Skip to main content

Ras-Gefs and Ras Gaps

  • Chapter
RAS Family GTPases

Part of the book series: Proteins and Cell Regulation ((PROR,volume 4))

Abstract

Ras proteins (H-, N-, and K-Ras) are critical components of signal transduction pathways leading from cell-surface receptors to the control of cell proliferation, differentiation or death. Normal Ras proteins exist in equilibrium between an active (Ras-GTP) and an inactive (Ras-GDP) state. Once activated, Ras stimulates a multitude of downstream signaling pathways, but different data about Ras location to plasma membrane subdomains and new roles for some docking/scaffold proteins, point to signaling specificities of the different Ras proteins. Studies with knockout mice strains have revealed that Kras (but not Nras or Hras) is necessary and sufficient for development of the animals to the adult stage. Although Ras proteins possess intrinsic GTPase and GDP/GTP exchange activities, they are too low to account for the rapid and transient GDP/GTP cycling that occurs during mitogenic stimulation. Then, Ras function requires regulatory proteins that control the GDP/GTP cycling rate. These regulatory proteins include GTPase activating proteins (Ras-GAPs), which stimulate hydrolysis of bound GTP to GDP, and guanine nucleotide exchange factor proteins (Ras-GEFs), which promote the replacement of bound GDP with GTP. We undertook this review to analyze the current understanding of the mammalian Ras-GAPs and Ras-GEFs functions, focusing on the possible physiological specificities of each Ras-GAP/Ras-GEF family member. Furthermore, we analyzed new mechanisms of Rac activation due to covalent-interaction with hydrophobic molecules as NO and cyclopentenone prostaglandins

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, A., Thorn, J.M., Yamabhai, M., Kay, B. K. and O’Bryan, J.P. (2000) Intersectin, an adaptor protein involved in clathrin-mediated endocytosis, activates mitogenic signaling pathways. J. Biol. Chem. 275, 27414-27420.

    PubMed  CAS  Google Scholar 

  • Ahmadian, M.R., Kiel, C., Stege, P. and Scheffzek, K. (2003) Structural fingerprints of the Ras-GTPase activating proteins neurofibromin and p120GAP. J. Mol. Biol. 329, 699-710.

    PubMed  CAS  Google Scholar 

  • Allen, M., Chu, S., Brill, S., Stotler, C. and Buckler, A. (1998) Restricted tissue expression pattern of a novel human rasGAP-related gene and its murine ortholog. Gene 218, 17-25.

    PubMed  CAS  Google Scholar 

  • Anborgh, P.H., Qian, X., Papageorge, A.G., Vass, W.C., DeClue, J. E. and Lowy, D.R. (1999) Ras-specific exchange factor GRF: oligomerization through its Dbl homology domain and calcium-dependent activation of Raf. Mol. Cell. Biol. 19, 4611-4622.

    PubMed  CAS  Google Scholar 

  • Aronheim, A., Engelberg, L., Al-Alawi, N., Schlessinger, J. and Karin, M. (1994) Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78, 949-961.

    PubMed  CAS  Google Scholar 

  • Arozarena, I., Aaronson, D.S., Matallanas, D., Sanz, V., Ajenjo, N., Tenbaum, S.P., Teramoto, H., Ighishi, T., Zabala, J.C., Gutkind, J. S. and Crespo, P. (2000) The Rho family GTPase Cdc42 regulates the activation of Ras/MAP kinase by the exchange factor Ras-GRF. J. Biol. Chem. 275, 26441-26448.

    PubMed  CAS  Google Scholar 

  • Arozarena, I., Matallanas, D. and Crespo, P. (2001) Maintenance of CDC42 GDP-bound state by Rho-GDI inhibits MAP kinase activation by the exchange factor Ras-GRF evidence for Ras-GRF function being inhibited by Cdc42-GDP but unaffected by CDC42-GTP. J. Biol. Chem. 276, 21878-21884.

    PubMed  CAS  Google Scholar 

  • Arozarena, I., Matallanas, D., Berciano, M.T., Sanz-Moreno, V., Calvo, F., Munoz, M.T., Egea, G., Lafarga, M. and Crespo, P. (2004) Activation of H-Ras in the endoplasmic reticulum by the RasGRF family guanine nucleotide exchange factors. Mol. Cell. Biol. 24, 1516-1530.

    PubMed  CAS  Google Scholar 

  • Bajenaru, M.L., Donahoe, J., Corral, T., Reilly, K.M., Brophy, S., Pellicer, A. and Gutmann, D.H. (2001) Neurofibromatosis 1 (NF1) heterozygosity results in a cell-autonomous growth advantage for astrocytes. Glia 33, 314-323.

    PubMed  CAS  Google Scholar 

  • Ballester, R., Marchuk, D., Boguski, M., Saulino, A., Letcher, R., Wigler, M. and Collins, F. (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63, 851-859.

    PubMed  CAS  Google Scholar 

  • Bernards, A. (2003) GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim. Biophys. Acta 1603, 47-82.

    PubMed  CAS  Google Scholar 

  • Bivona, T. G. and Philips, M.R. (2003) Ras pathway signaling on endomembranes. Curr. Opin. Cell Biol. 15, 136-142.

    PubMed  CAS  Google Scholar 

  • Bivona, T.G., PereZ De Castro, I., Ahearn, I.M., Grana, T.M., Chiu, V.K., Lockyer, P.J., Cullen, P.J., Pellicer, A., Cox, A. D. and Philips, M.R. (2003) Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424, 694-698.

    PubMed  CAS  Google Scholar 

  • Boguski, M. and McCormick, F. (1993) Proteins regulating Ras and its relatives. Nature 366, 643-654.

    PubMed  CAS  Google Scholar 

  • Bollag, G., Clapp, D.W., Shih, S., Adler, F., Zhang, Y.Y., Thompson, P., Lange, B.J., Freedman, M.H., McCormick, F., Jacks, T. and Shannon, K. (1996) Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat. Genet. 12, 144-148.

    PubMed  CAS  Google Scholar 

  • Boriack-Sjodin, P.A., Margarit, S.M., Bar-Sagi, D. and Kuriyan, J. (1998) The structural basis of the activation of Ras by Sos [see comments]. Nature 394, 337-343.

    PubMed  CAS  Google Scholar 

  • Bowtell, D., Fu, P., Simon, M. and Senior, P. (1992) Identification of murine homologues of the Drosophila son of sevenless gene: potential activators of ras. Proc. Natl. Acad. Sci. U.S.A. 89, 6511-6515.

    PubMed  CAS  Google Scholar 

  • Brambilla, R., Gnesutta, N., Minichiello, L., White, G., Roylance, A.J., Herron, C.E., Ramsey, M., Wolfer, D.P., Cestari, V., Rossi-Arnaud, C., et al. (1997) A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 390, 281-286.

    PubMed  CAS  Google Scholar 

  • Brownbridge, G.G., Lowe, P.N., Moore, K.J., Skinner, R. H. and Webb, M.R. (1993) Interaction of GTPase activating proteins (GAPs) with p21ras measured by a novel fluorescence anisotropy method. Essential role of Arg-903 of GAP in activation of GTP hydrolysis on p21ras. J. Biol. Chem. 268, 10914-10919.

    PubMed  CAS  Google Scholar 

  • Buchsbaum, R., Telliez, J.B., Goonesekera, S. and Feig, L.A. (1996) The N-terminal pleckstrin, coiled-coil, and IQ domains of the exchange factor Ras-GRF act cooperatively to facilitate activation by calcium. Mol. Cell. Biol. 16, 4888-4896.

    PubMed  CAS  Google Scholar 

  • Byrne, J.L., Paterson, H. F. and Marshall, C.J. (1996) p21Ras activation by the guanine nucleotide exchange factor Sos, requires the Sos/Grb2 interaction and a second ligand-dependent signal involving the Sos N-terminus. Oncogene 13, 2055-2065.

    PubMed  CAS  Google Scholar 

  • Caloca, M.J., Zugaza, J. L. and Bustelo, X.R. (2003a) Exchange factors of the RasGRP family mediate Ras activation in the Golgi. J. Biol. Chem. 278, 33465-33473.

    CAS  Google Scholar 

  • Caloca, M.J., Zugaza, J.L., Matallanas, D., Crespo, P. and Bustelo, X.R. (2003b) Vav mediates Ras stimulation by direct activation of the GDP/GTP exchange factor Ras GRP1. EMBO J. 22, 3326-3336.

    CAS  Google Scholar 

  • Caloca, M.J., Zugaza, J.L., Vicente-Manzanares, M., Sanchez-Madrid, F. and Bustelo, X.R. (2004) F-actin-dependent translocation of the Rap1 GDP/GTP exchange factor RasGRP2. J Biol Chem. 279, 20435-20446.

    PubMed  CAS  Google Scholar 

  • Casci., T., Vinos, J. and Freeman, M. (1999) Sprouty, an intracellular inhibitor of Ras signaling. Cell 96, 655-665.

    PubMed  CAS  Google Scholar 

  • Cawthon, R.M., Weiss, R., Xu, G.F., Viskochil, D., Culver, M., Stevens, J., Robertson, M., Dunn, D., Gesteland, R., O’Connell, P. et al. (1990) A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62, 193-201.

    PubMed  CAS  Google Scholar 

  • Cen, H., Papageorge, A.G., Zippel, R., Lowy, D. R. and Zhang, K. (1992) Isolation of multiple mouse cDNAs with coding homology to Saccharomyces cerevisiae CDC25: identification of a region related to Bcr, Vav, Dbl and CDC24. EMBO J. 11, 4007-4015.

    PubMed  CAS  Google Scholar 

  • Chang, C., Hopper, N. A. and Sternberg, P.W. (2000) Caenorhabditis elegans SOS-1 is necessary for multiple RAS-mediated developmental signals. EMBO J. 19, 3283-3294.

    PubMed  CAS  Google Scholar 

  • Chardin, P., Camonis, J.H., Gale, N.W., van Aelst, L., Schlessinger, J., Wigler, M. H. and Bar-Sagi, D. (1993) Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260, 1338-1343.

    PubMed  CAS  Google Scholar 

  • Chardin, P. and Mattei, M.G. (1994) Chromosomal localization of two genes encoding human ras exchange factors: SOS1 maps to the 2p22 \rightarrow p16 region and SOS2 to the 14q21 \rightarrow q22 region of the human genome. Cytogenet. Cell Genet. 66, 68-69.

    CAS  Google Scholar 

  • Chen, R.H., Corbalan-Garcia, S. and Bar-Sagi, D. (1997) The role of the PH domain in the signal-dependent membrane targeting of Sos. EMBO J. 16, 1351-1359.

    PubMed  CAS  Google Scholar 

  • Chen, Y., Morrow, J. D. and Roberts, L.J. 2nd (1999) Formation of reactive cyclopentenone compounds in vivo as products of the isoprostane pathway. J. Biol. Chem. 274, 10863-10868.

    PubMed  CAS  Google Scholar 

  • Cherniack, A., Klarlund, J. and Czech, M. (1994) Phosphorylation of the Ras nucleotide exchange factor son of sevenless by mitogen-activated protein kinase. J. Biol. Chem. 269, 4717-4720.

    PubMed  CAS  Google Scholar 

  • Chinery, R., Coffey, R.J., Graves-Deal, R., Kirkland, S.C., Sanchez, S.C., Zackert, W.E., Oates, J. A. and Morrow, J.D. (1999) Prostaglandin J2 and 15-deoxy-delta12,14-prostaglandin J2 induce proliferation of cyclooxygenase-depleted colorectal cancer cells. Cancer Res. 59, 2739-2746.

    PubMed  CAS  Google Scholar 

  • Chow, A. and Gawler, D. (1999) Mapping the site of interaction between annexin VI and the p120GAP C2 domain. FEBS Lett. 460, 166-172.

    PubMed  CAS  Google Scholar 

  • Chow, A., Davis, A. J. and Gawler, D.J. (1999) Investigating the role played by protein-lipid and protein-protein interactions in the membrane association of the p120GAP CaLB domain. Cell. Signal. 11, 443-451.

    PubMed  CAS  Google Scholar 

  • Clark, J.D., Schievella, A.R., Nalefski, E. A. and Lin, L.L. (1995) Cytosolic phospholipase A2. J. Lipid Mediat. Cell. Signal. 12, 83-117.

    PubMed  CAS  Google Scholar 

  • Clyde-Smith, J., Silins, G., Gartside, M., Grimmond, S., Etheridge, M., Apolloni, A., Hayward, N. and Hancock, J.F. (2000) Characterization of RasGRP2, a plasma membrane-targeted, dual specificity Ras/Rap exchange factor. J. Biol. Chem. 275, 32260-32267.

    PubMed  CAS  Google Scholar 

  • Corbalan-Garcia, S., Yang, S.S., Degenhardt, K. R. and Bar-Sagi, D. (1996) Identification of the mitogen-activated protein kinase phosphorylation sites on human Sos1 that regulate interaction with Grb2. Mol. Cell. Biol. 16, 5674-5682.

    PubMed  CAS  Google Scholar 

  • Corbalan-Garcia, S., Margarit, S.M., Galron, D., Yang, S. S. and Bar-Sagi, D. (1998) Regulation of Sos activity by intramolecular interactions. Mol. Cell. Biol. 18, 880-886.

    PubMed  CAS  Google Scholar 

  • Costa, R.M., Yang, T., Huynh, D.P., Pulst, S.M., Viskochil, D.H., Silva, A. J. and Brannan, C.I. (2001) Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1. Nat. Genet. 27, 399-405.

    PubMed  CAS  Google Scholar 

  • Cozier, G.E., Lockyer, P.J., Reynolds, J.S., Kupzig, S., Bottomley, J.R., Millard, T.H., Banting, G. and Cullen, P.J. (2000) GAP1IP4BP contains a novel group I pleckstrin homology domain that directs constitutive plasma membrane association. J. Biol. Chem. 275, 28261-28268.

    PubMed  CAS  Google Scholar 

  • Cullen, P.J., Hsuan, J.J., Truong, O., Letcher, A.J., Jackson, T.R., Dawson, A. P. and Irvine, R.F. (1995) Identification of a specific Ins (1,3,4,5) P4-binding protein as a member of the GAP1 family. Nature 376, 527-530.

    PubMed  CAS  Google Scholar 

  • Cullen, P. J. and Lockyer, P.J. (2002) Integration of calcium and Ras signalling. Nat. Rev. Mol. Cell. Biol. 3, 339-348.

    PubMed  CAS  Google Scholar 

  • Dasgupta, B. and Gutmann, D.H. (2003) Neurofibromatosis 1: closing the GAP between mice and men. Curr. Opin. Genet. Dev. 13, 20-27.

    CAS  Google Scholar 

  • de Hoog, C.L., Koehler, J.A., Goldstein, M.D., Taylor, P., Figeys, D. and Moran, M.F. (2001) Ras binding triggers ubiquitination of the Ras exchange factor Ras-GRF2. Mol. Cell. Biol. 21, 2107-2117.

    PubMed  Google Scholar 

  • Douville, E. and Downward, J. (1997) EGF induced SOS phosphorylation in PC12 cells involves P90 RSK-2. Oncogene 15, 373-383.

    PubMed  CAS  Google Scholar 

  • Dower, N.A., Stang, S.L., Bottorff, D.A., Ebinu, J.O., Dickie, P., Ostergaard, H. L. and Stone, J.C. (2000) RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat. Immunol. 1, 317-321.

    PubMed  CAS  Google Scholar 

  • Downward, J. (1994) The GRB2/Sem-5 adaptor protein. FEBS Lett. 338, 113-117.

    PubMed  CAS  Google Scholar 

  • Downward, J. (1996) Control of ras activation. Cancer Surv. 27, 87-100.

    PubMed  CAS  Google Scholar 

  • Downward, J. (2003) Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11-22.

    PubMed  CAS  Google Scholar 

  • Duchesne, M., Schweighoffer, F., Parker, F., Clerc, F., Frobert, Y., Thang, M. N. and Tocque, B. (1993) Identification of the SH3 domain of GAP as an essential sequence for Ras-GAP-mediated signaling. Science 259, 525-528.

    PubMed  CAS  Google Scholar 

  • Ebinu, J.O., Bottorff, D.A., Chan, E.Y., Stang, S.L., Dunn, R. J. and Stone, J.C. (1998) RasGRP, a Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science 280, 1082-1086.

    PubMed  CAS  Google Scholar 

  • Egan, S. and Weinberg, R. (1993) The pathway to signal achievement. Nature 365, 781-783.

    PubMed  CAS  Google Scholar 

  • Ellis, C., Measday, V. and Moran, M.F. (1995) Phosphorylation-dependent complexes of p120 Ras-specific GTPase-activating protein with p62 and p190. Methods Enzymol. 255, 179-192.

    PubMed  CAS  Google Scholar 

  • Esteban, L.M., Fernandez-Medarde, A., Lopez, E., Yienger, K., Guerrero, C., Ward, J.M., Tessarollo, L. and Santos, E. (2000) Ras-guanine nucleotide exchange factor sos2 is dispensable for mouse growth and development. Mol. Cell. Biol. 20, 6410-6413.

    PubMed  CAS  Google Scholar 

  • Fam, N.P., Fan, W.T., Wang, Z., Zhang, L.J., Chen, H. and Moran, M.F. (1997) Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras. Mol. Cell. Biol. 17, 1396-1406.

    PubMed  CAS  Google Scholar 

  • Fan, W.-T., Koch, C., de Hoog, C., Fam, N. and Moran, M. (1998) The exchange factor Ras-GRF2 activates Ras-dependent and Rac-dependent mitogen-activated protein kinase pathways. Curr. Biol. 8, 935-938.

    PubMed  CAS  Google Scholar 

  • Farnsworth, C.L., Freshney, N.W., Rosen, L.B., Ghosh, A., Greenberg, M. E. and Feig, L.A. (1995) Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 376, 524-527.

    PubMed  CAS  Google Scholar 

  • Feig, L. (1994) Guanine nucleotide exchange factors: a family of positive regulators of Ras and related GTPases. Curr. Opin. Cell. Biol. 6, 204-211.

    PubMed  CAS  Google Scholar 

  • Feldmann, P., Eicher, E.N., Leevers, S.J., Hafen, E. and Hughes, D.A. (1999) Control of growth and differentiation by drosophila RasGAP, a homolog of p120 ras-GTPase-activating protein. Mol. Cell. Biol. 19, 1928-1937.

    PubMed  CAS  Google Scholar 

  • Feng, S. and Chen, J.K., Yu, H., Simon, J. A. and Schreiber, S.L. (1994) Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3–ligand interactions. Science 266, 1241-1247.

    PubMed  CAS  Google Scholar 

  • Fernandez-Medarde, A., Esteban, L.M., Nunez, A., Porteros, A., Tessarollo, L. and Santos, E. (2002) Targeted disruption of Ras-Grf2 shows its dispensability for mouse growth and development. Mol. Cell. Biol. 22, 2498-2504.

    PubMed  CAS  Google Scholar 

  • Filvaroff, E., Calautti, E., McCormick, F. and Dotto, G.P. (1992) Specific changes of Ras GTPase-activating protein (GAP) and a GAP-associated p62 protein during calcium-induced keratinocyte differentiation. Mol. Cell. Biol. 12, 5319-5328.

    PubMed  CAS  Google Scholar 

  • Font de Mora, J., Guerrero, C., Mahadevan, D., Coque, J., Rojas, J., Esteban, L., Rebecchi, M. and Santos, E. (1996) Isolated Sos1 PH domain exhibits germinal vesicle breakdown-inducing activity in Xenopus oocytes. JBC 271, 18272-18276.

    CAS  Google Scholar 

  • Font de Mora, J., Esteban, L.M., Burks, D.J., Nunez, A., Garces, C., Garcia-Barrado, M.J., Iglesias-Osma, M.C., Moratinos, J., Ward, J. M. and Santos, E. (2003) Ras-GRF1 signaling is required for normal beta-cell development and glucose homeostasis. EMBO J. 22, 3039-3049.

    PubMed  CAS  Google Scholar 

  • Friedman, E., Gejman, P.V., Martin, G. A. and McCormick, F. (1993) Nonsense mutations in the C-terminal SH2 region of the GTPase activating protein (GAP) gene in human tumours. Nat. Genet. 5, 242-247.

    PubMed  CAS  Google Scholar 

  • Furuta, S., Miura, K., Copeland, T., Shang, W.H., Oshima, A. and Kamata, T. (2002) Light Chain 3 associates with a Sos1 guanine nucleotide exchange factor: its significance in the Sos1-mediated Rac1 signaling leading to membrane ruffling. Oncogene 21, 7060-7066.

    PubMed  CAS  Google Scholar 

  • Gaul, U., Mardon, G. and Rubin, G.M. (1992) A putative Ras GTPase activating protein acts as a negative regulator of signaling by the Sevenless receptor tyrosine kinase. Cell 68, 1007-1019.

    PubMed  CAS  Google Scholar 

  • Gawler, D.J., Zhang, L. J. and Moran, M.F. (1995a) Mutation-deletion analysis of a Ca(2+)-dependent phospholipid binding (CaLB) domain within p120 GAP, a GTPase-activating protein for p21 ras. Biochem. J. 307 (Pt 2), 487-491.

    CAS  Google Scholar 

  • Gawler, D.J., Zhang, L.J., Reedijk, M., Tung, P. S. and Moran, M.F. (1995b) CaLB: a 43 amino acid calcium-dependent membrane/phospholipid binding domain in p120 Ras GTPase-activating protein. Oncogene 10, 817-825.

    CAS  Google Scholar 

  • Giese, K.P., Friedman, E., Telliez, J.B., Fedorov, N.B., Wines, M., Feig, L. A. and Silva, A.J. (2001) Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology 41, 791-800.

    PubMed  CAS  Google Scholar 

  • Gille, H. and Downward, J. (1999) Multiple ras effector pathways contribute to G(1) cell cycle progression. J. Biol. Chem. 274, 22033-22040.

    PubMed  CAS  Google Scholar 

  • Gilroy, D.W., Colville-Nash, P.R., Willis, D., Chivers, J., Paul-Clark, M. J. and Willoughby, D.A. (1999) Inducible cyclooxygenase may have anti-inflammatory properties. Nat. Med. 5, 698-701.

    PubMed  CAS  Google Scholar 

  • Glover, T.W., Stein, C.K., Legius, E., Andersen, L.B., Brereton, A. and Johnson, S. (1991) Molecular and cytogenetic analysis of tumors in von Recklinghausen neurofibromatosis. Genes Chromosomes Cancer 3, 62-70.

    PubMed  CAS  Google Scholar 

  • Gnesutta, N., Ceriani, M., Innocenti, M., Mauri, I., Zippel, R., Sturani, E., Borgonovo, B., Berruti, G. and Martegani, E. (2001) Cloning and characterization of mouse UBPy, a deubiquitinating enzyme that interacts with the ras guanine nucleotide exchange factor CDC25(Mm)/Ras-GRF1. J. Biol. Chem. 276, 39448-39454.

    PubMed  CAS  Google Scholar 

  • Gotoh, T., Tian, X. and Feig, L.A. (2001) Prenylation of target GTPases contributes to signaling specificity of Ras-guanine nucleotide exchange factors. J. Biol. Chem. 276, 38029-38035.

    PubMed  CAS  Google Scholar 

  • Guerrero, C., Rojas, J.M., Chedid, M., Esteban, L.M., Zimonjic, D.B., Popescu, N.C., Font de Mora, J. and Santos, E. (1996) Expression of alternative forms of Ras exchange factors GRF and SOS1 in different human tissues and cell lines. Oncogene 12, 1097-1107.

    PubMed  CAS  Google Scholar 

  • Guo, H.F., The, I., Hannan, F., Bernards, A. and Zhong, Y. (1997) Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science 276, 795-798.

    PubMed  CAS  Google Scholar 

  • Gutmann, D.H. (1998) Recent insights into neurofibromatosis type 1: clear genetic progress. Arch. Neurol. 55, 778-780.

    PubMed  CAS  Google Scholar 

  • Gutmann, D. H. and Collins, F.S. (1992) Recent progress toward understanding the molecular biology of von Recklinghausen neurofibromatosis. Ann. Neurol. 31, 555-561.

    PubMed  CAS  Google Scholar 

  • Gutmann, D. H. and Collins, F.S. (1993) The neurofibromatosis type 1 gene and its protein product, neurofibromin. Neuron 10, 335-343.

    PubMed  CAS  Google Scholar 

  • Gutmann, D.H., Loehr, A., Zhang, Y., Kim, J., Henkemeyer, M. and Cashen, A. (1999) Haploinsufficiency for the neurofibromatosis 1 (NF1) tumor suppressor results in increased astrocyte proliferation. Oncogene 18, 4450-4459.

    PubMed  CAS  Google Scholar 

  • Gutmann, D.H., Wu, Y.L., Hedrick, N.M., Zhu, Y., Guha, A. and Parada, L.F. (2001) Heterozygosity for the neurofibromatosis 1 (NF1) tumor suppressor results in abnormalities in cell attachment, spreading and motility in astrocytes. Hum. Mol. Genet. 10, 3009-3016.

    PubMed  CAS  Google Scholar 

  • Hall, B.E., Yang, S.S., Boriack-Sjodin, P.A., Kuriyan, J. and Bar-Sagi, D. (2001) Structure-based mutagenesis reveals distinct functions for Ras switch 1 and switch 2 in Sos-catalyzed guanine nucleotide exchange. J. Biol. Chem. 276, 27629-27637.

    PubMed  CAS  Google Scholar 

  • Hall, B.E., Yang, S. S. and Bar-Sagi, D. (2002) Autoinhibition of Sos by intramolecular interactions. Front Biosci. 7, d288-d94.

    PubMed  CAS  Google Scholar 

  • Hancock, J.F. (2003) Ras proteins: different signals from different locations. Nat. Rev. Mol. Cell. Biol. 4, 373-384.

    PubMed  CAS  Google Scholar 

  • Hart, T.C., Zhang, Y., Gorry, M.C., Hart, P.S., Cooper, M., Marazita, M.L., Marks, J.M., Cortelli, J. R. and Pallos, D. (2002) A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1. Am. J. Hum. Genet. 70, 943-954.

    PubMed  CAS  Google Scholar 

  • Henkemeyer, M., Rossi, D.J., Holmyard, D.P., Puri, M.C., Mbamalu, G., Harpal, K., Shih, T.S., Jacks, T. and Pawson, T. (1995) Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377, 695-701.

    PubMed  CAS  Google Scholar 

  • Hiatt, K.K., Ingram, D.A., Zhang, Y., Bollag, G. and Clapp, D.W. (2001) Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1-/- cells. J. Biol. Chem. 276, 7240-7245.

    PubMed  CAS  Google Scholar 

  • Holsinger, L.J., Spencer, D.M., Austin, D.J., Schreiber, S. L. and Crabtree, G.R. (1995) Signal transduction in T lymphocytes using a conditional allele of Sos. Proc. Natl. Acad. Sci. U.S.A. 92, 9810-9814.

    PubMed  CAS  Google Scholar 

  • Innocenti, M., Zippel, R., Brambilla, R. and Sturani, E. (1999) CDC25 (Mm)/Ras-GRF1 regulates both Ras and Rac signaling pathways. FEBS Lett. 460, 357-362.

    PubMed  CAS  Google Scholar 

  • Innocenti, M., Tenca, P., Frittoli, E., Faretta, M., Tocchetti, A., Di Fiore, P. P. and Scita, G. (2002) Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J. Cell Biol. 156, 125-136.

    PubMed  CAS  Google Scholar 

  • Jaumot, M., Yan, J., Clyde-Smith, J., Sluimer, J. and Hancock, J.F. (2002) The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. 277, 272-278.

    PubMed  CAS  Google Scholar 

  • Jiang, Y., Ma, W., Wan, Y., Kozasa, T., Hattori, S. and Huang, X.Y. (1998) The G protein G alpha12 stimulates Bruton’s tyrosine kinase and a rasGAP through a conserved PH/BM domain. Nature 395, 808-813.

    PubMed  CAS  Google Scholar 

  • Johnson, M.R., DeClue, J.E., Felzmann, S., Vass, W.C., Xu, G., White, R. and Lowy, D.R. (1994) Neurofibromin can inhibit Ras-dependent growth by a mechanism independent of its GTPase-accelerating function. Mol. Cell. Biol. 14, 641-645.

    PubMed  CAS  Google Scholar 

  • Jones, M. K. and Jackson, J.H. (1998) Ras-GRF activates Ha-Ras, but not N-Ras or K-Ras 4B, protein in vivo. J. Biol. Chem. 273, 1782-1787.

    PubMed  CAS  Google Scholar 

  • Jorge, R., Zarich, N., Oliva, J.L., Azanedo, M., Martinez, N., de la Cruz, X. and Rojas, J.M. (2002) HSos1 contains a new amino-terminal regulatory motif with specific binding affinity for its pleckstrin homology domain. J. Biol. Chem. 277, 44171-44179.

    PubMed  CAS  Google Scholar 

  • Karlovich, C.A., Bonfini, L., McCollam, L., Rogge, R.D., Daga, A., Czech, M. P. and Banerjee, U. (1995) In vivo functional analysis of the Ras exchange factor son of sevenless. Science 268, 576-579.

    PubMed  CAS  Google Scholar 

  • Kato, T., Fukushima, M., Kurozumi, S. and Noyori, R. (1986) Antitumor activity of delta 7-prostaglandin A1 and delta 12-prostaglandin J2 in vitro and in vivo. Cancer Res. 46, 3538-3542.

    PubMed  CAS  Google Scholar 

  • Kawasaki, H., Springett, G.M., Toki, S., Canales, J.J., Harlan, P., Blumenstiel, J.P., Chen, E.J., Bany, I.A., Mochizuki, N., Ashbacher, A., et al. (1998) A Rap guanine nucleotide exchange factor enriched highly in the basal ganglia. Proc. Natl. Acad. Sci. U.S.A. 95, 13278-13283.

    PubMed  CAS  Google Scholar 

  • Kim, I.K., Lee, J.H., Sohn, H.W., Kim, H. S. and Kim, S.H. (1993) Prostaglandin A2 and delta 12-prostaglandin J2 induce apoptosis in L1210 cells. FEBS Lett. 321, 209-214.

    PubMed  CAS  Google Scholar 

  • Kim, J.H., Shirouzu, M., Kataoka, T., Bowtell, D. and Yokoyama, S. (1998) Activation of Ras and its downstream extracellular signal-regulated protein kinases by the CDC25 homology domain of mouse Son-of-sevenless 1 (mSos1). Oncogene 16, 2597-2607.

    PubMed  CAS  Google Scholar 

  • Kiyono, M., Satoh, T. and Kaziro, Y. (1999) G protein beta gamma subunit-dependent Rac-guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm). Proc. Natl. Acad. Sci. U.S.A. 96, 4826-4831.

    PubMed  CAS  Google Scholar 

  • Kiyono, M., Kato, J., Kataoka, T., Kaziro, Y. and Satoh, T. (2000a) Stimulation of Ras guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm) upon tyrosine phosphorylation by the Cdc42-regulated kinase ACK1. J. Biol. Chem. 275, 29788-29793.

    CAS  Google Scholar 

  • Kiyono, M., Kaziro, Y. and Satoh, T. (2000b) Induction of rac-guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm) following phosphorylation by the nonreceptor tyrosine kinase Src. J. Biol. Chem. 275, 5441-5446.

    CAS  Google Scholar 

  • Koehler, J. A. and Moran, M.F. (2001a) RACK1, a protein kinase C scaffolding protein, interacts with the PH domain of p120GAP. Biochem. Biophys. Res. Commun. 283, 888-895.

    CAS  Google Scholar 

  • Koehler, J. A. and Moran, M.F. (2001b) Regulation of extracellular signal-regulated kinase activity by p120 RasGAP does not involve its pleckstrin homology or calcium-dependent lipid binding domains but does require these domains to regulate cell proliferation. Cell Growth Differ. 12, 551-561.

    CAS  Google Scholar 

  • Kondo, M., Oya-Ito, T., Kumagai, T., Osawa, T. and Uchida, K. (2001) Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress. J. Biol. Chem. 276, 12076-12083.

    PubMed  CAS  Google Scholar 

  • Koshiba, S., Kigawa, T., Kim, J.H., Shirouzu, M., Bowtell, D. and Yokoyama, S. (1997) The solution structure of the pleckstrin homology domain of mouse Son-of-sevenless 1 (mSos1). J. Mol. Biol. 269, 579-591.

    PubMed  CAS  Google Scholar 

  • Lander, H.M., Hajjar, D.P., Hempstead, B.L., Mirza, U.A., Chait, B.T., Campbell, S. and Quilliam, L.A. (1997) A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J. Biol. Chem. 272, 4323-4326.

    PubMed  CAS  Google Scholar 

  • Largaespada, D.A., Brannan, C.I., Jenkins, N. A. and Copeland, N.G. (1996) Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat. Genet. 12, 137-143.

    PubMed  CAS  Google Scholar 

  • Li, B., Subleski, M., Fusaki, N., Yamamoto, T., Copeland, T., Princler, G.L., Kung, H. and Kamata, T. (1996) Catalytic activity of the mouse guanine nucleotide exchanger mSOS is activated by Fyn tyrosine protein kinase and the T-cell antigen receptor in T cells. Proc. Natl. Acad. Sci. U.S.A. 93, 1001-1005.

    PubMed  CAS  Google Scholar 

  • Li, B.Q., Subleski, M., Shalloway, D., Kung, H. F. and Kamata, T. (1993a) Mitogenic activation of the Ras guanine nucleotide exchange factor in NIH 3T3 cells involves protein tyrosine phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 90, 8504-8508.

    CAS  Google Scholar 

  • Li, B.Q., Wang, M.H., Kung, H.F., Ronsin, C., Breathnach, R., Leonard, E. J. and Kamata, T. (1995) Macrophage-stimulating protein activates Ras by both activation and translocation of SOS nucleotide exchange factor. Biochem. Biophys. Res. Commun. 216, 110-118.

    PubMed  CAS  Google Scholar 

  • Li, N., Batzer, A., Daly, R., Yajnik, V., Skolnik, E., Chardin, P., Bar-Sagi, D., Margolis, B. and Schlessinger, J. (1993b) Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 363, 85-88.

    CAS  Google Scholar 

  • Lim, W. A. and Richards, F.M. (1994) Critical residues in an SH3 domain from Sem-5 suggest a mechanism for proline-rich peptide recognition. Nat. Struct. Biol. 1, 221-225.

    CAS  Google Scholar 

  • Lockyer, P.J., Bottomley, J.R., Reynolds, J.S., McNulty, T.J., Venkateswarlu, K., Potter, B.V., Dempsey, C. E. and Cullen, P.J. (1997) Distinct subcellular localisations of the putative inositol 1,3,4,5-tetrakisphosphate receptors GAP1IP4BP: and GAP1m result from the GAP1IP4BP PH domain directing plasma membrane targeting. Curr. Biol. 7, 1007-1010.

    PubMed  CAS  Google Scholar 

  • Lockyer, P.J., Wennstrom, S., Kupzig, S., Venkateswarlu, K., Downward, J. and Cullen, P.J. (1999) Identification of the ras GTPase-activating protein GAP1(m) as a phosphatidylinositol-3,4,5-trisphosphate-binding protein in vivo. Curr. Biol. 9, 265-268.

    PubMed  CAS  Google Scholar 

  • Lockyer, P.J., Kupzig, S. and Cullen, P.J. (2001) CAPRI regulates Ca(2+)-dependent inactivation of the Ras-MAPK pathway. Curr. Biol. 11, 981-986.

    PubMed  CAS  Google Scholar 

  • Maekawa, M., Nakamura, S. and Hattori, S. (1993) Purification of a novel ras GTPase-activating protein from rat brain. J. Biol. Chem. 268, 22948-22952.

    PubMed  CAS  Google Scholar 

  • Maekawa, M., Li, S., Iwamatsu, A., Morishita, T., Yokota, K., Imai, Y., Kohsaka, S., Nakamura, S. and Hattori, S. (1994) A novel mammalian Ras GTPase-activating protein which has phospholipid-binding and Btk homology regions. Mol. Cell. Biol. 14, 6879-6885.

    PubMed  CAS  Google Scholar 

  • Mangues, R., Corral, T., Lu, S., Symmans, W.F., Liu, L. and Pellicer, A. (1998) NF1 inactivation cooperates with N-ras in in vivo lymphogenesis activating Erk by a mechanism independent of its Ras-GTPase accelerating activity. Oncogene 17, 1705-1716.

    PubMed  CAS  Google Scholar 

  • Margarit, S.M., Sondermann, H., Hall, B.E., Nagar, B., Hoelz, A., Pirruccello, M., Bar-Sagi, D. and Kuriyan, J. (2003) Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685-695.

    PubMed  CAS  Google Scholar 

  • Martegani, E., Vanoni, M., Zippel, R., Coccetti, P., Brambilla, R., Ferrari, C., Sturani, E. and Alberghina, L. (1992) Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J. 11, 2151-2157.

    PubMed  CAS  Google Scholar 

  • Martin, G.A., Viskochil, D., Bollag, G., McCabe, P.C., Crosier, W.J., Haubruck, H., Conroy, L., Clark, R., O’Connell, P., Cawthon, R.M. et al. (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63, 843-849.

    PubMed  CAS  Google Scholar 

  • Matallanas, D., Arozarena, I., Berciano, M.T., Aaronson, D.S., Pellicer, A., Lafarga, M. and Crespo, P. (2003) Differences on the inhibitory specificities of H-Ras, K-Ras, and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization. J. Biol. Chem. 278, 4572-4581.

    PubMed  CAS  Google Scholar 

  • Mattingly, R.R. (1999) Phosphorylation of serine 916 of Ras-GRF1 contributes to the activation of exchange factor activity by muscarinic receptors. J. Biol. Chem. 274, 37379-37384.

    PubMed  CAS  Google Scholar 

  • Mattingly, R. R. and Macara, I.G. (1996) Phosphorylation-dependent activation of the Ras-GRF/CDC25Mm exchange factor by muscarinic receptors and G-protein beta gamma subunits. Nature 382, 268-272.

    PubMed  CAS  Google Scholar 

  • McCollam, L., Bonfini, L., Karlovich, C.A., Conway, B.R., Kozma, L.M., Banerjee, U. and Czech, M.P. (1995) Functional roles for the pleckstrin and Dbl homology regions in the Ras exchange factor Son-of-sevenless. J. Biol. Chem. 270, 15954-15957.

    PubMed  CAS  Google Scholar 

  • McCormick, F. (1993) How receptors turn Ras on. Nature 363, 15-16.

    PubMed  CAS  Google Scholar 

  • McCormick, F. (1998) Going for the GAP. Curr. Biol. 8, R673-R674.

    CAS  Google Scholar 

  • Mohney, R.P., Das, M., Bivona, T.G., Hanes, R., Adams, A.G., Philips, M. R. and O’Bryan, J.P. (2003) Intersectin activates Ras but stimulates transcription through an independent pathway involving JNK. J. Biol. Chem. 278, 47038-47045.

    PubMed  CAS  Google Scholar 

  • Mott, H.R., Carpenter, J. W. and Campbell, S.L. (1997) Structural and functional analysis of a mutant Ras protein that is insensitive to nitric oxide activation. Biochemistry 36, 3640-3644.

    PubMed  CAS  Google Scholar 

  • Narumiya, S., Ohno, K., Fukushima, M. and Fujiwara, M. (1987) Site and mechanism of growth inhibition by prostaglandins. III. Distribution and binding of prostaglandin A2 and delta 12-prostaglandin J2 in nuclei. J. Pharmacol. Exp. Ther. 242, 306-311.

    PubMed  CAS  Google Scholar 

  • Nielsen, K.H., Papageorge, A.G., Vass, W.C., Willumsen, B. M. and Lowy, D.R. (1997) The Ras-specific exchange factors mouse Sos1 (mSos1) and mSos2 are regulated differently: mSos2 contains ubiquitination signals absent in mSos1. Mol. Cell. Biol. 17, 7132-7138.

    PubMed  CAS  Google Scholar 

  • Nimnual, A.S., Yatsula, B. A. and Bar-Sagi, D. (1998) Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 279, 560-563.

    PubMed  CAS  Google Scholar 

  • Ohba, Y., Mochizuki, N., Yamashita, S., Chan, A.M., Schrader, J.W., Hattori, S., Nagashima, K. and Matsuda, M. (2000) Regulatory proteins of R-Ras, TC21/R-Ras2, and M-Ras/R-Ras3. J. Biol. Chem. 275, 20020-20026.

    PubMed  CAS  Google Scholar 

  • Oh-hora, M., Johmura, S., Hashimoto, A., Hikida, M. and Kurosaki, T. (2003) Requirement for Ras guanine nucleotide releasing protein 3 in coupling phospholipase C-gamma2 to Ras in B cell receptor signaling. J. Exp. Med. 198, 1841-1851.

    PubMed  CAS  Google Scholar 

  • Oliva, J.L., Perez-Sala, D., Castrillo, A., Martinez, N., Canada, F.J., Bosca, L. and Rojas, J.M. (2003) The cyclopentenone 15-deoxy-delta 12,14-prostaglandin J2 binds to and activates H-Ras. Proc. Natl. Acad. Sci. U.S.A. 100, 4772-4777.

    PubMed  CAS  Google Scholar 

  • Parker, J. (1996) Prostaglandin A2 protein interactions and inhibition of cellular proliferation. Prostaglandins 50, 359-375.

    Google Scholar 

  • Pawson, T. and Schlessinger, J. (1993) SH2 and SH3 domains. Curr. Biol. 3, 434-442.

    PubMed  CAS  Google Scholar 

  • Qian, X., Vass, W.C., Papageorge, A.G., Anborgh, P. H. and Lowy, D.R. (1998) N terminus of Sos1 Ras exchange factor: critical roles for the Dbl and pleckstrin homology domains. Mol. Cell. Biol. 18, 771-778.

    PubMed  CAS  Google Scholar 

  • Qian, X., Esteban, L., Vass, W.C., Upadhyaya, C., Papageorge, A.G., Yienger, K., Ward, J.M., Lowy, D. R. and Santos, E. (2000) The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties. EMBO J. 19, 642-654.

    PubMed  CAS  Google Scholar 

  • Quilliam, L.A., Huff, S.Y., Rabun, K.M., Wei, W., Park, W., Broek, D. and Der, C.J. (1994) Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and SOS1 activation of Ras transforming activity. Proc. Natl. Acad. Sci. U.S.A. 91, 8512-8516.

    PubMed  CAS  Google Scholar 

  • Quilliam, L.A., Khosravi-Far, R., Huff, S.Y., and Der, C.J. (1995) Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. Bioessays 17, 395-404.

    PubMed  CAS  Google Scholar 

  • Quilliam, L.A., Rebhun, J. F. and Castro, A.F. (2002) A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog. Nucleic Acid Res. Mol. Biol. 71, 391-444.

    PubMed  CAS  Google Scholar 

  • Rameh, L.E., Arvidsson, A., Carraway, K.L., 3rd, Couvillon, A.D., Rathbun, G., Crompton, A., VanRenterghem, B., Czech, M.P., Ravichandran, K.S., Burakoff, S.J. et al. (1997) A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J. Biol. Chem. 272, 22059-22066.

    PubMed  CAS  Google Scholar 

  • Resat, H., Straatsma, T.P., Dixon, D. A. and Miller, J.H. (2001) The arginine finger of RasGAP helps Gln-61 align the nucleophilic water in GAP-stimulated hydrolysis of GTP. Proc. Natl. Acad. Sci. U.S.A. 98, 6033-6038.

    PubMed  CAS  Google Scholar 

  • Reuther, G.W., Lambert, Q.T., Rebhun, J.F., Caligiuri, M.A., Quilliam, L. A. and Der, C.J. (2002) RasGRP4 is a novel Ras activator isolated from acute myeloid leukemia. J. Biol. Chem. 277, 30508-30514.

    PubMed  CAS  Google Scholar 

  • Rojas, J.M., Coque, J.J.R., Guerrero, C., Aroca, P., Font de Mora, J., de la Cruz, X., Lorenzi, M.V., Esteban, L. M. and Santos, E. (1996) A 15 amino acid stretch close to the Grb2-binding domain defines two differentially expressed hSos1 isoforms with markedly different Grb2 binding affinity and biological activity. Oncogene 12, 2291-2300.

    PubMed  CAS  Google Scholar 

  • Rojas, J.M., Subleski, M., Coque, J.J., Guerrero, C., Saez, R., Li, B.Q., Lopez, E., Zarich, N., Aroca, P., Kamata, T. and Santos, E. (1999) Isoform-specific insertion near the Grb2-binding domain modulates the intrinsic guanine nucleotide exchange activity of hSos1. Oncogene 18, 1651-1661.

    PubMed  CAS  Google Scholar 

  • Rojas, J. M. and Santos, E. (2002) Ras genes and human cancer: different implications and different roles. Curr. Genomics 3, 295-311.

    CAS  Google Scholar 

  • Rossi, A., Elia, G. and Santoro, G. (1997) Inhibition of nuclear factor kappa\ B by prostaglandin A1: an effect associated with heat shock transcription factor activation. Proc. Natl. Acad. Sci. U.S.A. 94, 746-750.

    PubMed  CAS  Google Scholar 

  • Rovin, B.H., Wilmer, W.A., Lu, L., Doseff, A.I., Dixon, C., Kotur, M. and Hilbelink, T. (2002) 15-Deoxy-delta12,14-prostaglandin} J2 regulates mesangial cell proliferation and death. Kidney Int. 61, 1293-1302.

    PubMed  CAS  Google Scholar 

  • Rozakis-Adcock, M., Fernley, R., Wade, J., Pawson, T. and Bowtell, D. (1993) The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1 [see comments]. Nature 363, 83-85.

    PubMed  CAS  Google Scholar 

  • Rozakis-Adcock, M., van der Geer, P., Mbamalu, G. and Pawson, T. (1995) MAP kinase phosphorylation of mSos1 promotes dissociation of mSos1-Shc and mSos1-EGF receptor complexes. Oncogene 11, 1417-1426.

    PubMed  CAS  Google Scholar 

  • Sanchez-Margalet, V. and Najib, S. (2001) Sam68 is a docking protein linking GAP and PI3K in insulin receptor signaling. Mol. Cell. Endocrinol. 183, 113-121.

    PubMed  CAS  Google Scholar 

  • Santoro, M.G. (1997) Antiviral activity of cyclopentenone prostanoids. Trends Microbiol. 5, 276-281.

    PubMed  CAS  Google Scholar 

  • Scheffzek, K., Ahmadian, M.R., Wiesmuller, L., Kabsch, W., Stege, P., Schmitz, F. and Wittinghofer, A. (1998) Structural analysis of the GAP-related domain from neurofibromin and its implications. EMBO J. 17, 4313-4327.

    PubMed  CAS  Google Scholar 

  • Schlessinger, J. (1993) How receptor tyrosine kinases activate Ras. Trends Biochem. Sci. 18, 273-276.

    PubMed  CAS  Google Scholar 

  • Scita, G., Nordstrom, J., Carbone, R., Tenca, P., Giardina, G., Gutkind, S., Bjarnegard, M., Betsholtz, C. and Di Fiore, P.P. (1999) EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290-293.

    PubMed  CAS  Google Scholar 

  • Scita, G., Tenca, P., Frittoli, E., Tocchetti, A., Innocenti, M., Giardina, G. and Di Fiore, P.P. (2000) Signaling from Ras to Rac and beyond: not just a matter of GEFs. EMBO J. 19, 2393-2398.

    PubMed  CAS  Google Scholar 

  • Scita, G., Tenca, P., Areces, L.B., Tocchetti, A., Frittoli, E., Giardina, G., Ponzanelli, I., Sini, P., Innocenti, M. and Di Fiore, P.P. (2001) An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. J. Cell Biol. 27, 27.

    Google Scholar 

  • Seizinger, B.R. (1993) NF1: a prevalent cause of tumorigenesis in human cancers? Nat. Genet. 3, 97-99.

    PubMed  CAS  Google Scholar 

  • Sermon, B.A., Eccleston, J.F., Skinner, R. H. and Lowe, P.N. (1996) Mechanism of inhibition by arachidonic acid of the catalytic activity of Ras GTPase-activating proteins. J. Biol. Chem. 271, 1566-1572.

    PubMed  CAS  Google Scholar 

  • Shahabi, N.A., Chengini, N. and Wittliff, J.L. (1987) Alterations of MCF-7 human breast cancer cell after prostaglandins PGA1 and PGF2a treatment. Exp. Cell Biol. 55, 18-27.

    PubMed  CAS  Google Scholar 

  • Shou, C., Farnsworth, C.L., Neel, B. G. and Feig, L.A. (1992) Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21. Nature 358, 351-354.

    PubMed  CAS  Google Scholar 

  • Shou, C., Wurmser, A., Suen, K.L., Barbacid, M., Feig, L. A. and Ling, K. (1995) Differential response of the Ras exchange factor, Ras-GRF to tyrosine kinase and G protein mediated signals. Oncogene 10, 1887-1893.

    PubMed  CAS  Google Scholar 

  • Simon, M.A., Bowtell, D.D., Dodson, G.S., Laverty, T. R. and Rubin, G.M. (1991) Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67, 701-716.

    PubMed  CAS  Google Scholar 

  • Soisson, S.M., Nimnual, A.S., Uy, M., Bar-Sagi, D. and Kuriyan, J. (1998) Crystal structure of the Dbl and pleckstrin homology domains from the human Son of sevenless protein. Cell 95, 259-268.

    PubMed  CAS  Google Scholar 

  • Sondermann, H., Soisson, S.M., Bar-Sagi, D. and Kuriyan, J. (2003) Tandem histone folds in the structure of the N-terminal segment of the ras activator Son of Sevenless. Structure (Camb.) 11, 1583-1593.

    CAS  Google Scholar 

  • The, I., Hannigan, G.E., Cowley, G.S., Reginald, S., Zhong, Y., Gusella, J.F., Hariharan, I. K. and Bernards, A. (1997) Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276, 791-794.

    PubMed  CAS  Google Scholar 

  • Tian, X., Gotoh, T., Tsuji, K., Lo, E.H., Huang, S. and Feig, L.A. (2004) Developmentally regulated role for Ras-GRFs in coupling NMDA glutamate receptors to Ras, Erk and CREB. EMBO J. 23, 1567-1575.

    PubMed  CAS  Google Scholar 

  • Tocque, B., Delumeau, I., Parker, F., Maurier, F., Multon, M. C. and Schweighoffer, F. (1997) Ras-GTPase activating protein (GAP): a putative effector for Ras. Cell. Signal. 9, 153-158.

    PubMed  CAS  Google Scholar 

  • Tognon, C.E., Kirk, H.E., Passmore, L.A., Whitehead, I.P., Der, C. J. and Kay, R.J. (1998) Regulation of RasGRP via a phorbol ester-responsive C1 domain. Mol. Cell. Biol. 18, 6995-7008.

    PubMed  CAS  Google Scholar 

  • Tong, J., Hannan, F., Zhu, Y., Bernards, A. and Zhong, Y. (2002) Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat. Neurosci. 5, 95-96.

    PubMed  CAS  Google Scholar 

  • Tong, X.K., Hussain, N.K., Adams, A.G., O’Bryan, J. P. and McPherson, P.S. (2000a) Intersectin can regulate the Ras/MAP kinase pathway independent of its role in endocytosis. J. Biol. Chem. 275, 29894-29899.

    CAS  Google Scholar 

  • Tong, X.-K., Hussain, N.K., de Heuvel, E., Kurakin, A., Abi-Jaoude, E., Quinn, C.C., Olson, M.F., Marais, R., Baranes, D., Kay, B. K. and McPherson, P.S. (2000b) The endocytic protein intersectin is a major binding partner for the Ras exchange factor mSos1 in rat brain. EMBO J. 19, 1263-1271.

    CAS  Google Scholar 

  • Trahey, M., Wong, G., Halenbeck, R., Rubinfeld, B., Martin, G.A., Ladner, M., Long, C.M., Crosier, W.J., Watt, K., Koths, K. and et al. (1988) Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242, 1697-1700.

    PubMed  CAS  Google Scholar 

  • van der Geer, P., Henkemeyer, M., Jacks, T. and Pawson, T. (1997) Aberrant Ras regulation and reduced p190 tyrosine phosphorylation in cells lacking p120-Gap. Mol. Cell. Biol. 17, 1840-1847.

    PubMed  Google Scholar 

  • Walker, S.A., Kupzig, S., Lockyer, P.J., Bilu, S., Zharhary, D. and Cullen, P.J. (2002) Analyzing the role of the putative inositol 1,3,4,5-tetrakisphosphate receptor GAP1IP4BP in intracellular Ca2+ homeostasis. J. Biol. Chem. 277, 48779-48785.

    PubMed  CAS  Google Scholar 

  • Walker, S.A., Kupzig, S., Bouyoucef, D., Davies, L.C., Tsuboi, T., Bivona, T.G., Cozier, G.E., Lockyer, P.J., Buckler, A., Rutter, G.A. et al. (2004) Identification of a Ras GTPase-activating protein regulated by receptor-mediated Ca(2+) oscillations. EMBO J. 23, 1749-1760.

    PubMed  CAS  Google Scholar 

  • Wang, D.Z., Hammond, V.E., Abud, H.E., Bertoncello, I., McAvoy, J. W. and Bowtell, D.D. (1997) Mutation in Sos1 dominantly enhances a weak allele of the EGFR, demonstrating a requirement for Sos1 in EGFR signaling and development. Genes Dev. 11, 309-320.

    PubMed  CAS  Google Scholar 

  • Wang, W., Fisher, E., Jia, Q., Dunn, J., Porfiri, E., Downward, J. and Egan, S. (1995) The Grb2 binding domain of mSos1 is not required for downstream signal transduction. Nat. Gen. 10, 294-300.

    CAS  Google Scholar 

  • Wei, W., Mosteller, R.D., Sanyal, P., Gonzales, E., McKinney, D., Dasgupta, C., Li, P., Liu, B. X. and Broek, D. (1992) Identification of a mammalian gene structurally and functionally related to the CDC25 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 89, 7100-7104.

    PubMed  CAS  Google Scholar 

  • Wei, W., Schreiber, S.S., Baudry, M., Tocco, G. and Broek, D. (1993) Localization of the cellular expression pattern of cdc25NEF and ras in the juvenile rat brain. Brain Res. Mol. Brain Res. 19, 339-344.

    PubMed  CAS  Google Scholar 

  • Whitehead, I.P., Campbell, S., Rossman, K. L. and Der, C.J. (1997) Dbl family proteins. Biochim. Biophys. Acta 1332, F1-F23.

    PubMed  CAS  Google Scholar 

  • Williams, J.A., Su, H.S., Bernards, A., Field, J. and Sehgal, A. (2001) A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science 293, 2251-2256.

    PubMed  CAS  Google Scholar 

  • Wilmer, W.A., Dixon, C., Lu, L., Hilbelink, T. and Rovin, B.H. (2001) A cyclopentenone prostaglandin activates mesangial MAP kinase independently of PPARgamma. Biochem. Biophys. Res. Commun. 281, 57-62.

    PubMed  CAS  Google Scholar 

  • Wittinghofer, A., Scheffzek, K. and Ahmadian, M.R. (1997) The interaction of Ras with GTPase-activating proteins. FEBS Lett. 410, 63-67.

    PubMed  CAS  Google Scholar 

  • Yamamoto, T., Matsui, T., Nakafuku, M., Iwamatsu, A. and Kaibuchi, K. (1995) A novel GTPase-activating protein for R-Ras. J. Biol. Chem. 270, 30557-30561.

    PubMed  CAS  Google Scholar 

  • Yang, Y., Li, L., Wong, G.W., Krilis, S.A., Madhusudhan, M.S., Sali, A. and Stevens, R.L. (2002) RasGRP4, a new mast cell-restricted Ras guanine nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Identification of defective variants of this signaling protein in asthma, mastocytosis, and mast cell leukemia patients and demonstration of the importance of RasGRP4 in mast cell development and function. J. Biol. Chem. 277, 25756-25774.

    PubMed  CAS  Google Scholar 

  • Yu, H., Chen, J.K., Feng, S., Dalgarno, D.C., Brauer, A. W. and Schreiber, S.L. (1994) Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933-945.

    PubMed  CAS  Google Scholar 

  • Zarich, N., Oliva, J.L., Jorge, R., Santos, E. and Rojas, J.M. (2000) The isoform-specific stretch of hSos1 defines a new Grb2-binding domain. Oncogene 19, 5872-5883.

    PubMed  CAS  Google Scholar 

  • Zhang, Y.Y., Vik, T.A., Ryder, J.W., Srour, E.F., Jacks, T., Shannon, K. and Clapp, D.W. (1998) Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. J. Exp. Med. 187, 1893-1902.

    PubMed  CAS  Google Scholar 

  • Zheng, J., Chen, R.H., Corblan-Garcia, S., Cahill, S.M., Bar-Sagi, D. and Cowburn, D. (1997) The solution structure of the pleckstrin homology domain of human SOS1. A possible structural role for the sequential association of diffuse B cell lymphoma and pleckstrin homology domains. J. Biol. Chem. 272, 30340-30344.

    PubMed  CAS  Google Scholar 

  • Zippel, R., Orecchia, S., Sturani, E. and Martegani, E. (1996) The brain specific Ras exchange factor CDC25 Mm: modulation of its activity through Gi-protein-mediated signals. Oncogene 12, 2697-2703.

    PubMed  CAS  Google Scholar 

  • Zippel, R., Balestrini, M., Lomazzi, M. and Sturani, E. (2000) Calcium and calmodulin are essential for Ras-GRF1-mediated activation of the Ras pathway by lysophosphatidic acid. Exp. Cell Res. 258, 403-408.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Rojas, J.M., Santos, E. (2006). Ras-Gefs and Ras Gaps. In: Der, C. (eds) RAS Family GTPases. Proteins and Cell Regulation, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4708-8_2

Download citation

Publish with us

Policies and ethics