Skip to main content

DIELECTRIC AND INFRARED PROPERTIES OF ULTRATHIN SiO2 LAYERS ON Si(100)

  • Conference paper
Defects in High-k Gate Dielectric Stacks

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 220))

Abstract

The occurrence of an ultrathin SiO2 oxide layer at the interface between silicon and high-k dielectrics in metal-oxide-semiconductor devices contributes to degrading the capacitance of the gate stack. In this work, we investigate the dielectric and infrared properties of atomically thin SiO2 layers on Si(100) through a fully quantum-mechanical description. For this purpose, we construct atomistic models of the Si(100)-SiO2 interface on the basis of available experimental data, by using both classical and first-principles simulation methods. Our model structures account for the experimental density of coordination defects, the distribution of partially oxidized Si atoms, the oxide mass density profile, and the lateral displacements of the Si atoms in the channel region. Our first principles calculations indicate that the permittivity of the SiO2 layer departs from the bulk value in the limit of atomically thin oxides. This departure is well described through the consideration of an interfacial suboxide layer with a thickness of about 0.5 nm and a dielectric constant of about 6-7. As a consequence, the equivalent oxide thickness of the interfacial layer is smaller than the corresponding physical thickness by 0.2-0.3 nm. Variations of the local dielectric screening occur on length scales corresponding to first-neighbor distances, indicating that the dielectric transition is governed by the chemical grading. We find that the enhanced ionic screening in the substoichiometric oxide results from Si-O bonds formed by Si atoms in the partial oxidation state Si+2. We also extend our investigation to the infrared absorption at the Si(100)-SiO2 interface. Our study allows us to shed light on the pronounced thickness-dependent red shift of the oxygen stretching modes, which has so far not found a definite interpretation. Indeed, our calculations clearly show that the red shift results from a softening of the Si-O stretching vibrations in the interfacial layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Awaji, N., Ohkubo, S., Nakanishi, T., Sugita, Y., Takasaki, K., and Komiya, S., 1996, Jpn. J. Appl. Phys. 35(1B):L67–L70.

    Google Scholar 

  • Bachelet, G. B., Hamann, D. R., and Schlüter, M., 1982, Phys. Rev. B 26(8):4199–4228.

    Article  Google Scholar 

  • Bongiorno, A. and Pasquarello, A., 2003, Appl. Phys. Lett. 83(7):1417–1419.

    Article  Google Scholar 

  • Bongiorno, A., Pasquarello, A., Hybertsen, M. S., and Feldman, L. C., 2003, Phys. Rev. Lett. 90(18):186101.

    Article  Google Scholar 

  • Boyd, I. W. and Wilson, J. I. B., 1987, J. Appl. Phys. 62(8):3195–3200.

    Article  Google Scholar 

  • Chang, H. S., Yang, H. D., Hwang, H., Cho, H. M., Lee, H. J., and Moon, D. W., 2002, J. Vac. Sci. Technol. B 20(5):1836–1842.

    Google Scholar 

  • Devine, R. A. B., 1996, Appl. Phys. Lett. 68(22):3108–3110.

    Article  Google Scholar 

  • Dal Corso, A., Baroni, S., and Resta, R., 1994, Phys. Rev. B 49(8):5323–5328.

    Article  Google Scholar 

  • Dal Corso, A., Pasquarello, A., Baldereschi, A., and Car, R., 1996, Phys. Rev. B 53(3): 1180–1185.

    Article  Google Scholar 

  • Giustino, F., Umari, P. and, Pasquarello A., 2003, Phys. Rev. Lett. 91(26):267601.

    Article  Google Scholar 

  • Giustino, F., 2005, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne.

    Google Scholar 

  • Giustino, F. and Pasquarello, A., 2005a, Phys. Rev. B 71(14):144104.

    Article  Google Scholar 

  • Giustino, F. and Pasquarello, A., 2005b, Appl. Phys. Lett. 86:192901.

    Article  Google Scholar 

  • Giustino, F. and, Pasquarello A., 2005c, Microel. Eng. 80:420–423.

    Google Scholar 

  • Gonze, X., Allan, D. C., and Teter, M. P., 1992, Phys. Rev. Lett. 68(24):3603–3606.

    Article  Google Scholar 

  • Gonze, X., Ghosez, Ph., and Godby, R. W., 1995, Phys. Rev. Lett. 74(20):4035–4038.

    Article  Google Scholar 

  • Harris, H., Choi, K., Mehta, N., Chandolu, A., Biswas, N., Kipshidze, G., Nikishin, S., Gangopadhyay, S., and Temkin, H., 2002, Appl. Phys. Lett. 81(6):1065–1067.

    Article  Google Scholar 

  • Hirose, K., Kitahara, H., and Hattori, T., 2003, Phys. Rev. B 67(19):195313.

    Google Scholar 

  • Kirk, C. T., 1988, Phys. Rev. B 38(2):1255–1273.

    Article  MathSciNet  Google Scholar 

  • Kosowsky, S. D., Pershan, P. S., Krish, K. S., Bevk, J., Green, M. L., Brasen, D., and Feldman, L. C., 1997, Appl Phys. Lett. 70(23):3119–3121.

    Article  Google Scholar 

  • Miyazaki, S., Nishimura, H., Fukuda, M., Ley, L., and Ristein, J., 1997, Appl. Surf. Sci. 113/114:585–589.

    Article  Google Scholar 

  • Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., Evans-Lutterodt, K., and Timp, G., 1999, Nature (London), 399(6738):758–761.

    Article  Google Scholar 

  • Muller, D. A. and Wilk, G. D., 2001, Appl. Phys. Lett. 79(25):4195–4197.

    Article  Google Scholar 

  • Nakamura, M., Mochizuki, Y., Usami, K., Itoh, Y., and Nozaki, T., 1984, Solid State Commun. 50(12):1079–1081.

    Article  Google Scholar 

  • Oh, J. H., Yeom, H. W., Hagimoto, Y., Ono K., Oshima, M., Hirashita, N., Nywa, M., Toriumi, A., and Kakizaki, A., 2001, Phys. Rev. B 63(20):205310.

    Article  Google Scholar 

  • Ohwaki, T., Takeda, M., and Takai, Y., 1997, Jpn. J. Appl. Phys. 36(9A):5507–5513.

    Google Scholar 

  • Pai, P. G., Chao, S. S., Takagi, Y., and Lucovsky, G., 1986, J. Vac. Sci. Technol. A 4(3):689–694.

    Article  Google Scholar 

  • Pasquarello, A., Laasonen, K., Car, R., Lee, C., and Vanderbilt, D., 1992, Phys. Rev. Lett. 69(13):1982–1985.

    Article  Google Scholar 

  • Pasquarello, A. and Car, R., 1997, Phys. Rev. Lett. 79(9): 1766–1769.

    Article  Google Scholar 

  • Pasquarello, A., Hybertsen, M. S., and Car, R., 1998, Nature (London) 396(6706):58–60.

    Article  Google Scholar 

  • Perdew, J. P. and Zunger, A., 1981, Phys. Rev. B 23(10):5048–5079.

    Article  Google Scholar 

  • Perdew, J. P. and Wang, Y., 1992, Phys. Rev. B 46(20):12947–12954.

    Article  Google Scholar 

  • Perkins, C. M., Triplett, B. B., McIntyre, P. C., Saraswat, K. C., Haukka, S., and Tuominen, M., 2001, Appl. Phys. Lett. 78(16):2357–2359.

    Article  Google Scholar 

  • Queeney, K. T.,Weldon, M. K., Chang, J. P., Chabal, Y. J., Gurevich, A. B., Sapjeta, J., and Opila, R. L., 2000, J. Appl. Phys. 87(3): 1322–1330.

    Article  Google Scholar 

  • Queeney, K. T., Herbots, N., Shaw, J. M., Atluri, V., and Chabal, Y. J., 2004, Appl. Phys. Lett. 84(4):493–495.

    Article  Google Scholar 

  • Rochet, F., Poncey, Ch., Dufour, G., Roulet, H., Guillot, C., and Sirotti, F., 1997, J. Non-Crystall. Sol. 216:148–155.

    Google Scholar 

  • Schumann, L., Lehmann, A., Sobotta, Ff., Riede, V., Teschner, U., and Hübner, K., 1982, Phys. Stat. Sol. B 110(1):K69–K73.

    Google Scholar 

  • Semiconductor Industry Association, 2003, International Technology Roadmap for Semiconductors, http:llpublic.itrs.net Stesmans, A. and Afanas’ev, V. V., 1998, J. Phys.: Condens. Matter 10(1):L19–L25.

    Google Scholar 

  • Umari, P. and Pasquarello, A., 2002, Phys. Rev. Lett. 89(15):157602.

    Article  Google Scholar 

  • Vanderbilt, D., 1990, Phys. Rev. B 41(11):7892–7895.

    Article  Google Scholar 

  • Van Elshocht, S., Caymax, M., De Gendt, S., Conard, T., Petty, J., Daté, L., Pique, D., and Heyns, M. M., 2004, J. Electrochem. Soc. 151:F77.

    Google Scholar 

  • Vashishta, P., Kalia, R. K., Rinò, J. P., and Ebbsjö, L., 1990, Phys. Rev. B 41(17):12197–12209.

    Article  Google Scholar 

  • Wells, J.-P. R., Van Hattum, E. D., Phillips, P. J., Carder, D. A., Habraken, F. H. P. M., and Dijkhuis, J. L., 2004, J. Lumin. 108(1–4):173–176.

    Google Scholar 

  • Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys. 89(10):5243–5275.

    Google Scholar 

  • Witczak, S. C., Suehle, J. S., and Gaitan, M., 1992, Solid-State Electron. 35(3):345–355.

    Article  Google Scholar 

  • Yu, P. Y., and Cardona, M., 2003, Fundamentals of Semiconductors: Physics and Materials Properties, 3rd ed., Springer-Verlag, New York, p. 337.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

GIUSTINO, F., PASQUARELLO, A. (2006). DIELECTRIC AND INFRARED PROPERTIES OF ULTRATHIN SiO2 LAYERS ON Si(100). In: Gusev, E. (eds) Defects in High-k Gate Dielectric Stacks. NATO Science Series II: Mathematics, Physics and Chemistry, vol 220. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4367-8_31

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4367-8_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4365-9

  • Online ISBN: 978-1-4020-4367-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics