google Scholar 

  • Morén, A., Imamura, T., Miyazono, K., Heldin, C.-H., and Moustakas, A., 2005, Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem 280: 22115-22123.

    Article  PubMed  CAS  Google Scholar 

  • Morén, A., Itoh, S., Moustakas, A., Dijke, P., and Heldin, C.-H., 2000, Functional consequences of tumorigenic missense mutations in the amino- terminal domain of Smad4. Oncogene 19: 4396-4404.

    Article  PubMed  Google Scholar 

  • Muller, S., and Dejean, A., 1999, Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J Virol 73: 5137-5143.

    PubMed  CAS  Google Scholar 

  • Muller, S., Ledl, A., and Schmidt, D., 2004, SUMO: a regulator of gene expression and genome integrity. Oncogene 23: 1998-2008.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, G., Watabe, T., Takaoka, K., Miyazono, K., and Imamura, T., 2003, Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol Biol Cell 14: 2809-2817.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, A., Afrakhte, M., Morén, A., Nakayama, T., Christian, J., Heuchel, R., Itoh, S., Kawabata, M., Heldin, N.-H., Heldin, C.-H., and ten Dijke, P., 1997, Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 389: 631-635.

    Article  PubMed  CAS  Google Scholar 

  • Nourry, C., Maksumova, L., Pang, M., Liu, X., and Wang, T., 2004, Direct interaction between Smad3, APC10, CDH1 and HEF1 in proteasomal degradation of HEF1. BMC Cell Biol 5: 20.

    Article  PubMed  Google Scholar 

  • Ogunjimi, A.A., Briant, D.J., Pece-Barbara, N., Le Roy, C., Di Guglielmo, G.M., Kavsak, P., Rasmussen, R.K., Seet, B.T., Sicheri, F., and Wrana, J.L., 2005, Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell 19: 297-308.

    Article  PubMed  CAS  Google Scholar 

  • Ohashi, N., Yamamoto, T., Uchida, C., Togawa, A., Fukasawa, H., Fujigaki, Y., Suzuki, S., Kitagawa, K., Hattori, T., Oda, T., Hayashi, H., Hishida, A., and Kitagawa, M., 2005, Transcriptional induction of Smurf2 ubiquitin ligase by TGF-β. FEBS Lett 579: 2557-2563.

    Article  PubMed  CAS  Google Scholar 

  • Ohshima, T., and Shimotohno, K., 2003, TGF-b mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4. J Biol Chem 278: 50833-50842.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.H., 2005, Fine tuning and cross-talking of TGF-β signal by inhibitory Smads. J Biochem Mol Biol 38: 9-16.

    PubMed  Google Scholar 

  • Pichler, A., Gast, A., Seeler, J.S., Dejean, A., and Melchior, F., 2002, The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108: 109-120.

    Article  PubMed  CAS  Google Scholar 

  • Podos, S.D., Hanson, K.K., Wang, Y.C., and Ferguson, E.L., 2001, The DSmurf ubiquitin-protein ligase restricts BMP signaling spatially and temporally during Drosophila embryogenesis. Dev Cell 1: 567-578.

    Article  PubMed  CAS  Google Scholar 

  • Potts, P.R., and Yu, H., 2005, Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol 25: 7021-7032.

    Article  PubMed  CAS  Google Scholar 

  • Ray, D., Terao, Y., Nimbalkar, D., Chu, L.H., Donzelli, M., Tsutsui, T., Zou, X., Ghosh, A.K., Varga, J., Draetta, G.F., and Kiyokawa, H., 2005, Transforming growth factor β facilitates β-TrCP-mediated degradation of Cdc25A in a Smad3-dependent manner. Mol Cell Biol 25: 3338-3347.

    Article  PubMed  CAS  Google Scholar 

  • Roth, W., Sustmann, C., Kieslinger, M., Gilmozzi, A., Irmer, D., Kremmer, E., Turck, C., and Grosschedl, R., 2004, PIASy-deficient mice display modest defects in IFN and Wnt signaling. J Immunol 173: 6189-6199.

    PubMed  CAS  Google Scholar 

  • Santti, H., Mikkonen, L., Anand, A., Hirvonen-Santti, S., Toppari, J., Panhuysen, M., Vauti, F., Perera, M., Corte, G., Wurst, W., Janne, O.A., and Palvimo, J.J., 2005, Disruption of the murine PIASx gene results in reduced testis weight. J Mol Endocrinol 34: 645-654.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, D., and Muller, S., 2003, PIAS/SUMO: new partners in transcriptional regulation. Cell Mol Life Sci 60: 2561-2574.

    Article  PubMed  CAS  Google Scholar 

  • Seo, S.R., Lallemand, F., Ferrand, N., Pessah, M., L’Hoste, S., Camonis, J., and Atfi, A., 2004, The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J 23: 3780-3792.

    Article  PubMed  CAS  Google Scholar 

  • Shi, W., Chen, H., Sun, J., Chen, C., Zhao, J., Wang, Y.L., Anderson, K.D., and Warburton, D., 2004, Overexpression of Smurf1 negatively regulates mouse embryonic lung branching morphogenesis by specifically reducing Smad1 and Smad5 proteins. Am J Physiol Lung Cell Mol Physiol 286: L293-300.

    Article  PubMed  CAS  Google Scholar 

  • Sigismund, S., Polo, S., and Di Fiore, P.P., 2004, Signaling through monoubiquitination. Curr Top Microbiol Immunol 286: 149-185.

    PubMed  CAS  Google Scholar 

  • Stroschein, S.L., Bonni, S., Wrana, J.L., and Luo, K., 2001, Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev 15: 2822-2836.

    PubMed  CAS  Google Scholar 

  • Sun, L., and Chen, Z.J., 2004, The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 16: 119-126.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, C., Murakami, G., Fukuchi, M., Shimanuki, T., Shikauchi, Y., Imamura, T., and Miyazono, K., 2002, Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane. J Biol Chem 277: 39919-39925.

    Article  PubMed  CAS  Google Scholar 

  • Tajima, Y., Goto, K., Yoshida, M., Shinomiya, K., Sekimoto, T., Yoneda, Y., Miyazono, K., and Imamura, T., 2003, Chromosomal region maintenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurf1) is essential for negative regulation of transforming growth factor-β signaling by Smad7. J Biol Chem 278: 10716-10721.

    Article  PubMed  CAS  Google Scholar 

  • Togawa, A., Yamamoto, T., Suzuki, H., Fukasawa, H., Ohashi, N., Fujigaki, Y., Kitagawa, K., Hattori, T., Kitagawa, M., and Hishida, A., 2003, Ubiquitin-dependent degradation of Smad2 is increased in the glomeruli of rats with anti-thymocyte serum nephritis. Am J Pathol 163: 1645-1652.

    PubMed  CAS  Google Scholar 

  • Ulloa, L., Doody, J., and Massagué, J., 1999, Inhibition of transforming growth factor-β/SMAD signalling by the interferon-gamma/STAT pathway. Nature 397: 710-713.

    Article  PubMed  CAS  Google Scholar 

  • Wan, M., Cao, X., Wu, Y., Bai, S., Wu, L., Shi, X., and Wang, N., 2002, Jab1 antagonizes TGF-β signaling by inducing Smad4 degradation. EMBO Rep 3: 171-176.

    Article  PubMed  CAS  Google Scholar 

  • Wan, M., Tang, Y., Tytler, E.M., Lu, C., Jin, B., Vickers, S.M., Yang, L., Shi, X., and Cao, X., 2004, Smad4 protein stability is regulated by ubiquitin ligase SCF β-TrCP1. J Biol Chem 279: 14484-14487.

    Article  PubMed  CAS  Google Scholar 

  • Wan, Y., Liu, X., and Kirschner, M.W., 2001, The anaphase-promoting complex mediates TGF-β signaling by targeting SnoN for destruction. Mol Cell 8: 1027-1039.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H.R., Zhang, Y., Ozdamar, B., Ogunjimi, A.A., Alexandrova, E., Thomsen, G.H., and Wrana, J.L., 2003, Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302: 1775-1779.

    Article  PubMed  CAS  Google Scholar 

  • Wicks, S.J., Haros, K., Maillard, M., Song, L., Cohen, R.E., Dijke, P.T., and Chantry, A., 2005, The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-β signalling. Oncogene.

    Google Scholar 

  • Xin, H., Xu, X., Li, L., Ning, H., Rong, Y., Shang, Y., Wang, Y., Fu, X.Y., and Chang, Z., 2005, CHIP controls the sensitivity of transforming growth factor-β signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation. J Biol Chem 280: 20842-20850.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J., and Attisano, L., 2000, Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor β signaling by targeting Smads to the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 97: 4820-4825.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, M., Ying, S.X., Zhang, G.M., Li, C., Cheng, S.Y., Deng, C.X., and Zhang, Y.E., 2005, Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 121: 101-113.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S.H., Jaffray, E., Senthinathan, B., Hay, R.T., and Sharrocks, A.D., 2003, SUMO and transcriptional repression: dynamic interactions between the MAP kinase and SUMO pathways. Cell Cycle 2: 528-530.

    PubMed  CAS  Google Scholar 

  • Zachariae, W., and Nasmyth, K., 1999, Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13: 2039-2058.

    PubMed  CAS  Google Scholar 

  • Zhang, L., Zhou, H., Su, Y., Sun, Z., Zhang, H., Zhang, Y., Ning, Y., Chen, Y.G., and Meng, A., 2004, Zebrafish Dpr2 inhibits mesoderm induction by promoting degradation of nodal receptors. Science 306: 114-117.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Chang, C., Gehling, D.J., Hemmati-Brivanlou, A., and Derynck, R., 2001, Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A 98: 974-979.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, M., Qiao, M., Harris, S.E., Oyajobi, B.O., Mundy, G.R., and Chen, D., 2004, Smurf1 inhibits osteoblast differentiation and bone formation in vitro and in vivo. J Biol Chem 279: 12854-12859.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, M., Qiao, M., Oyajobi, B.O., Mundy, G.R., and Chen, D., 2003, E3 ubiquitin ligase Smurf1 mediates core-binding factor alpha1/Runx2 degradation and plays a specific role in osteoblast differentiation. J Biol Chem 278: 27939-27944.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., and Blobel, G., 2005, A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci U S A 102: 4777-4782.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, S., Muller, S., Ronchetti, S., Freemont, P.S., Dejean, A., and Pandolfi, P.P., 2000, Role of SUMO-1-modified PML in nuclear body formation. Blood 95: 2748-2752.

    PubMed  CAS  Google Scholar 

  • Zhu, H., Kavsak, P., Abdollah, S., Wrana, J.L., and Thomsen, G.H., 1999, A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400: 687-693.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Feng, XH., Lin, X. (2006). Regulation of Smad Functions Through Ubiquitination and Sumoylation Pathways. In: Dijke, P.t., Heldin, CH. (eds) Smad Signal Transduction. Proteins and Cell Regulation, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4709-6_13

Download citation

Publish with us

Policies and ethics