Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajay and Murcko M. A. 1995. Computational methods to predict binding free energy in ligand-receptor complexes. J. Med. Chem. 38(26), 4953-4967.

    Google Scholar 

  • Andrews P. R., Craik D. J. and Martin J. L. 1984. Functional-Group Contributions to Drug Receptor Interactions. J. Med. Chem. 27(12), 1648-1657.

    Article  Google Scholar 

  • Atkins P. W. 1998. Physical Chemistry. 6th ed. Oxford University Press.

    Google Scholar 

  • Bindewald E. and Skolnick J. 2005. A scoring function for docking ligands to low-resolution protein structures. J. Comput. Chem. 26(4), 374-383.

    Article  CAS  Google Scholar 

  • Bissantz C., Bernard P., Hibert M. and Rognan D. 2003. Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets? Proteins-Structure Function and Genetics 50(1), 5-25.

    Article  CAS  Google Scholar 

  • Bissantz, C., Folkers G. and Rognan D. 2000. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J. Med. Chem. 43(25), 4759-4767.

    Article  CAS  Google Scholar 

  • Bohm H. J. and Klebe G. 1996. What can we learn from molecular recognition in protein-ligand complexes for the design of new drugs? Angew. Chem. Int. Ed. Engl. 35(22), 2589-2614.

    Google Scholar 

  • Bohm H. J. and Stahl M. 1999. Rapid empirical scoring functions in virtual screening applications. Med. Chem. Res. 9(7-8), 445-462.

    Google Scholar 

  • Bohm, H. J. 1994. The Development of a Simple Empirical Scoring Function to Estimate the Binding Constant for a Protein Ligand Complex of Known 3-Dimensional Structure. J. Comput. Aided Mol. Des. 8(3), 243-256.

    Article  Google Scholar 

  • Bostrom J., Norrby P. O. and Liljefors T. 1998. Conformational energy penalties of protein-bound ligands. J. Comput. Aided Mol. Des. 12(4), 383-396.

    Article  Google Scholar 

  • Brooks B. R., Bruccoleri R. E., Olafson B. D., States D. J., Swaminathan S. and Karplus M. 1983. Charmm - a Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 4(2), 187-217.

    Article  Google Scholar 

  • Charifson P. S., Corkery J. J., Murcko M. A. Walters W. P. 1999. Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J. Med. Chem. 42(25), 5100-5109.

    Article  CAS  Google Scholar 

  • Chuaqui C., Deng Z., and Singh J. 2005. Interaction profiles of protein kinase-inhibitor complexes and their application to virtual screening. J. Med. Chem. 48(1), 121-133.

    Article  CAS  Google Scholar 

  • Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. and Kollman, P. A. 1995. A 2nd Generation Force-Field for the Simulation of Proteins, Nucleic-Acids, and Organic-Molecules. J. Am. Chem. Soc. 117(19), 5179-5197.

    Article  Google Scholar 

  • Deng, Z., Chuaqui C., and J. Singh J. 2004 Structural interaction fingerprint (SIFt): A novel method for analyzing three-dimensional protein-ligand binding interactions. J. Med. Chem. 47(2), 337-344.

    Article  CAS  Google Scholar 

  • DeWitte R. S. and Shakhnovich E. I. 1996. SMoG: de Novo design method based on simple, fast, and accurate free energy estimates .1. Methodology and supporting evidence. J. Am. Chem. Soc. 118(47), 11733-11744.

    Article  Google Scholar 

  • DeWitte R. S., Ishchenko A. V. and Shakhnovich E. I. 1997. SMoG: De novo design method based on simple, fast, and accurate free energy estimates .2. Case studies in molecular design. J. Am. Chem. Soc. 119(20), 4608-4617.

    Article  Google Scholar 

  • Eldridge M. D., Murray C. W., Auton T. R., Paolini G. V. and Mee1 R. P. 1997. Empirical scoring functions .1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des. 11(5), 425-445.

    Article  Google Scholar 

  • Ewing T. J. A., Makino S., Skillman A. G. and Kuntz I. D. 2001 DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 15(5), 411-428.

    Article  Google Scholar 

  • Feher M., Deretey E., and Roy S. 2003. BHB: A simple knowledge-based scoring function to improve the efficiency of database screening. J. Chem. Inf. Comput. Sci. 43(4), 1316-1327.

    Article  CAS  Google Scholar 

  • Ferrara P., Gohlke H., Price D., Klebe G. and Brooks C. L. 2004. Assessing scoring functions for protein-ligand interactions. J. Med. Chem. 47(12), 3032-3047.

    Article  CAS  Google Scholar 

  • Friesner R. A., Banks J. L., Murphy R. B., Halgren T. A., Klicic J. J., Mainz D. T., Repasky M. P., Knoll E. H., Shelley M., Perry J. K. et al. 2004, Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47(7), 1739-1749.

    Article  CAS  Google Scholar 

  • Gehlhaar, D. K., Verkhivkerl G. M., Rejtol P. A. and Freer S. T. 1995. Molecular Recognition of the Inhibitor Ag-1343 by Hiv-1 Protease - Conformationally Flexible Docking by Evolutionary Programming. Chem. Biol. 2(5), 317-324.

    Article  Google Scholar 

  • Giordanetto F., Cotesta S., Catana C., J-Y, Trosset A., Vulpetti P. F. W., Stouten R. T. and Kroemer 2004. Novel scoring functions comprising QXP, SASA, and protein side-chain entropy terms. J. Chem. Inf. Comput. Sci. 44(3), 882-893.

    Article  PubMed  CAS  Google Scholar 

  • Gohlke H., Hendlich M. and Klebe G. 2000. Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 295(2), 337-356.

    Article  PubMed  CAS  Google Scholar 

  • Gohlke H., Hendlich M. and Klebe G. 2000. Predicting binding modes, binding affinities and ’hot spots’ for protein-ligand complexes using a knowledge-based scoring function. Perspect. Drug Discovery Des. 20(1), 115-144.

    Article  CAS  Google Scholar 

  • Greer J., Erickson J. W., Baldwin J. J. and Varney M. D. 1994. Application of the 3-Dimensional Structures of Protein Target Molecules in Structure-Based Drug Design. J. Med. Chem. 37(8), 1035-1054.

    Article  PubMed  CAS  Google Scholar 

  • Gunther J., Bergner A., Hendlich M. and Klebe G. 2003. Utilising structural knowledge in drug design strategies: Applications using relibase. J. Mol. Biol. 326(2), 621-636.

    Article  PubMed  CAS  Google Scholar 

  • Guo J. X., Hurley M. M., Wright J. B. and Lushington G. H. 2004. A docking score function for estimating ligand-protein interactions: Application to acetylcholinesterase inhibition. J. Med. Chem. 47(22), 5492-5500.

    Article  PubMed  CAS  Google Scholar 

  • Halgren T. A., Murphy R. B., Friesner R. A., Beard H. S., Frye L. L., Pollard W. T. and Banks J. L. 2004. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47(7), 1750-1759.

    Article  PubMed  CAS  Google Scholar 

  • Halperin I., Ma B., Wolfson H. and Nussinov R. 2002. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins-Structure Function and Genetics 47(4), 409-443.

    Article  CAS  Google Scholar 

  • Head R. D., Smythe M. L., Oprea T. I., Waller C. L., Green S. M. and Marshall G. R. 1996. VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands. J. Am. Chem. Soc. 118(16), 3959-3969.

    Article  CAS  Google Scholar 

  • Hendlich M., Bergner A., Gunther J. and Klebe G. 2003. Relibase: Design and development of a database for comprehensive analysis of protein-ligand interactions. J. Mol. Biol. 326(2), 607-620.

    Article  PubMed  CAS  Google Scholar 

  • Ishchenko A. V. E. I. and Shakhnovich 2001. SMall molecule growth (SMoG2001): An improved knowledge-based scoring function for protein-ligand interactions. J. Med. Chem. 45(13), 2770-2780.

    Article  CAS  Google Scholar 

  • Jacobsson M., Lidèn P., Stjernschantz E., Boström H. and Norinder U. 2003. Improving structure-based virtual screening by multivariate analysis of scoring data. J. Med. Chem. 46(26), 5781-5789.

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey G. A. and Saenger W. 1991. Hydrogen bonding in biological structures. Springer-Verlag.

    Google Scholar 

  • Jones G., Willett P., Glen R. C., Leach A. R. and Taylor R. 1997. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267(3), 727-748.

    Article  PubMed  CAS  Google Scholar 

  • Kellenberger E., Rodrigo J., Muller P. and Rognan D. 2004. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins-Structure Function and Bioinformatics 57(2), 225-242.

    Article  CAS  Google Scholar 

  • Klon A. E., Glick M., Thoma M., Acklin P. and Davies J. W. 2004. Finding more needles in the haystack: A simple and efficient method for improving high-throughput docking results. J. Med. Chem. 47(11), 2743-2749.

    Article  PubMed  CAS  Google Scholar 

  • Kollman P. 1993. Free-Energy Calculations - Applications to Chemical and Biochemical Phenomena. Chem. Rev. 93(7), 2395-2417.

    Article  CAS  Google Scholar 

  • Kontoyianni M., McClellan L. M. and Sokol G. S. 2004. Evaluation of docking performance: Comparative data on docking algorithms. J. Med. Chem. 47(3), 558-565.

    Article  PubMed  CAS  Google Scholar 

  • Krovat E. M. T. and Langer 2004. Impact of scoring functions on enrichment in docking-based virtual screening: An application study on renin inhibitors. J. Chem. Inf. Comput. Sci. 44(3), 1123-1129.

    Article  PubMed  CAS  Google Scholar 

  • Kubinyi H. 1997. QSAR and 3D QSAR in drug design .1. Methodology. Drug Discovery Today 2(11), 457-467.

    Article  CAS  Google Scholar 

  • Kubinyi H. 1997. QSAR and 3D QSAR in drug design .2. Applications and problems. Drug Discovery Today 2(12), 538-546.

    Article  CAS  Google Scholar 

  • Kuntz I. D., Blaney J. M., Oatley S. J., Langridge R. and Ferrin T. E. 1982. A Geometric Approach to Macromolecule-Ligand Interactions. J. Mol. Biol. 161(2), 269-288.

    Article  PubMed  CAS  Google Scholar 

  • Kuntz I. D., Chen K., Sharp K. A. and Kollman P. A. 1999. The maximal affinity of ligands. Proc. Natl. Acad. Sci. U. S. A. 96(18), 9997-10002.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Laederach A. and Reilly P. J. 2003. Specific empirical free energy function for automated docking of carbohydrates to proteins. J. Comput. Chem. 24(14), 1748-1757.

    Article  PubMed  CAS  Google Scholar 

  • Leach A. R. 2001. Molecular Modelling: Principles and Applications. 2nd ed. Prentice Hall.

    Google Scholar 

  • Lipinski C. A., Lombardo F., Dominy B. W. and Feeney P. J. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46(1-3), 3-26.

    Article  CAS  Google Scholar 

  • Lipinski C. A., Lombardo B. W., Dominy P. J. and Feeney 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23(1-3), 3-25.

    Article  CAS  Google Scholar 

  • Liu H. Y., Kuntz I. D. and Zou X. Q. 2004. Pairwise GB/SA scoring function for structure-based drug design. J. Phys. Chem. B 108(17), 5453-5462.

    Article  CAS  Google Scholar 

  • Luo R. M. K. and Gilson 2000. Synthetic adenine receptors: Direct calculation of binding affinity and entropy. J. Am. Chem. Soc. 122(12), 2934-2937.

    Article  CAS  Google Scholar 

  • Majeux N., Scarsi M., Apostolakis J., Ehrhardt C. and Caflisch A. 1999. Exhaustive docking of molecular fragments with electrostatic solvation. Proteins-Structure Function and Genetics 37(1), 88-105.

    Article  CAS  Google Scholar 

  • Mancera R. L., Kallblad P. and Todorov N. P. 2004. Ligand-protein docking using a quantum stochastic tunneling optimization method. J. Comput. Chem. 25(6), 858-864.

    Article  PubMed  CAS  Google Scholar 

  • Mardis K. L., Luo R. and Gilson M. K. 2001. Interpreting trends in the binding of cyclic ureas to HIV-1 protease. J. Mol. Biol. 309(2), 507-517.

    Article  PubMed  CAS  Google Scholar 

  • Mark A. E. W. F., Van and Gunsteren 1994. Decomposition of the Free-Energy of a System in Terms of Specific Interactions - Implications for Theoretical and Experimental Studies. J. Mol. Biol. 240(2), 167-176.

    Article  PubMed  CAS  Google Scholar 

  • McMartin C. R. S. and Bohacek 1997. QXP: Powerful, rapid computer algorithms for structure-based drug design. J. Comput. Aided Mol. Des. 11(4), 333-344.

    Article  PubMed  CAS  Google Scholar 

  • Meng E. C., Shoichet B. K. and Kuntz I. D. 1992. Automated Docking with Grid-Based Energy Evaluation. J. Comput. Chem. 13(4), 505-524.

    Article  CAS  Google Scholar 

  • Mitchell J. B. O., Laskowski R. A., Alex A. and Thornton J. M. 1999. BLEEP - Potential of mean force describing protein-ligand interactions: II. Calculation of binding energies and comparison with experimental data. J. Comput. Chem. 20(11), 1177-1185.

    Article  CAS  Google Scholar 

  • Mitchell J. B. O., Laskowski R. A., Alex A., Forster M. J. and Thornton J. M. 1999. BLEEP - Potential of mean force describing protein-ligand interactions: I. Generating potential. J. Comput. Chem. 20(11), 1165-1176.

    CAS  Google Scholar 

  • Mizutani M. Y., Tomioka N. and Itai A. 1994. Rational Automatic Search Method for Stable Docking Models of Protein and Ligand. J. Mol. Biol. 243(2), 310-326.

    Article  PubMed  CAS  Google Scholar 

  • Muegge I. Y. C. and Martin 1999. A general and fast scoring function for protein-ligand interactions: A simplified potential approach. J. Med. Chem. 42(5), 791-804.

    Article  PubMed  CAS  Google Scholar 

  • Muegge I. 2000. A knowledge-based scoring function for protein-ligand interactions: Probing the reference state. Perspect. Drug Discovery Des. 20(1), 99-114.

    Article  CAS  Google Scholar 

  • Muegge I. 2001. Effect of ligand volume correction on PMF scoring. J. Comput. Chem. 22(4), 418-425.

    Article  CAS  Google Scholar 

  • Muegge I., Martin Y. C., Hajduk P. J. and Fesik S. W. 1999. Evaluation of PMF scoring in docking weak ligands to the FK506 binding protein. J. Med. Chem. 42(14), 2498-2503.

    Article  PubMed  CAS  Google Scholar 

  • Muegge I. 1999. Protein-ligand docking with a knowledge-based scoring function. Abstracts of Papers of the American Chemical Society 218, U493-U493.

    Google Scholar 

  • Muegge I. A. 2004. PMF scoring revisited. Abstracts of Papers of the American Chemical Society 228, U515-U515.

    Google Scholar 

  • Muryshev A. E., Tarasov D. N., Butygin A. V., Butygina O. Y., Aleksandrov A. B. and Nikitin S. M. 2003. A novel scoring function for molecular docking. J. Comput. Aided Mol. Des. 17, 597-605.

    Article  PubMed  CAS  Google Scholar 

  • Nissink J. W. M., Murray C., Hartshorn M., Verdonk M. L., Cole J. C. and Taylor R. 2002. A new test set for validating predictions of protein-ligand interaction. Proteins-Structure Function and Genetics 49(4), 457-471.

    Article  CAS  Google Scholar 

  • Pan Y. P., Huang N., Cho S., MacKerell A. D. and Jr 2003. Consideration of molecular weight during compound selection in virtual target-based database screening. J. Chem. Inf. Comput. Sci. 43(1), 267-272.

    Article  PubMed  CAS  Google Scholar 

  • Pearlman D. A.and Charifson P. S. 2001. Improved scoring of ligand-protein interactions using OWFEG free energy grids. J. Med. Chem. 44(4), 502-511.

    Article  PubMed  CAS  Google Scholar 

  • Pearlman D. A. 1999. Free energy grids: A practical qualitative application of free energy perturbation to ligand design using the OWFEG method. J. Med. Chem. 42(21), 4313-4324.

    Article  PubMed  CAS  Google Scholar 

  • Perola E., Walters W. P. and Charifson P. S. 2004. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins-Structure Function and Bioinformatics 56(2), 235-249.

    Article  CAS  Google Scholar 

  • Raha K. and Merz K. M. 2004. A quantum mechanics-based scoring function: Study of zinc ion-mediated ligand binding. J. Am. Chem. Soc. 126(4), 1020-1021.

    Article  PubMed  CAS  Google Scholar 

  • Raha K. and Merz K. M. 2005. Large-scale validation of a quantum mechanics based scoring function: Predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. J. Med. Chem. 48(14), 4558-4575.

    Article  PubMed  CAS  Google Scholar 

  • Raha K. and Merz K. M. 2004. Zinc mediated ligand binding: A quantum mechanics based approach. Abstracts of Papers of the American Chemical Society 227, U1016-U1017.

    Google Scholar 

  • Raha K., van der Vaart A. J., Riley K. E., Peters M. B., Westerhoff L. M., Kim H.,Merz K. M., and Jr 2005. Pairwise decomposition of residue interaction energies using semiempirical quantum mechanical methods in studies of protein-ligand interaction. J. Am. Chem. Soc. 127(18), 6583-6594.

    Article  PubMed  CAS  Google Scholar 

  • Roche O., Kiyama R. and Brooks C. L. 2001. Ligand-Protein DataBase: Linking protein-ligand complex structures to binding data. J. Med. Chem. 44(22), 3592-3598.

    Article  PubMed  CAS  Google Scholar 

  • Shoichet B. K., Leach A. R. and Kuntz I. D. 1999. Ligand solvation in molecular docking. Proteins-Structure Function and Genetics 34(1), 4-16.

    Article  CAS  Google Scholar 

  • Smith R., Hubbard R. E., Gschwend D. A., Leach A. R. and Good A. C. 2003. Analysis and optimization of structure-based virtual screening protocols (3). New methods and old problems in scoring function design. J. Mol. Graph. Model. 22(1), 41-53.

    Article  PubMed  CAS  Google Scholar 

  • Sotriffer C., Klebe G., Stahl M. and Bohm H. J. 2004. Docking and Scoring Functions/ Virtual Screening, in Burger’s Medicinal Chemistry and Drug Discovery. p. 281-333.

    Google Scholar 

  • Stahl M. and Rarey M. 2001. Detailed analysis of scoring functions for virtual screening. J. Med. Chem. 44(7), 1035-1042.

    Article  PubMed  CAS  Google Scholar 

  • Sussman J. L., Abola E. E., Lin D., Jiang J., Manning N. O. and Priluskyl J. 1999. The protein data bank - Bridging the gap between the sequence and 3D structure world. Genetica 106(1-2), 149-158.

    Article  PubMed  CAS  Google Scholar 

  • Taylor R. D., Jewsbury P. J. and Essex J. W. 2002. A review of protein-small molecule docking methods. J. Comput. Aided Mol. Des. 16(3), 151-166.

    Article  PubMed  CAS  Google Scholar 

  • Todorov N. P., Mancera R. L., Kallblad P. and Monthoux P. 2002. easyDock: A new docking program for high-throughput screening and binding-mode search. Abstracts of Papers of the American Chemical Society 224, U345-U345.

    Google Scholar 

  • Todorov N. P., Mancera R. L. and Monthoux P. H. 2003. A new quantum stochastic tunnelling optimisation method for protein-ligand docking. Chem. Phys. Letters 369(3-4), 257-263.

    Article  CAS  Google Scholar 

  • Velec H. F. G., Gohlke H. and Klebe G. 2005. DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J. Med. Chem. 48(20), 6296-6303.

    Article  PubMed  CAS  Google Scholar 

  • Verdonk M. L., Cole J. C., Hartshorn M. J., Murray C. W. and Taylor R. D. 2003. Improved protein-ligand docking using GOLD. Proteins-Structure Function and Genetics 52(4), 609-623.

    Article  CAS  Google Scholar 

  • Verdonk M. L., Chessari G., Cole J. C., Hartshorn M. J., Murray C. W., Nissink J. W. M., Taylor R. D. and Taylor R. 2005. Modeling Water Molecules in Protein-Ligand Docking Using GOLD. J. Med. Chem. 48, 6504-6515.

    Article  PubMed  CAS  Google Scholar 

  • Verdonk M. L., Berdini V., Hartshorn M. J., Mooij W. T. M., Murray C. W., Taylor R. D. and Watson P. 2004. Virtual screening using protein-ligand docking: Avoiding artificial enrichment. J. Chem. Inf. Comput. Sci. 44(3), 793-806.

    Article  PubMed  CAS  Google Scholar 

  • Verkhivker G., Appelt K., Freer S. T. and Villafranca J. E. 1995. Empirical Free-Energy Calculations of Ligand-Protein Crystallographic Complexes .1. Knowledge-Based Ligand-Protein Interaction Potentials Applied to the Prediction of Human-Immunodeficiency-Virus-1 Protease Binding-Affinity. Protein Eng. 8(7), 677-691.

    Article  PubMed  CAS  Google Scholar 

  • Vieth M., Hirst J. D., Kolinski A. and Brooks C. L. 1998. Assessing energy functions for flexible docking. J. Comput. Chem. 19(14), 1612-1622.

    Article  CAS  Google Scholar 

  • Vigers G. P. A. and Rizzi J. P. 2004. Multiple active site corrections for docking and virtual screening. J. Med. Chem. 47(1), 80-89.

    Article  PubMed  CAS  Google Scholar 

  • Wang R. X. and Wang S. M. 2001. How does consensus scoring work for virtual library screening? An idealized computer experiment. J. Chem. Inf. Comput. Sci. 41(5), 1422-1426.

    Article  PubMed  CAS  Google Scholar 

  • Wang R. X., Lu Y., Fang X. and Wang S. 2004. An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes. J. Chem. Inf. Comput. Sci. 44(6), 2114-2125.

    Article  PubMed  CAS  Google Scholar 

  • Wang R. X., Lu Y., Fang X. and Wang S. 1998. SCORE: A new empirical method for estimating the binding affinity of a protein-ligand complex. J. Mol. Model. 4(12), 379-394.

    Article  CAS  Google Scholar 

  • Wang R. X., Fang X., Lu Y. and Wang S. 2004. The PDBbind database: Collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J. Med. Chem. 47(12), 2977-2980.

    Article  PubMed  CAS  Google Scholar 

  • Wang R. X., Fang X., Lu Y. and Wang S. 2005. The PDBbind database: Methodologies and updates. J. Med. Chem. 48(12), 4111-4119.

    Article  PubMed  CAS  Google Scholar 

  • Wang R. X., Lai L. H. and Wang S. M. 2002. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 16(1), 11-26.

    Article  PubMed  CAS  Google Scholar 

  • Wang R. X., Lu Y. P. and Wang S. M. 2003. Comparative evaluation of 11 scoring functions for molecular docking. J. Med. Chem. 46(12), 2287-2303.

    Article  PubMed  CAS  Google Scholar 

  • Yang J. M. and Chen C. C. 2004. GEMDOCK: A generic evolutionary method for molecular docking. Proteins-Structure Function and Bioinformatics 55(2), 288-304.

    Article  CAS  Google Scholar 

  • Zou X. Q., Sun Y. X. and Kuntz I. D. 1999. Inclusion of solvation in ligand binding free energy calculations using the generalized-born model. J. Am. Chem. Soc. 121(35), 8033-8043.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Fenu, L.A., Lewis, R.A., Good, A.C., Bodkin, M., Essex, J.W. (2007). Scoring Functions. In: Structure-Based Drug Discovery. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4407-0_9

Download citation

Publish with us

Policies and ethics