Skip to main content

Soil microorganisms: An important determinant of allelopathic activity

  • Chapter

Part of the book series: Plant Ecophysiology ((KLEC,volume 4))

Abstract

Current evidence illustrates the significance of soil microbes in influencing the bioavailability of allelochemicals. This review discusses (i) the significance of soil microorganisms in influencing allelopathic expression, (ii) different ways of avoiding microbial degradation of putative allelochemicals, and (iii) the need of incorporating experiments on microbial modification of allelochemicals in laboratory bioassays for allelopathy. Several climatic and edaphic factors affect the soil microflora; therefore, allelopathy should be assessed in a range of soil types. Allelopathy can be better understood in terms of soil microbial ecology, and appropriate methodologies are needed to evaluate the roles of soil microorganisms in chemically mediated interactions between plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson T H and Domsch K H 1985 Determination of ecophysiological maintanence carbon requirements of soil microorganisms in a dormant site. Biol. Fert. Soils 1, 81–89.

    Article  CAS  Google Scholar 

  • Armstrong S and Patel T R 1993 1,3,5-trihydroxybenzene biodegradation by Rhodococcus sp. BPG-8. Can. J. Microbiol. 39, 175–179.

    CAS  PubMed  Google Scholar 

  • Barazani O and Friedman J 1999 Allelopathic bacteria. In Principles and Practices in Plant Ecology: Allelochemical Interactions. Eds. Inderjit, K M M Dakshini and CL Foy. pp. 149–163. CRG Press, Boca Raton, FL.

    Google Scholar 

  • Blum U 1998 Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24, 685–708.

    Article  CAS  Google Scholar 

  • Blum U and Shafer S R 1988 Microbial populations and phenolic acids in soils. Soil Biol. Biochem. 20, 793–800.

    Article  CAS  Google Scholar 

  • Blum U, Gerig T M, Worsham A D and King L D 1993 Modification of allelopathic effects of p-Coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate. J. Chem. Ecol. 19, 2791–2811.

    Article  CAS  Google Scholar 

  • Blum U, Shafer S R and Lehman M E 1999 Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. experimental model. Crit. Rev. Plant Sci. 18, 673–693.

    CAS  Google Scholar 

  • Blum U, Staman K L, Flint L J and Shafer S R 2000 Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J. Chem. Ecol. 26, 2059–2078.

    CAS  Google Scholar 

  • Chase W R, Nair M G, Putnam A R and Mishra S K 1991 2, 2′oxo-1, 1′-azobenzene: microbial transformation of rye (Secale cereale L.) allelochemicals in field soils by Acinetobacter calcoaceticus: III. J. Chem. Ecol. 17, 1575–1584.

    CAS  Google Scholar 

  • Cheng H H 1995 Characterization of the mechanisms of allelopathy: Modeling and experimental approaches. In Allelopathy: Organisms, Processes and Applications. Eds. Inderjit., K M M Dakshini and F A Einhellig. pp. 132–141. American Chemical Society, Washington, DC.

    Google Scholar 

  • Choesin D N and Boerner R E J 1991 Allyl isothiocyanate release and the allelopathic potential of Brassica napus (Brassicaceae). Am. J. Bot. 78, 1083–1090.

    CAS  Google Scholar 

  • Dalton B R 1989 Physicochemical and biological processes affecting the recovery of exogenously applied ferulic acid from tropical forest soils. Plant Soil 115, 13–22.

    Article  CAS  Google Scholar 

  • Dalton B R 1999 The occurrence and behavior of plant phenolic acids in soil environment and their potential involvement in allelochemical interference interactions: methodological limitations in establishing conclusive proof of allelopathy. In Principles and Practices in Plant Ecology: Allelochemical Interactions. Eds. Inderjit, K M M Dakshini and C L Foy. pp. 57–74. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Fischer N H, Williamson G B, Weidenhamer J D and Richardson D R 1994 In search of allelopathy in the Florida scrub: the role of terpenoids. J. Chem. Ecol. 20, 1355–1380.

    Article  CAS  Google Scholar 

  • Foy C L 1999 How to make bioassays for allelopathy more relevant to field conditions with particular reference to cropland weeds. In Principles and Practices in Plant Ecology: Allelochemical Interactions. Eds. Inderjit, K M M Dakshini and C L Foy. pp. 25–33. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Gagliardo R W and Chilton W S 1992 Soil transformation of 2(3H)-benzoxazolone of rye into phytotoxic 2-amino-3Hphenoxazin-3-one. J. Chem. Ecol. 18, 1683–1691.

    CAS  Google Scholar 

  • Gand E, Hanson J R and Nasir H 1995 The biotransformation of 8-epicedrol and some relatives by Cephalosporium aphicola. Phytochemistry 39, 1081–1084.

    Article  CAS  Google Scholar 

  • Grant W D 1976 Microbial degradation of condensed tannins. Science 193, 1137–1138.

    CAS  PubMed  Google Scholar 

  • Hanson J R and Nasir H. 1993 Biotrans formation of sesquiterpenoid, cedrol, by Cephalosporium aphidicola. Phytochemistry 33, 835–837.

    CAS  Google Scholar 

  • Hashidoko Y, Urashima M, Yoshida T and Mizutani J 1993 Decarboxylative conversion of hydrocinnamic acids by Klebsiella oxytoca and Erwinia uredovora, epiphytic bacteria of Polymnia sonchifolia leaf, possibly associated with formation of microflora on the damaged leaves. Biosci. Biotech. Biochem. 57, 215–219.

    CAS  Google Scholar 

  • Hattori S and Noguchi I 1959 Microbial degradation of rutin. Nature 184, 1145–1146.

    CAS  PubMed  Google Scholar 

  • Henderson M E K 1956 A study of the metabolism of phenolic compounds by soil fungi using spore suspension. J. Gen. Microbiol. 14, 684–691.

    CAS  PubMed  Google Scholar 

  • Holowczak J, Kuc J and Williams E G 1960 Metabolism in vitro of phloridzin and other host compounds by Venturia inaequalis. Phytopathology 50, 640.

    Google Scholar 

  • Huang P M, Wang M C and Wang M K 1999 Catalytic transformation of phenolic compounds in the soil. In Principles and Practices in Plant Ecology: Allelochemical Interactions. Eds. Inderjit, K M M Dakshini and CL Foy. pp. 287–306. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Inderjit 1996 Plant phenolics in allelopathy. Bot. Rev. 62, 186–202.

    Google Scholar 

  • Inderjit 1998 Influence of Pluchea lanceolata on some selected soil properties. Am. J. Bot. 85, 64–69.

    Google Scholar 

  • Inderjit 2001 Soils: environmental effect on allelochemical activity. Agron J 93, 79–84.

    CAS  Google Scholar 

  • Inderjit and Callaway R M 2003 Experimental designs for the study of allelopathy. Plant Soil 256, 1–11.

    CAS  Google Scholar 

  • Inderjit and Dakshini K M M 1991 Investigations on some aspects of chemical ecology of cogongrass, Imperata cylindrica (L.) Beauv. J. Chem. Ecol. 17, 343–352.

    CAS  Google Scholar 

  • Inderjit and Dakshini K M M 1994a Allelopathic effect of Pluchea lanceolata (Asteraceae) on characteristics of four soils and tomato and mustard growth. Am. J. Bot. 81, 799–804.

    Google Scholar 

  • Inderjit and Dakshini K M M 1994b Allelopathic potential of phenolics from the roots of Pluchea lanceolata. Physiol. Plant. 92, 571–576.

    CAS  Google Scholar 

  • Inderjit and Dakshini K M M 1995a Quercetin and quercitrin from Pluchea lanceolata and their effects on growth of asparagus bean. In Allelopathy: Organisms, Processes and Applications. Eds. Inderjit, K M M Dakshini and F A Einhellig. pp. 86–95. American Chemical Society, Washington, DC.

    Google Scholar 

  • Inderjit and Dakshini K M M 1995b On laboratory bioassays in allelopathy. Bot. Rev. 61, 28–44.

    Google Scholar 

  • Inderjit and Dakshini K M M 1996b Allelopathic potential of Pluchea lanceolata: comparative study of cultivated fields. Weed Sci. 44, 393–396.

    CAS  Google Scholar 

  • Inderjit and Dakshini K M M 1999a Allelopathic potential of well water from Pluchea lanceolata-infested cultivated fields. J. Chem. Ecol. 22, 1123–1131.

    Google Scholar 

  • Inderjit and Duke S O 2003 Ecophysiological aspects of allelopathy. Planta 217, 529–539.

    CAS  PubMed  Google Scholar 

  • Inderjit, Kaur S and Dakshini K M M 1996 Determination of allelopathic potential of a weed Pluchea lanceolata through a multi-faceted approach. Can. L. J. Bot. 74, 1445–1450.

    Google Scholar 

  • Inderjit and Callaway R M 2003 Experimental designs for the study of allelopathy. Plant Soil 256(1), 1–11.

    CAS  Google Scholar 

  • Inderjit Del and Moral R 1997 Is separating resource competition from allelopathy realistic?. Bot. Rev. 63, 221–230.

    Google Scholar 

  • Inderjit and Dakshini K M M 1999 Bioassay for allelopathy: interactions of soil organic and inorganic constituents. In Principles and Practices in Plant Ecology: Allelochemical Interactions. Eds. Inderjit, K M M Dakshini and C L Foy. pp. 35–44. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Inderjit and Foy C L 1999 Nature of the interference potential of mugwort (Artemisia vulgaris). Weed Technol. 13, 176–182.

    Google Scholar 

  • Inderjit and Keating K I 1999 Allelopathy: principles, procedures, processes, and promises for biological control. Adv. Agron. 67, 141–231.

    CAS  Google Scholar 

  • Inderjit and Nilsen E T 2003 Bioassays and field studies for allelopathy in terrestrial plants: progress and problems. Crit. Rev. Plant Sci. 22, 221–238.

    Google Scholar 

  • Inderjit and Weiner J 2001 Plant allelochemical interference or soil chemical ecology?. Persp.Plant Ecol. Evol. Syste. 4, 3–12.

    Google Scholar 

  • Inderjit, Cheng H H and Nishimura H 1999a Plant phenolics and terpenoids: transformation, degradation, and potential for allelopathic interactions. In Principles and Practices in Plant Ecology: Allelochemical Interactions. Eds. Inderjit, K M M Dakshini and C L Foy. pp. 255–266. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Inderjit, Asakawa C and Dakshini K M M 1999b Allelopathic potential of Verbesina encelioides root leachate in soil. Can. J. Bot. 77, 1419–1424.

    Article  CAS  Google Scholar 

  • Inderjit, Rawat D S, Foy C L, 2004 Multifaceted approach to determine rice straw phytotoxicity. Can. J. Bot. 82, 168–176.

    Article  Google Scholar 

  • Jose S 2002 Black walnut allelopathy: current state of the science. In Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems. Eds. Inderjit and A U Mallik. pp. 149–172. Birkhauser-Verlag AG, Basal.

    Google Scholar 

  • Jose S and Gillespie A R 1998 Allelopathy in black walnut (Juglans nigra L.) alley cropping. I. Spatio-temporal variation in soil juglone in a black walnut-corn (Zea mays L.) alley cropping system in the midwestera USA. Plant Soil 203, 191–197.

    CAS  Google Scholar 

  • Kaminsky R 1981 The microbial origin of the allelopathic potential of Adenostoma fasiculatum H & A. EcoL Monogr. 51, 365–382.

    CAS  Google Scholar 

  • Kaur H, Inderjit and Keating K I 2002 Do allelochemicals operate independent of substratum factors? In Chemical Ecology of Plants: Allelopathy in aquatic and terrestrial ecosystems. Eds. Inderjit and A U Mallik. pp. 99–107. Birkhauser-Verlag AG, Basal.

    Google Scholar 

  • Kumar P, Gagliardo R W and Chilton W S 1993 Soil transformation of wheat and corn metabolites MBOA and DIM2BOA into aminophenoxazinoes. J. Chem. Ecol 19, 2453–2561.

    Article  CAS  Google Scholar 

  • Kunc F 1971 Decomposition of vanillin by soil microorganisms. Folia Mcrobiol. 16, 41–50.

    CAS  Google Scholar 

  • Lambers H, Chapin F S III and Pons T L 1998 Plant Physiological Ecology. Springer-Verlag, Berlin 540 pp.

    Google Scholar 

  • Lehmann R G, Cheng H H and Harsh J B 1987 Oxidation of phenolic acids by iron and manganese oxides. Soil Sci. Soc. Am. J. 51, 352–356.

    CAS  Google Scholar 

  • Levy E and Carmeli S 1995 Biological control of plant pathogen by antibiotic-producing bacteria. In Allelopathy: Organisms, Processes and Applications. Eds. Inderjit, K M M Dakshini and F A Einhellig. pp. 300–309. American Chemical Society, Washington, DC.

    Google Scholar 

  • Lewis J A and Starkey R L 1968 Vegetable tannins, their decomposition and effects on decomposition of some organic compounds. Soil Sci. 106, 241–247.

    CAS  Google Scholar 

  • Lipson D A, Schadt C W and Schmidt S K 2002 Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microb. Ecol. 43, 307–314.

    Article  CAS  PubMed  Google Scholar 

  • Michelsen A, Schmidt I K, Jonasson S, Dighton J, Jones H E and Callaghan T V 1995 Inhibition of growth, and effects on nutrient uptake of arctic graminoids by leaf extracts-allelopathy or resource competition between plants and microbes. Oecologia 103, 407–418.

    Article  Google Scholar 

  • Nair M G, Whiteneck C J and Putnam A R 1990 2, 2′-oxo-1, 1′-azobenzene, a microbially transformed allelochemical from 2, 3-benzoxazorinone:I. J. Chem. Ecol. 16, 353–364.

    Article  CAS  Google Scholar 

  • Nishimura H, Hiramoto S, Mizutani J, Noma Y, Furusaki A and Matsumoto T 1983 Structure and biological activity of bottrospicatol, a novel monoterpene produced by microbial transformation of (-)-cis-carveol. Agric. Biol. Chem. 47, 2697–2699.

    CAS  Google Scholar 

  • Nishimura H, Noma Y and Mizutani J 1982 Eucalyptus as biomass. novel compounds from microbial conversion of 1, 8-cineole. Agric. Biol. Chem. 46, 2601–2604.

    CAS  Google Scholar 

  • Noma Y, Yamasachi S and Asakawa Y 1992a Biotransformation of limonene and related compounds by Aspergillus cellulosae. Phytochemistry 31, 2725–2727.

    CAS  Google Scholar 

  • Ponder F, Jr and Tadros S H 1985 Juglone concentration hi soil beneath black walnut interplanted with nitrogen-fixing sp. J. Chem. Ecol 11, 937–942.

    Article  CAS  Google Scholar 

  • Pue K J, Blum U, Gerig T M and Shafer S R 1995 Mechanism by which noninhibitory concentrations of glucose increase inhibitory activity of p-coumaric acid on morning-glory seedling biomass accumulation. J. Chem. Ecol. 21, 833–847.

    Article  CAS  Google Scholar 

  • Rettenmaier H, Kupas U and Lingens F 1983 Degradation of juglone by Pseudomonas putida JI. FEMS Microbiol. Lett. 19, 193–197.

    Article  CAS  Google Scholar 

  • Rice E L 1984 Allelopathy. Academic Press, Orlando, FL. 422 pp.

    Google Scholar 

  • Richardson D R and Williamson G B 1988 Allelopathic effects of shrubs of the sand pine scurb on pines and grasses of the sandhills. For. Sci. 34, 592–605.

    Google Scholar 

  • Rietveld W J 1983 Allelopathic effects of juglone on germination and growth of several herbaceous and woody species. J. Chem. Ecol 9, 295–308.

    CAS  Google Scholar 

  • Romeo J T 2000 Raising the baem: moving beyond phytotoxicity. J. Chem. Ecol. 26, 2011–2014.

    CAS  Google Scholar 

  • Romeo J T and Weidenhamer J D 1998 Bioassays for allelopathy in terrestrial plants. In Methods in Chemical Ecology. Bioas-say Methods. Eds. K F Haynes and J G Millar. pp. 179–211. Kluwer Academic Publishing, Norvell, MA.

    Google Scholar 

  • Schmidt S K and Ley R E 1999 Microbial competition and soil structure limit the expression of phytochemicals in nature. In Principles and Practices in Plant Ecology: Allelochemical Interactions. Eds. Inderjit, K M M Dakshini and C L Foy. pp. 339–351. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Schmidt S K 1988 Degradation of juglone by soil bacteria. J. Chem. Ecol. 14, 1561–1571.

    Article  CAS  Google Scholar 

  • Schmidt S K 1990 Ecological implications of the destruction of juglone (5-hydroxy-l,4-naphthoquinone) by soil bacteria. J. Chem. Ecol 16, 3547–3549.

    Google Scholar 

  • Schmidt S K, Lipson D A and Raab T A 2000 Effects of willows (Salix brachyearpa) on populations of salicylatemaineralizing microorganisms in alpine soils. J. Chem. Ecol. 26, 2049–2057.

    Article  CAS  Google Scholar 

  • Schmidt S K and Lipson D A 2004 Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils. Plant Soil 259: 1–7.

    Article  CAS  Google Scholar 

  • Singh J S, Raghubanshi A S, Singh R S and Srivastava S C 1989 Microbial biomass acts as a source of plant nutrients in dry tropical forest and savana. Nature 338, 499–500.

    Article  Google Scholar 

  • Stark J M and Hart S C 1997 High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385, 61–64.

    Article  CAS  Google Scholar 

  • Sutherland J B, Crawford D L and Pometto A L III 1983 Metabolism of cinnamic, p-coumaric and ferulic acids by Streptomyces setonii. Can. J Microbiol. 29, 1253–1257.

    CAS  PubMed  Google Scholar 

  • Tack B F, Chapman P J and Dagley S 1972 Metabolism of gallic and syringic acids by Pseudomonas putida. J. Biol. Chem. 247, 6438–6443.

    CAS  PubMed  Google Scholar 

  • Tang C S, Cai W F, Kohl K and Nishimoto R K 1995 Plant stress and allelopathy. In Allelopathy: Organisms, Processes and Applications. Eds. Inderjit, K M M Dakshini and F A Einhellig. pp. 142–157. American Chemical Society, Washington, DC.

    Google Scholar 

  • Tanrisever N, Fronczek F R, Fischer N H and Williamson G B 1987 Ceratiolin and other flavonoids from Ceratiola ericoides. Phytochemistry 26, 175–179.

    Google Scholar 

  • Turner J A and Rice E L 1975 Microbiological decomposition of ferulic acids in soil. J. Chem. Ecol. 1, 41–58.

    Article  CAS  Google Scholar 

  • Wardle D A and Ghani A 1995 A crtique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance of ecosystem development. Soil Biol. Biochem. 27, 1601–1610.

    CAS  Google Scholar 

  • Wardle D A and Nilsson M-C 1997 Microbe-plant competition, allelopathy and artic plants. Oecologia 109, 291–293.

    Article  Google Scholar 

  • Weidenhamer J D 1996 Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agron. J. 88, 866–875.

    Google Scholar 

  • Westlake D W S, Talbot G, Blackley E R and Simpson F J 1959 microbial decomposition of rutin. Can. J Microbiol. 5, 621–629.

    CAS  PubMed  Google Scholar 

  • Williamson G B and Weidenhamer J D 1990 Bacterial degradation of juglone: Evidence against allelopathy?. J. Chem. Ecol. 16, 1739–1742.

    Article  CAS  Google Scholar 

  • Williamson G B, Obee E M and Weidenhamer J D 1992 Inhibition of Sckizachyrium scoparium (poaceae) by the allelochemical hydrocinnamic acid. J. Chem. Ecol 18, 2095–2105.

    Article  CAS  Google Scholar 

  • Willis R J 2000 Juglans spp., juglone and allelopathy. Allelo. J. 7, 1–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inderjit .

Editor information

Hans Lambers Timothy D. Colmer

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Inderjit (2005). Soil microorganisms: An important determinant of allelopathic activity. In: Lambers, H., Colmer, T.D. (eds) Root Physiology: from Gene to Function. Plant Ecophysiology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4099-7_12

Download citation

Publish with us

Policies and ethics