Skip to main content
Book cover

Geochemistry pp 151–156Cite as

Earth's core

  • Reference work entry

Part of the book series: Encyclopedia of Earth Science ((EESS))

Introduction

The solid Earth is made up of three fundamental layers, the core, mantle and crust, which are the products of planetary differentiation. The core, which is about half and Earth radius wide or only about 1/8 of an Earth volume, makes up about 1/3 of the Earth's mass and is composed of ∼85% iron, ∼5% nickel and lesser amounts of other elements that readily alloy with iron. The mantle and crust make up the other half of the Earth's radius, and are dominantly composed of silicates of magnesium, iron, aluminum, and calcium.

Our understanding of the Earth's core is primarily established from remote geophysical measurements, including studies of the Earth's seismological profile and its magnetic field, and from studies of the Earth's orbital behavior, which provides us with a coefficient of the moment of inertia for the Earth. Secondary constraints on the nature of the Earth's core come from studies of meteorites and models for the bulk composition of the Earth and its primitive...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   569.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Agee, C. B. (1993) Petrology of the mantle transition zone. Annu. Rev. Earth Planet. Sci., 21, 19–41.

    Google Scholar 

  • Allegre, C. J., Poirier, J. P., Humler, E. and Hofmann, A. W. (1995) The chemical composition of the Earth. Earth Planet. Sci. Lett., 134, 515–26.

    Google Scholar 

  • Anders, E. and Grevesse, N. (1989) Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta., 53, 197–214.

    Google Scholar 

  • Anderson, D. L. (1983) Chemical composition of the mantle. J. Geophys. Res., 88, (Suppl.), B41–52.

    Google Scholar 

  • Birch, F. (1952) Elasticity and constitution of the earth's interior. J. Geophys. Res., 57, 227–88.

    Google Scholar 

  • Brown, J. M. and McQueen, R. G. (1986) Phase transitions, Güneisen parameter and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res., 91, 7485–4.

    Google Scholar 

  • Brown, J. M., Ahrens, T. J. and Shampine, D. L. (1984) Hugoniot data for pyrrhotite and the Earth's core. J. Geophys. Res., 89, 6041–8.

    Google Scholar 

  • Davies, G. and Richards, M. (1992) Mantle convection. J. Geol., 100, 151–206.

    Google Scholar 

  • Ganapathy, R. and Anders, E. (1974) Bulk composition of the moon and earth, estimated from meteorites. Proc. Fifth Lunar Sci. Conf., 2, 1181–1206.

    Google Scholar 

  • Grand, S. P. (1994) Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99, 11591–621.

    Google Scholar 

  • Hager, B. and Richards, M. (1989) Long-wavelength variations in the Earth's geoid: physical models and dynamical implications. Phil. Trans. R. Soc. Lond., A328, 309–27.

    Google Scholar 

  • Halliday, A. N., Rehkämper, M., Lee, D.-C. and Yi, W. (1996) Early evolution of the Earth and Moon: new constraints from Hf—W isotope geochemistry. Earth Planet. Sci. Lett., 142, 75–89.

    Google Scholar 

  • Harper, C. L. and Jacobsen, S. B. (1996) Evidence for 182Hf in the early Solar system and constraints on the time scale of terrestrial accretion and core formation. Geochim. Cosmochim. Acta, 60, 1131–53.

    Google Scholar 

  • Hart, S. R. and Zindler, G. A. (1986) In search of a bulk-earth composition. Chem. Geol., 57, 247–67.

    Google Scholar 

  • Jackson, I. (1983) Some geophysical constraints on the chemical composition of the Earth's lower mantle. Earth Planet. Sci. Lett., 62, 91–103.

    Google Scholar 

  • Jagoutz, E., Palme, H., Baddenhausen, H. et al., (1979) The abundances of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. Proc. Lunar Planet. Sci. Conf., 10, 2031–50.

    Google Scholar 

  • Lee, D.-C. and HaIIiday, A. N. (1995) Hafnium-tungsten chronometry and the timing of terrestrial core formation. Nature, 378, 771–4.

    Google Scholar 

  • Li, J. and Agee, C. B. (1996) Geochemistry of mantle-core differentiation at high pressure. Nature, 381, 686–9.

    Google Scholar 

  • Lugmair, G. W., Maclsaac, C. and Shukolyukov, A. (1994) Small time differences recorded in differentiated meteorites. Meteoritics, 29, 493–4.

    Google Scholar 

  • Mao, H. K., Wu, Y., Chen, L. C. and Shu, J. F. (1990) Static compression of iron to 300 GPa and Fe0.8Ni0.2 to 260 GPa: implications for composition of the core. J. Geophys. Res., 95, 21737–42.

    Google Scholar 

  • McDonough, W. F. and Sun, S.-S. (1995) The composition of the Earth. Chem. Geol., 120, 223–53.

    Google Scholar 

  • O'Neill, H. S. C. (1991) The origin of the Moon and the early history of the Earth–A chemical model. Part 2: The Earth. Geochim. Cosmochim. Acta, 55, 1159–72.

    Google Scholar 

  • O'Neill, H. S. C. and Palme, H. (1998) Composition of the silicate Earth: implications for accretion and core formation, in The Earth's Mantle: Composition, Structure and Evolution (ed. I. Jackson). New York: Cambridge University Press, pp. 3–126.

    Google Scholar 

  • Poinier, J. P. (1994) Light elements in the Earth's outer core: A critical review. Phys. Earth Planet. Interiors., 85, 319–37.

    Google Scholar 

  • Ringwood, A. E. (1966) The chemical composition and origin of the Earth, in Advances in Earth Sciences (ed. P. M. Hurley). Cambridge: MIT Press, pp. 287–356.

    Google Scholar 

  • Ringwood, A. E. (1984) The Earth's core: its composition, formation and bearing upon the origin of the Earth. Proc. R. Soc. Lond. A, 395, 1–46.

    Google Scholar 

  • Ringwood, A. E. (1989) Significance of the terrestrial Mg/Si ratio. Earth Planet. Sci. Lett., 95, 1–7.

    Google Scholar 

  • Shearer, P. and Masters, G. (1990) The density and shear velocity contrast at the inner core boundary. Geophys. J. Int., 102, 491–8.

    Google Scholar 

  • Stevenson, D. J. (1981) Models of the Earth's core. Science, 214, 611–19.

    Google Scholar 

  • Van der Hilst, R., Widiyantoro, S. and Engdhal, E. R. (1997) Evidence for deep mantle circulation from global tomography. Nature, 386, 578–84.

    Google Scholar 

  • Wasson, J. T. (1985) Meteorites. Their Record of Early Solar-System History. New York: W. H. Freeman, 267 pp.

    Google Scholar 

  • Wasson, J. T. and Kallemeyn, G. W. (1988) Composition of chondrites. Phil. Trans. R. Soc. Lond., A325, 535–44.

    Google Scholar 

  • Weidner, D. J. (1986) Mantle model based on measured physical properties of minerals, in Chemistry and Physics of Terrestrial Planets (ed. S. K. Saxena). New York: Springer-Verlag, pp. 251–74.

    Google Scholar 

Cross-references

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this entry

Cite this entry

McDonough, W.F. (1998). Earth's core . In: Geochemistry. Encyclopedia of Earth Science. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4496-8_83

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4496-8_83

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-75500-2

  • Online ISBN: 978-1-4020-4496-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics