Skip to main content

INTERFACE AND MAGNETIC CHARACTERIZATION OF FM/AF/FM MULTILAYERS

  • Conference paper

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 226))

Abstract

We use polarized neutron reflectivity to study the evolution of the magnetization profile during the hysteresis of FeCoV (20 nm)/NiO (t NiO ) /FeCoV (20 nm) trilayers. For small t NiO , we find that the magnetization in the two ferromagnetic layers remains parallel, indicating a strong exchange coupling across the anti-ferromagnetic NiO layer. Beyond a film thickness t NiO = 40 nm, the observed step in the hysteresis is seen to correspond to an antiparallel orientation of the two ferromagnetic layers. Since this length scale agrees with the domain wall width of NiO, our results suggest that the interlayer exchange coupling involves a partial domain wall formation in the antiferromagnetic layer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Prinz, Science 282 (1998) 1660.

    Article  Google Scholar 

  2. P. Bruno, Phys. Rev. B 52 (1995) 411.

    ADS  Google Scholar 

  3. S. S. P. Parkin, Phys. Rev. Lett. 67 (1991) 3598.

    Article  ADS  Google Scholar 

  4. M.N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61 (1988) 2472.

    Article  ADS  Google Scholar 

  5. M. Julliere, Phys. Lett. A 54 (1975) 225.

    Article  ADS  Google Scholar 

  6. J.M. Moodera, J. Magn. Magn. Mater. 200 (1999) 248.

    Article  ADS  Google Scholar 

  7. J. Faure-Vincent, C. Tiusan, C. Bellouard, E. Popova, M. Hehn, F. Montaigne and A. Schuhl, Phys. Rev. Lett. 89 (2002) 107206.

    Article  ADS  Google Scholar 

  8. P. Grünberg, D.E. Bürgler, R. Gareev, D. Olligs, M. Buchmeier, M. Breidbach, B. Kuanr and R. Schreiber, J. Phys. D: Appl. Phys. 35 (2002) 2403.

    Article  ADS  Google Scholar 

  9. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, D.D. Awschalom, Nature 402 (1999) 790.

    Article  ADS  Google Scholar 

  10. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102 (1956) 1413.

    Article  ADS  Google Scholar 

  11. A.E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200 (1999) 552.

    Article  ADS  Google Scholar 

  12. A. P. Malozemoff, Phys. Rev. B 35 (1987) 3679.

    Article  ADS  Google Scholar 

  13. D. Mauri, H.C. Siegmann, P.S. Bagus and E. Kay, J. Appl. Phys. 62 (1987) 3047.

    Article  ADS  Google Scholar 

  14. M. Kiwi, J. Mejia-Lopez, R. D. Portugal and R. Ramirez, Europhys. Lett. 48 (1999) 573.

    Article  ADS  Google Scholar 

  15. A. Scholl, M. Liberati, E. Arenholz, H. Ohldag, and J. Stöhr, Phys. Rev. Lett. 92 (2004) 247201.

    Article  ADS  Google Scholar 

  16. T. Ambrose and C. L. Chien, Appl. Phys. Lett. 65 (1994) 1967.

    Article  ADS  Google Scholar 

  17. F. Ernult, B. Dieny and J.R. Regnard, J. Magn. Magn. Mater. 242-245 (2002) 515.

    Article  ADS  Google Scholar 

  18. O. Zaharko, P. M. Oppeneer, H. Grimmer, M. Horisberger, H.-Ch. Mertins, D. Abramsohn, F. Schäfers, A. Bill and H.-B. Braun, Phys. Rev. B 66 (2002) 134406.

    Article  ADS  Google Scholar 

  19. Z.Y. Liu and S. Adenwalla, Phys. Rev. Lett. 91 (2003) 037207.

    Article  ADS  Google Scholar 

  20. F.Y. Yang and C. L. Chien, Phys. Rev. Lett. 85 (2000) 2597.

    Article  ADS  Google Scholar 

  21. H. Zabel and K. Theis Bröhl, J. Phys:. Condens. Matter 15 (2003) S505; G.P. Felcher, S.G.E. te Velthuis, A. Rühm and W. Donner, Physica B 297 (2001) 87.

    Google Scholar 

  22. SimulReflec by F. Ott, http://www.llb.cea.fr/prism/programs/simulreflec/simulreflec. html.

    Google Scholar 

  23. G. S. D. Beach, F. T. Parker, D. J. Smith and A. E. Berkowitz, Proc. of the 5th International Symposium on Metallic Multilayers, Boulder, CO, USA, June 7-11, 2004.

    Google Scholar 

  24. B. D. Schrag, A. Anguelouch, S. Ingvarsson, Gang Xiao, Yu Lu, P. L. Trouilloud, A. Gupta, R. A. Wanner, W. J. Gallagher, P. M. Rice and S. S. P. Parkin, Appl.Phys.Lett. 77 (2000) 2373.

    Article  ADS  Google Scholar 

  25. S. Demokritov, E. Tsymbal, P. Grünberg, W. Zinn and Ivan K. Schuller, Phys. Rev. B 49 (1994) 720.

    Article  ADS  Google Scholar 

  26. Haiwen Xi, J. Magn. Magn. Matter. (2004) (in press).

    Google Scholar 

  27. J. C. Slonczewski, J. Magn. Magn. Mater. 150 (1995) 13.

    Article  ADS  Google Scholar 

  28. Louis Néel, Ann. Phys. (Paris) 2 (1967) 61.

    Google Scholar 

  29. Haiwen Xi and Robert M. White, Phys. Rev. B 62 (2000) 3933.

    Article  ADS  Google Scholar 

  30. M. D. Stiles and R. D. McMichael, Phys. Rev. B 59 (1999) 3722.

    Article  ADS  Google Scholar 

  31. C. H. Lai, H. Matsuyama, R. L. White, T. C. Anthony and G. G. Bush, J. Appl. Phys. 79 (1996) 6389.

    Article  ADS  Google Scholar 

  32. M. Chirita, G. Robins, R. L. Stamps, R. Sooryakumar, M. E. Philipkowski, C. J. Gutierrez and G. A. Prinz, Phys. Rev. B 59 (1998) 869.

    Article  ADS  Google Scholar 

  33. P. A. A. van der Heijden, C. H. W. Swüste, W. J. M. de Jonge, J. M. Gaines, J. T. W. M. van Eemeren and K. M. Schep, Phys. Rev. Lett. 82 (1999) 1020.

    Article  ADS  Google Scholar 

  34. C. Schanzer, V. R. Shah, P. Böni, H. B. Braun, T. Gutberlet and M. Gupta, Physica B (accepted for publication).

    Google Scholar 

  35. V. R. Shah, C. Schanzer, P. Böni and H. B. Braun, J. Magn. Magn. Mater. (in press).

    Google Scholar 

  36. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192 (1999) 203.

    Article  ADS  Google Scholar 

  37. E. E. Fullerton, D. T. Margulies, M.E. Schabes, M. Carey, B.Gurney, A. Moser, M. Best, G. Zeltzer, K. Rubin, H. Rosen, M. Doerner, Appl. Phys. Lett. 77 (2000) 3806.

    Article  ADS  Google Scholar 

  38. Marco Diegel, Roland Mattheis and Ernst Halder, IEEE Trans. Magnetics 40 (2004) 2655.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Shah, V., Schanzer, C., Böni, P., Braun, HB. (2006). INTERFACE AND MAGNETIC CHARACTERIZATION OF FM/AF/FM MULTILAYERS. In: Franse, J., Eremenko, V., Sirenko, V. (eds) Smart Materials for Ranging Systems. NATO Science Series II: Mathematics, Physics and Chemistry, vol 226. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4646-4_10

Download citation

Publish with us

Policies and ethics