Skip to main content

STRONTIUM ISOTOPE (87SR/86SR) CHEMISTRY IN PRODUCED OIL FIELD WATERS: THE IEA CO2 MONITORING AND STORAGE PROJECT

  • Conference paper
Book cover Advances in the Geological Storage of Carbon Dioxide

Abstract

EnCana's CO2 injection EOR project at Weyburn Saskatchewan (Canada) is the focal point of a multi-faceted research program, sponsored by the IEA GHG R&D and numerous international industrial and government partners. More than yearly strontium isotope, trace element and dissolved gas surveys were conducted by INGV in conjunction with the thrice yearly borehole fluid sampling trips performed by the Canadian partners. This paper focuses on the Sr isotope monitoring. Approximately 25 samples were collected over three years for 87Sr/86Sr analyses. At Weyburn, a water-alternating-gas (WAG) EOR technique is used to inject water and CO2 into the Mississippian Midale reservoir. 87Sr/86Sr ratios for produced fluids fall between 0.7077 and 0.7082, consistent with published values for Mississippian fluids and carbonate minerals. A small 87Sr/86Sr component of this produced fluid is derived from waters of the Cretaceous Mannville aquifer, which has been used for waterflooding EOR since 1959. The progressively more positive Sr isotope trend from 2001 to 2003 may be due to: 1) a smaller Mannville aquifer component in the water flooding process; and/or 2) the dissolution of Mississippian host rocks during the ongoing CO2 injection. Evidence that 87Sr/86Sr values are approaching those of Mississippian host-rock values may point towards zones of carbonate dissolution as a result of continuing CO2 injection. This hypothesis is strengthened by i) δ13C data; ii) preliminary “gross composition„ of dissolved gases (H2S, CO2, CH4, He, H2) and iii) by trace elements data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Bachu, S., and Hitchon, B., 1996, Regional-scale flow of formation waters in the Williston Basin, AAPG Bulletin 80(2): pp. 248–264.

    CAS  Google Scholar 

  • Barnaby, R., Oetting, G.C. and Gao, G., 2004, Strontium isotopic signatures of oil-field waters: applications for reservoir characterization, AAPG Bullettin 88(12): 1677–1704.

    CAS  Google Scholar 

  • Bruckschen, P., Bruhn, F., Veizer, J. and Buhl, D., 1995, 87Sr/86Sr isotopic evolution of Lower Carboniferous seawater: Dinatian of Western Europe, Sedimentary Geology 100: 63–81.

    Article  CAS  Google Scholar 

  • Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F. and Otto, J.B., 1982, Variation of seawater 87Sr/86Sr through Phanerozoic time, Geology, 16: 516–519.

    Google Scholar 

  • Capasso, G. and Inguaggiato, S., 1998, A simple method for the determination of dissolved gases in natural water. An application to thermal water from Vulcano Island, Applied Geochem. 13: 631–642.

    CAS  Google Scholar 

  • Chapoy, A., Mohammadi, A.H., Tohidi, B., Richon, D., 2004, Gas solubility measurement and modeling for the Nitrogen + Water System from 274.18 to 363.02 K, J., Chem. Eng. Data 49: 1110–1115.

    Article  CAS  Google Scholar 

  • Chaudhuri, S. and Clauer, N., 1993, Strontium isotopic compositions and potassium and rubidium contents of formation waters in sedimentary basins: clues to the origin of the solutes, Geochemica Cosmoch. Acta 57: 429–437.

    CAS  Google Scholar 

  • Connolly, C.A., Walter, L.M., Baadsgard, H. and Longstaffe, F.J., 1990, Origin and evolution of formation waters, Alberta Basin, Western Canada sedimentary basin: II. Isotopic systematics and water mixing, Applied Grochemistry. 5: 397–413.

    CAS  Google Scholar 

  • Czernichowski-Lauriol, I., Le Nidre, Y.M., Azaroual, M., Quattrocchi, F., Pearce, J.M., Sprinter, N., 2001, The Weyburn CO2 Monitoring Project. Baseline hydrogeology, hydrochemistry and mineralogy, Confidential Report BRGM/RP-51414-FR.

    Google Scholar 

  • Denison, R.E., Koepnick, R.B., Burke, W.H., Hetherington E.A. and Fletcher A., 1994, Construction of the Mississippian, Pennsylvanian and Permian seawater 87Sr/86Sr curve, Chemical Geology 112: 145–157.

    CAS  Google Scholar 

  • Gunter, W.G., Perkins, E.H. and Hutcheon, I., 2000, Aquifer disposal of acid gases: modeling of water-rock reactions for trapping acid wastes, Applied Geochem. 15: 1086–1096.

    Google Scholar 

  • Fisher, R.S. and Kreitler, C.W., 1987, Geochemistry and hydrodynamics of deep-basin, Palo Duro Basin, Texas, USA, Applied Geochemistry 2: 459–476.

    CAS  Google Scholar 

  • Franklyn, M.T., McNutt, R.H., Kamineni, D., Gascoyne, M. and Frape, S.K., 1991, Groundwater 87Sr/86Sr values in the Eye-Dashwa Lakes pluton, Canada: evidence for plagioclase-water reaction, Geochimica Cosmoch. Acta 86: 111–122.

    CAS  Google Scholar 

  • Hutcheon, I., Shevalier, M., Durocher K., Mayer B., Gunter, W. and Perkins, E., 2003, Carbon isotope evidence for CO2 dissolution and fluid-rock interaction at the Weyburn CO2 injection enhanced oil recovery site, Proc. 2 th Annual Conference on carbon Sequestration, May, 5–8, Alexandria, Virginia.

    Google Scholar 

  • Kharaka, Y.K., Maest, A.S., Carothers, W.W., Law, L.M., Lamothe, P.J. and Fries, T.L., 1987, Geochemistry of metal-rich brines from central Mississippi Salt Dome Basin, U.S.A., Applied Geochemistry 2: 543–561.

    Article  CAS  Google Scholar 

  • Jones, C.E., Jenkyns, H.C. and Hesselblo, P., 1994, Strontium isotopes in Early Jurassic seawater, Geoch. Cosmoch. Acta 58: 1285–1301.

    CAS  Google Scholar 

  • Jones, D.G., Beaubien, S.E., Baubron, C., Cinti D., Davis, J.R., Emery, C., Fascetti, A., Lombardi, S., Michel, K., Morgantini., N., Penner, L., Quattrocchi, F. and Strutt, M.H., 2005. Continued soil gas monitoring at the Weyburn Unit in 2004. British Geological Survey Commissioned Report CR/05/033, 68 pp.

    Google Scholar 

  • Le Nidre, Y.M. and Gaus, I. 2004, Characterization of the lower watrous aquitard as a major seal for CO2 geological storage, (Weyburn Unit, Canada), In: Proc. 7th Int. Conf. on Greenhouse Gas Control Technologies. Vol. 1 Peer-Reviewd Papers and Plenary Presentations, BC, September 5–9, 2004.

    Google Scholar 

  • McNutt, R.H., Frape, S.K. and Dollar, P. 1987, A strontium, oxygen and hydrogen isotopic composition of brines, Michigan and Appalachian basins, Applied Geochemistry 2: 495–505.

    CAS  Google Scholar 

  • McNutt, R.H., Frape S.K., Fritz, P., Jones, M.G. and McDonald, I.M., 1990, The 87Sr/86Sr values of Canadian shield brines and fracture minerals with applications to groundwater mixing, fracture history and geochronology, Geochimica Cosmoc. Acta 54:205–215.

    CAS  Google Scholar 

  • Nakano, T., Kajiwara, Y. and Farrell, C.W., 1989, Strontium isotope constrain on the genesis of crude oils, oil-field brines, and Kuroko ore deposits from the Green Tuff region of northeastern Japan, Geochimica Cosmoch. Acta 53:2683–2688.

    CAS  Google Scholar 

  • Nitao, J.J., 1996, The NUFT Code Modeling Non isothermal, Multiphase, Multicomponent Flow and transport in Porous Media, EOS American Geophysical Union 74 (3): 3.

    Google Scholar 

  • Notsu, K., Wakita H. and Nakamura Y., 1988, Strontium isotopic composition of oil-field and gas-field waters, Japan, Applied Geochemistry 3: 173–176.

    Article  CAS  Google Scholar 

  • Parkhurst, L.D. and Appelo, C.A.J., 1999, User's guide to PHREEQC, (version 2), U.S.G.S.Water-Resources Investigations report, 99–4259.

    Google Scholar 

  • Perel’man, A.I., 1986, Geochemical Barriers: theory and practical applications, Applied Geochem. 1: 669–680.

    Google Scholar 

  • Perkins, E., Czernichowski-Lauriol, I., Azoural, M. and Durst, P., 2004, Long term predisctions of CO2 storage by mineral and solubility trapping in the Weyburn Midale Reservoir, In: Proc. 7th Int. Conference on Greenhouse Gas Control Technologies. Poster.

    Google Scholar 

  • Popp, B.N., Podosek F.A., Brannon J.C., Anderson T.F. and Pier, J. 1986, 87Sr/86Sr ratios in Permo-Carboniferous sea water from the analysis of well-preserved brachiopod shells, Geochimica Cosmoc. Acta 50: 1321–1328.

    Google Scholar 

  • Quattrocchi, F., Barbieri, M., Bencini, R., Cinti, D., Galli, G., Pizzino, L. and Voltattorni, N., 2003, Water chemistry, isotopic chemistry (87Sr/86Sr) and dissolved gases variations at the Weyburn oil-field (Canada). Possible water-rock processes during the CO2 injection, Proced. Int. Workshop “Gas WRGI induced by reservoirs exploitation, CO2 sequestration and other geological storages”. November, 18–20, 2003, IFP, Paris, France. p. 94.

    Google Scholar 

  • Quattrocchi, F., Bencini, R., Cinti, D., Galli, G., Pizzino, L., Voltattorni, N. and Navarra, A., 2004, CO2 geological sequestration in Italy: state of art and potential sites, In: Proc. XI Inter. Conf. “Water Rock Interaction WRI-XI”, Saratoga Spring, New York, USA, June 2004. pg. 573–576.

    Google Scholar 

  • Riding J. and Rochelle C. (2005), The IEA Weyburn CO2 monitoring and storage project. Final Report of the European Research Team. British Geological Survey Research Report, RR/05/03, 54 pp (ISBM 085272 507 8). BGS, Keyworth, Nottingham.

    Google Scholar 

  • Romer, R.L., Wawrzenitz, N. and Oberhansli, R., 2003, Anomalous unradiogenic 87Sr/86Sr ratio in ultrahigh-pressure crustal carbonates-evidence for fluid infiltration during deep subduction? Terra Nova 15 (5): 330–336.

    Article  CAS  Google Scholar 

  • Russell, C.W., Cowart J.B. and Russell G.S., 1988, Strontium isotopes in brines and associated rocks from Cretaceous strata in the Mississippi Salt Dome Basin (Southeastern Mississippi, USA), Chemical Geology 74: 153–171.

    Article  CAS  Google Scholar 

  • Shevalier, M., Durocher, K., Perez, R., Hutcheon, I., Mayer, B. and Perkins, E. 2004 Geochemical monitoring of gas-watrer-rock interaction at the IEA Weyburn CO2 Monitoring and Storage Project Proc. 7th Int. Conf. on Greenhouse Gas Control Technologies (GHGT-7). In progress on http://www.ghgt7.ca/

    Google Scholar 

  • Sinclair, A.J., 1991, A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited, J. of Geochemical Exploration 41: 10–20.

    Google Scholar 

  • Smalley, P.C., Raheim, A., Dickson, J.A.D. and Emery D., 1988, 87Sr/86Sr in waters from Lincolnshire Limeston aquifer, England, and the potential of natural strontium isotopes as a tracer fro a secondary recovery seawater injection process in oilfields, Applied Geochemistry 3: 591–600.

    Article  CAS  Google Scholar 

  • Starinsky, A., Bielski, M., Lazar, B., Steinitz, G. and Raab, M., 1983, Strontium isotope evidence on the history of oil field brines, Mediterranean coastal plain, Israel, Geochimica Cosmochim. Acta, 47: 687–695.

    Article  CAS  Google Scholar 

  • Stueber, A.M., Pushkar, P. and Hetherington, E.A., 1987, A strontium isotopic study of formation waters from the Illinois Basin, USA, Applied Geochemistry, 2: 477–494.

    Article  Google Scholar 

  • Sunwall, M.T. and Pushkar P., 1979, The isotopic composition of strontium in brines from petroleum fields of Southerm Ohio, Chemical Geology, 24: 189–197.

    Article  CAS  Google Scholar 

  • Tian, S., Zhao, G. and Asghari, K., 2004, CO2 storage during EOR process in the Weyburn oil pool: modeling and monitoring results, In: Proc. 7 th Int. Conf. on Greenhouse Gas Control Technologies. Vol. 1 Peer-Reviewd Papers and Plenary Presentations, BC, September 5–9, 2004.http://www.ghgt7.ca/

    Google Scholar 

  • Torgersen, T., and Clarke, W.B., 1987, Helium accumulation in groundwater, III. Limits on He transfer across the mantle-crust boundary beneath Australia and the magnitude of mantle degassing, EPSL 84: 345–355.

    Article  CAS  Google Scholar 

  • Wilson, M. and Monea, M. (Eds.), 2004, IEA-GHG Weyburn CO2 Monitoring and Storage Summary Report 2000–2004. In: Proc. 7 th International Conference on Greenhouse Gas Control Technologies. Vol. III, Petroleum Technology Research Center (PTRC Eds.), 243 pp.

    Google Scholar 

  • Veizel, J. and Compston, W., 2004, 87Sr/86Sr composition of seawater during the Phanerozoic, Geochimica Cosmoc. Acta 38: 1461–1484.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Quattrocchi, F. et al. (2006). STRONTIUM ISOTOPE (87SR/86SR) CHEMISTRY IN PRODUCED OIL FIELD WATERS: THE IEA CO2 MONITORING AND STORAGE PROJECT. In: Lombardi, S., Altunina, L., Beaubien, S. (eds) Advances in the Geological Storage of Carbon Dioxide. Nato Science Series: IV: Earth and Environmental Sciences, vol 65. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4471-2_20

Download citation

Publish with us

Policies and ethics