Skip to main content

In Vitro Matrices for Studying Tumor Cell Invasion

  • Chapter

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 8))

Abstract

Metastasis is the major cause of death in patients with cancer and thus attempts have been made for more than a century to experimentally dissect its component parts. Multiple arbitrary divisions have been offered that often begin with immortalized and transformed cells demonstrating altered cell proliferation, cell cycle and apoptotic pathways initiating their journey of dissemination by detaching from the primary tumor mass, initiating angiogenesis, degrading and penetrating the basement membranes and the surrounding connective tissue boundaries, intravasating, circulating and extravasating through the blood or lymphatic circulation and after evading the immune system eventually reaching one or more distant metastatic sites where they must undergo a similar process in reverse order. Tumor cell invasion is one of the key steps in this complex process. As the metastatic potential of tumor cells is largely dependent on their ability to degrade and migrate through extracellular matrix (ECM) barriers, inhibition of its subroutines (proteolysis, ECM degradation, chemotaxis, haptotaxis etc.) become logical targets for experimental cancer therapy. To explore potential approaches to inhibit tumor invasion, various in vitro invasion assays have been devised and become widely-accepted surrogate endpoints to mimic the in vivo condition. Most invasion assay systems are based on measuring the ability of cells to invade across purified ECM components such as collagen or complex artificial or reconstituted ECMs. Each has certain strengths, quantitative abilities, ease of manipulation of treatments etc. and like the tumor cells themselves, each is counterbalanced by inherent weaknesses. These are reviewed in this chapter.

These authors contributed equally to this work

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck L, Jr. D’Amore PA. Vascular development: cellular and molecular regulation. Faseb. J. 1997, 11: 365–73.

    PubMed  CAS  Google Scholar 

  2. Grant DS, Kleinman HK, Martin GR. The role of basement membranes in vascular development. Ann. N. Y. Acad. Sci. 1990, 588: 61–72.

    PubMed  CAS  Google Scholar 

  3. Folkman J, Shing Y. Angiogenesis. J. Biol. Chem. 1992, 267: 10931–4.

    PubMed  CAS  Google Scholar 

  4. Furcht LT, Critical factors controlling angiogenesis: cell products, cell matrix, and growth factors. Lab Invest. 1986, 55: 505–9.

    PubMed  CAS  Google Scholar 

  5. Ingber DE, Folkman J. How does extracellular matrix control capillary morphogenesis? Cell 1989, 58: 803–5.

    Article  PubMed  CAS  Google Scholar 

  6. Paku S, Paweletz N. First steps of tumor-related angiogenesis. Lab Invest. 1991, 65: 334–46.

    PubMed  CAS  Google Scholar 

  7. Kumar R, et al. Regulation of distinct steps of angiogenesis by different angiogenic molecules. Int. J. Oncol. 1998, 12: 749–57.

    PubMed  CAS  Google Scholar 

  8. Tyagi SC. Vasculogenesis and angiogenesis: extracellular matrix remodeling in coronary collateral arteries and the ischemic heart. J. Cell. Biochem. 1997, 65: 388–94.

    Article  PubMed  CAS  Google Scholar 

  9. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature 2001, 411: 375–9.

    Article  PubMed  CAS  Google Scholar 

  10. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991, 64: 327–36.

    Article  PubMed  CAS  Google Scholar 

  11. Pupa SM, et al. New insights into the role of extracellular matrix during tumor onset and progression. J. Cell Physiol. 2002, 192: 259–67.

    Article  PubMed  CAS  Google Scholar 

  12. Siegal GP, et al. Stages of neoplastic transformation of human breast tissue as monitored by dissolution of basement membrane components. An immunoperoxidase study. Invasion Metastasis 1981, 1: 54–70.

    PubMed  CAS  Google Scholar 

  13. Liotta LA, et al. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res. 1981, 41: 4629–36.

    PubMed  CAS  Google Scholar 

  14. Alberts BB, Dennis; Lewis, Julian; Raff, Martin; Roberts, Keith; Watson, James D., Mol. Biol. Cell. Third ed. 1994, New York and London:: Garland Publishing; c1994. 989–994.

    Google Scholar 

  15. Relan NK, Schuger L. Basement membranes in development. Pediatr. Dev. Pathol. 1999, 2: 103–18.

    Article  PubMed  CAS  Google Scholar 

  16. Alberts BB, Dennis; Lewis, Julian; Raff, Martin; Roberts, Keith; Watson, James D., Mol. Biol. Cell. Third ed. 1994, New York and London: Garland Publishing; c1994. 991.

    Google Scholar 

  17. Borg TK. It’s the matrix! ECM, proteases, and cancer. Am. J. Pathol. 2004, 164: 1141–2.

    PubMed  Google Scholar 

  18. Mareel M, Leroy A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol. Rev. 2003, 83: 337–76.

    PubMed  CAS  Google Scholar 

  19. Barsky SH, et al. Loss of basement membrane components by invasive tumors but not by their benign counterparts. Lab Invest. 1983, 49: 140–7.

    PubMed  CAS  Google Scholar 

  20. Kiemer AK, Takeuchi K, Quinlan MP. Identification of genes involved in epithelial-mesenchymal transition and tumor progression. Oncogene 2001, 20: 6679–88.

    Article  PubMed  CAS  Google Scholar 

  21. Medico E, et al. Osteopontin is an autocrine mediator of hepatocyte growth factor-induced invasive growth. Cancer Res. 2001, 61: 5861–8.

    PubMed  CAS  Google Scholar 

  22. van’ t Veer LJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415: 530–6.

    Article  Google Scholar 

  23. Zhang M, et al. Epidermal growth factor modulates cell attachment to hyaluronic acid by the cell surface glycoprotein CD44. Clin. Exp. Metastasis 1996, 14: 268–76.

    PubMed  CAS  Google Scholar 

  24. Zhang M, et al. Epidermal growth factor induces CD44 gene expression through a novel regulatory element in mouse fibroblasts. J. Biol. Chem. 1997, 272: 14139–46.

    Article  PubMed  CAS  Google Scholar 

  25. Xie H, et al. In vitro invasiveness of DU-145 human prostate carcinoma cells is modulated by EGF receptor-mediated signals. Clin. Exp. Metastasis 1995, 13: 407–19.

    Article  PubMed  CAS  Google Scholar 

  26. Mackay AR, et al. Identification of the 72-kDa (MMP-2) and 92-kDa (MMP-9) gelatinase/type IV collagenase in preparations of laminin and Matrigel. Biotechniques 1993, 15: 1048–51.

    PubMed  CAS  Google Scholar 

  27. Satake S, et al. Angiogenic stimuli are essential for survival of vascular endothelial cells in three-dimensional collagen lattice. Biochem. Biophys. Res. Commun. 1998, 244: 642–6.

    Article  PubMed  CAS  Google Scholar 

  28. Brown KJ, et al. A novel in vitro assay for human angiogenesis. Lab Invest. 1996, 75: 539–55.

    PubMed  CAS  Google Scholar 

  29. Montesano R, Orci L, Vassalli P. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell Biol. 1983, 97: 1648–52.

    Article  PubMed  CAS  Google Scholar 

  30. Nicosia RF, Ottinetti A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Invest. 1990, 63: 115–22.

    PubMed  CAS  Google Scholar 

  31. Fujimoto K, et al. Transforming growth factor-beta1 promotes invasiveness after cellular transformation with activated Ras in intestinal epithelial cells. Exp. Cell Res. 2001, 266: 239–49.

    Article  PubMed  CAS  Google Scholar 

  32. Nejjari M, et al. Inhibition of proprotein convertases enhances cell migration and metastases development of human colon carcinoma cells in a rat model. Am. J. Pathol. 2004, 164: 1925–33.

    PubMed  CAS  Google Scholar 

  33. Takeuchi S, et al. Isolation of differentiated squamous and undifferentiated spindle carcinoma cell lines with differing metastatic potential from a 4-nitroquinoline N-Oxide-induced tongue carcinoma in a F344 rat. Jpn. J. Cancer Res. 2000, 91: 1211–21.

    PubMed  CAS  Google Scholar 

  34. Albo D, et al. Tumour cell thrombospondin-1 regulates tumour cell adhesion and invasion through the urokinase plasminogen activator receptor. Br. J. Cancer 2000, 83: 298–306.

    Article  PubMed  CAS  Google Scholar 

  35. Koike N, et al. Invasive potentials of gastric carcinoma cell lines: role of alpha 2 and alpha 6 integrins in invasion. J. Cancer Res. Clin. Oncol. 1997, 123: 310–6.

    PubMed  CAS  Google Scholar 

  36. Benbow U, et al. Confocal assay for invasion: use of propidium iodide fluorescence and laser reflectance to quantify the rate of migration of cells through a matrix. Cytometry 2000, 40: 253–9.

    Article  PubMed  CAS  Google Scholar 

  37. Nishimura K, et al. Prostate stromal cell-derived hepatocyte growth factor induces invasion of prostate cancer cell line DU145 through tumor-stromal interaction. Prostate 1999, 41: 145–53.

    Article  PubMed  CAS  Google Scholar 

  38. Schor SL. Cell proliferation and migration on collagen substrata in vitro. J. Cell Sci. 1980, 41: 159–75.

    PubMed  CAS  Google Scholar 

  39. McCarthy JB, et al. The role of cell adhesion proteins—laminin and fibronectin—in the movement of malignant and metastatic cells. Cancer Metastasis Rev. 1985, 4: 125–52.

    Article  PubMed  CAS  Google Scholar 

  40. Rooprai HK, et al. Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro. Neuropathol. Appl. Neurobiol. 2001, 27: 29–39.

    Article  PubMed  CAS  Google Scholar 

  41. Kempen I, et al. 3-Bromophenyl 6-acetoxymethyl-2-oxo-2H-1-benzopyran-3-carboxylate inhibits cancer cell invasion in vitro and tumour growth in vivo. Br. J. Cancer 2003, 88: 1111–8.

    Article  PubMed  CAS  Google Scholar 

  42. Kuniyasu H, Chihara Y, Kondo H. Differential effects between amphoterin and advanced glycation end products on colon cancer cells. Int. J. Cancer 2003, 104: 722–7.

    Article  PubMed  CAS  Google Scholar 

  43. Garbisa S, et al. Quantitation of basement membrane collagen degradation by living tumor cells in vitro. Cancer Lett. 1980, 9: 359–66.

    Article  PubMed  CAS  Google Scholar 

  44. Nakahara H, et al. Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc. Natl. Acad. Sci. USA 1997, 94: 7959–64.

    Article  PubMed  CAS  Google Scholar 

  45. Udayakumar TS, et al. Membrane type-1-matrix metalloproteinase expressed by prostate carcinoma cells cleaves human laminin-5 beta3 chain and induces cell migration. Cancer Res. 2003, 63: 2292–9.

    PubMed  CAS  Google Scholar 

  46. Terranova VP, et al. Use of a reconstituted basement membrane to measure cell invasiveness and select for highly invasive tumor cells. Proc. Natl. Acad. Sci. USA 1986, 83: 465–9.

    Article  PubMed  CAS  Google Scholar 

  47. Chen JJ, et al. Global analysis of gene expression in invasion by a lung cancer model. Cancer Res. 2001, 61: 5223–30.

    PubMed  CAS  Google Scholar 

  48. Ho CC, et al. Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am. J. Pathol. 2002, 161: 1647–56.

    PubMed  CAS  Google Scholar 

  49. Sawai H, et al. Enhancement of integrins by interleukin-1alpha, and their relationship with metastatic and invasive behavior of human pancreatic ductal adenocarcinoma cells. J. Surg. Oncol. 2003, 82: 51–6.

    Article  PubMed  CAS  Google Scholar 

  50. Farrow B, et al. Butyrate inhibits pancreatic cancer invasion. J. Gastrointest. Surg. 2003, 7: 864–70.

    Article  PubMed  Google Scholar 

  51. Trikha M, et al. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res. 2002, 62: 2824–33.

    PubMed  CAS  Google Scholar 

  52. Henke CA, et al. CD44-related chondroitin sulfate proteoglycan, a cell surface receptor implicated with tumor cell invasion, mediates endothelial cell migration on fibrinogen and invasion into a fibrin matrix. J. Clin. Invest. 1996, 97: 2541–52.

    Article  PubMed  CAS  Google Scholar 

  53. Hori T, et al. A novel orthotopic implantation model of human esophageal carcinoma in nude rats: CD44H mediates cancer cell invasion in vitro and in vivo. Int. J. Cancer 2001, 92: 489–96.

    Article  PubMed  CAS  Google Scholar 

  54. Quax PH, et al. Plasminogen activator and matrix metalloproteinase production and extracellular matrix degradation by rat prostate cancer cells in vitro: correlation with metastatic behavior in vivo. Prostate 1997, 32: 196–204.

    Article  PubMed  CAS  Google Scholar 

  55. Inoue S, Leblond CP. The basement-membrane-like matrix of the mouse EHS tumor: I. Ultrastructure. Am. J. Anat. 1985, 174: 373–86.

    Article  PubMed  CAS  Google Scholar 

  56. Grant DS, et al. The basement-membrane-like matrix of the mouse EHS tumor: II. Immunohistochemical quantitation of six of its components. Am. J. Anat. 1985, 174: 387–98.

    Article  PubMed  CAS  Google Scholar 

  57. Inoue S, Leblond CP. The basement-membrane-like matrix of the mouse EHS tumor: III. Immunodetection of the amyloid P component in basotubules. Am. J. Anat. 1985, 174: 399–407.

    Article  PubMed  CAS  Google Scholar 

  58. Barsky SH, Gopalakrishna R. An experimental model for studying the desmoplastic response to tumor invasion. Cancer Lett. 1987, 35: 271–9.

    Article  PubMed  CAS  Google Scholar 

  59. Barsky SH, et al. Two human tumors with high basement-membrane-producing potential. Cancer 1988, 61: 1798–806.

    Article  PubMed  CAS  Google Scholar 

  60. Kleinman HK, et al. Basement membrane complexes with biological activity. Biochemistry 1986, 25: 312–8.

    Article  PubMed  CAS  Google Scholar 

  61. Baatout S, Endothelial differentiation using Matrigel (review). Anticancer Res. 1997, 17: 451–5.

    PubMed  CAS  Google Scholar 

  62. Kleinman HK, et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 1982, 21: 6188–93.

    Article  PubMed  CAS  Google Scholar 

  63. Hadley MA, et al. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J. Cell Biol. 1985, 101: 1511–22.

    Article  PubMed  CAS  Google Scholar 

  64. Kubota Y, et al. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 1988, 107: 1589–98.

    Article  PubMed  CAS  Google Scholar 

  65. Li ML, et al. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. USA 1987, 84: 136–40.

    Article  PubMed  CAS  Google Scholar 

  66. Barcellos-Hoff MH, et al. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 1989, 105: 223–35.

    PubMed  CAS  Google Scholar 

  67. Madison R, et al. Increased rate of peripheral nerve regeneration using bioresorbable nerve guides and a laminin-containing gel. Exp. Neurol. 1985, 88: 767–72.

    Article  PubMed  CAS  Google Scholar 

  68. Goodly LJ, et al. In vivo modulation of human tumor cell growth by normal human extracellular matrix. Tumour Biol. 1994, 15: 326–36.

    Article  PubMed  CAS  Google Scholar 

  69. Liotta LA, Thorgeirsson UP, Garbisa S. Role of collagenases in tumor cell invasion. Cancer Metastasis Rev. 1982, 1: 277–88.

    Article  PubMed  CAS  Google Scholar 

  70. Melchiori A, et al. Inhibition of tumor cell invasion by a highly conserved peptide sequence from the matrix metalloproteinase enzyme prosegment. Cancer Res. 1992, 52: 2353–6.

    PubMed  CAS  Google Scholar 

  71. Taniguchi S, et al. High invasiveness associated with augmentation of motility in a fostransferred highly metastatic rat 3Y1 cell line. Cancer Res. 1989, 49: 6738–44.

    PubMed  CAS  Google Scholar 

  72. Albini A, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987, 47: 3239–45.

    PubMed  CAS  Google Scholar 

  73. Hendrix MJ, et al. A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett. 1987, 38: 137–47.

    Article  PubMed  CAS  Google Scholar 

  74. Bae SN, et al. Molecular and cellular analysis of basement membrane invasion by human breast cancer cells in Matrigel-based in vitro assays. Breast Cancer Res. Treat. 1993, 24: 241–55.

    Article  PubMed  CAS  Google Scholar 

  75. Hendrix MJ, et al. Retinoic acid inhibition of human melanoma cell invasion through a reconstituted basement membrane and its relation to decreases in the expression of proteolytic enzymes and motility factor receptor. Cancer Res. 1990, 50: 4121–30.

    PubMed  CAS  Google Scholar 

  76. Parish CR, Jakobsen KB, Coombe DR. A basement-membrane permeability assay which correlates with the metastatic potential of tumour cells. Int. J. Cancer 1992, 52: 378–83.

    PubMed  CAS  Google Scholar 

  77. Janiak M, Hashmi HR, Janowska-Wieczorek A. Use of the Matrigel-based assay to measure the invasiveness of leukemic cells. Exp. Hematol. 1994, 22: 559–65.

    PubMed  CAS  Google Scholar 

  78. Noel AC, et al. Invasion of reconstituted basement membrane matrix is not correlated to the malignant metastatic cell phenotype. Cancer Res. 1991, 51: 405–14.

    PubMed  CAS  Google Scholar 

  79. Vukicevic S, et al. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 1992, 202: 1–8.

    Article  PubMed  CAS  Google Scholar 

  80. Li Z, et al. Macrophage migration inhibitory factor enhances neoplastic cell invasion by inducing the expression of matrix metalloproteinase 9 and interleukin-8 in nasopharyngeal carcinoma cell lines. Chin. Med. J. (Engl). 2004, 117: 107–14.

    PubMed  CAS  Google Scholar 

  81. Zand L, et al. Differential Effects of Cellular Fibronectin and Plasma Fibronectin on Ovarian Cancer Cell Adhesion, Migration, and Invasion. In Vitro Cell Dev. Biol. Anim. 2003, 39: 178–182.

    Article  PubMed  CAS  Google Scholar 

  82. Passaniti A, et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest. 1992, 67: 519–28.

    PubMed  CAS  Google Scholar 

  83. Farina AR, et al. Identification of plasminogen in Matrigel and its activation by reconstitution of this basement membrane extract. Biotechniques 1996, 21: 904–9.

    PubMed  CAS  Google Scholar 

  84. Repesh LA. A new in vitro assay for quantitating tumor cell invasion. Invasion Metastasis 1989, 9: 192–208.

    PubMed  CAS  Google Scholar 

  85. Buchholz M, et al. SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo. Cancer Res. 2003, 63: 4945–51.

    PubMed  CAS  Google Scholar 

  86. Suyama E, et al. Identification of genes responsible for cell migration by a library of randomized ribozymes. Cancer Res. 2003, 63: 119–24.

    PubMed  CAS  Google Scholar 

  87. Srikantan V, et al. HEPSIN inhibits cell growth/invasion in prostate cancer cells. Cancer Res. 2002, 62: 6812–6.

    PubMed  CAS  Google Scholar 

  88. Zhang B, et al. IL-18 increases invasiveness of HL-60 myeloid leukemia cells: upregulation of matrix metalloproteinases-9 (MMP-9) expression. Leuk Res. 2004, 28: 91–5.

    Article  PubMed  CAS  Google Scholar 

  89. Zhang S, et al. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA 1993, 90: 3334–8.

    Article  PubMed  CAS  Google Scholar 

  90. Zhang S, et al. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials. 1995, 16: 1385–93.

    Article  PubMed  Google Scholar 

  91. Zhang S. Emerging biological materials through molecular self-assembly. Biotechnol. Adv. 2002, 20: 321–39.

    Article  PubMed  CAS  Google Scholar 

  92. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21: 1171–8.

    Article  PubMed  CAS  Google Scholar 

  93. Altman M, et al. Conformational behavior of ionic self-complementary peptides. Protein Sci. 2000, 9: 1095–105.

    Article  PubMed  CAS  Google Scholar 

  94. Zhang S, et al. Biological surface engineering: a simple system for cell pattern formation. Biomaterials 1999, 20: 1213–20.

    Article  PubMed  CAS  Google Scholar 

  95. Siegal GP, et al. Development of a novel human extracellular matrix for quantitation of the invasiveness of human cells. Cancer Lett. 1993, 69: 123–32.

    Article  PubMed  CAS  Google Scholar 

  96. Zhang M, GC, Gillespie GY, Wang MH, Singh RK, Siegal GP. A model system for in vitro angiogenesis using novel human ECM. Proc. Am. Assoc. Cancer Res. 1994, 35: 185.

    Google Scholar 

  97. Singh RK, CP, Alapati V, Chen X, Siegal GP. Multiple defined human cell-biomatrix models for tissue growth & differentiation. In Vitro Cell Develop. Biol. 2002, 38:11.

    Article  CAS  Google Scholar 

  98. Siegal GP, Singh RK. A new defined human angiogenesis bioassay system. Pharma-Transfer, and DSI-UABRF (FY00-0034, 2000); HuBiogel bioassays: patent/license pending. 2000, 2003.

    Google Scholar 

  99. Hamilton G. Multicellular spheroids as an in vitro tumor model. Cancer Lett. 1998, 131: 29–34.

    Article  PubMed  CAS  Google Scholar 

  100. Desoize B. Contribution of three-dimensional culture to cancer research. Crit. Rev. Oncol. Hematol. 2000, 36: 59–60.

    PubMed  CAS  Google Scholar 

  101. Ingram et al. NASA Proceedings-Bioreactor Workshop on Regulation of Cell & Tissue differentiation. In vitro Cell Dev. Med. 1997, 33: 325–405.

    Google Scholar 

  102. Schwarz RP, Goodwin TJ, Wolf DA. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 1992, 14: 51–7.

    Article  PubMed  CAS  Google Scholar 

  103. Jessup JM, Goodwin TJ, Spaulding G. Prospects for use of microgravity-based bioreactors to study three-dimensional host-tumor interactions in human neoplasia. J. Cell Biochem. 1993, 51: 290–300.

    Article  PubMed  CAS  Google Scholar 

  104. Granet C, et al. Rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3D conditions. Med. Biol. Eng. Comput. 1998, 36: 513–9.

    PubMed  CAS  Google Scholar 

  105. Sanford GL, et al. Three-dimensional growth of endothelial cells in the microgravitybased rotating wall vessel bioreactor. In Vitro Cell Dev. Biol. Anim. 2002, 38: 493–504.

    Article  PubMed  CAS  Google Scholar 

  106. Okubo H, et al. A novel method for faster formation of rat liver cell spheroids. Artif. Organs. 2002, 26: 497–505.

    Article  PubMed  CAS  Google Scholar 

  107. Horino K, et al. Tumor cell invasion of model 3-dimensional matrices: demonstration of migratory pathways, collagen disruption, and intercellular cooperation. Faseb. J. 2001, 15: 932–9.

    Article  PubMed  CAS  Google Scholar 

  108. Lang SH, et al. Experimental prostate epithelial morphogenesis in response to stroma and three-dimensional matrigel culture. Cell Growth Differ. 2001, 12: 631–40.

    PubMed  CAS  Google Scholar 

  109. Torok E, et al. Optimization of hepatocyte spheroid formation for hepatic tissue engineering on three-dimensional biodegradable polymer within a flow bioreactor prior to implantation. Cells Tissues Organs 2001, 169: 34–41.

    Article  PubMed  CAS  Google Scholar 

  110. Hamilton GA, Westmorel C, George AE. Effects of medium composition on the morphology and function of rat hepatocytes cultured as spheroids and monolayers. In Vitro Cell Dev. Biol. Anim. 2001, 37: 656–67.

    Article  PubMed  CAS  Google Scholar 

  111. Lam JT, et al. Replication of an integrin targeted conditionally replicating adenovirus on primary ovarian cancer spheroids. Cancer Gene. Ther. 2003, 10: 377–87.

    Article  PubMed  CAS  Google Scholar 

  112. Nakajima Y, et al. Inhibition of metastasis of tumor cells overexpressing thymidine phosphorylase by 2-deoxy-L-ribose. Cancer Res. 2004, 64: 1794–801.

    Article  PubMed  CAS  Google Scholar 

  113. Nishikawa H, et al. The role of cathepsin B and cystatin C in the mechanisms of invasion by ovarian cancer. Gynecol. Oncol. 2004, 92: 881–6.

    Article  PubMed  CAS  Google Scholar 

  114. Ueda M, et al. Correlation between vascular endothelial growth factor-C expression and invasion phenotype in cervical carcinomas. Int. J. Cancer. 2002, 98: 335–43.

    Article  PubMed  CAS  Google Scholar 

  115. Jung HJ, et al. Cochlioquinone A1, a new anti-angiogenic agent from Bipolaris zeicola. Bioorg. Med. Chem. 2003, 11: 4743–7.

    Article  PubMed  CAS  Google Scholar 

  116. Kang JA, et al. Anti-angiogenic and anti-tumor invasive activities of tissue inhibitor of metalloproteinase-3 from shark, Scyliorhinus torazame. Biochim. Biophys. Acta. 2003, 1620: 59–64.

    PubMed  CAS  Google Scholar 

  117. Sieuwerts AM, Klijn JG, Foekens JA. Assessment of the invasive potential of human gynecological tumor cell lines with the in vitro Boyden chamber assay: influences of the ability of cells to migrate through the filter membrane. Clin. Exp. Metastasis 1997, 15: 53–62.

    Article  PubMed  CAS  Google Scholar 

  118. Bindels EM, et al. Influence of the microenvironment on invasiveness of human bladder carcinoma cell lines. Virchows Arch. 2001, 439: 552–9.

    Article  PubMed  CAS  Google Scholar 

  119. Yanamandra N, et al. Activation of caspase-9 with irradiation inhibits invasion and angiogenesis in SNB19 human glioma cells. Oncogene 2004, 23: 2339–46.

    Article  PubMed  CAS  Google Scholar 

  120. Perumpanani AJ, Byrne HM. Extracellular matrix concentration exerts selection pressure on invasive cells. Eur. J. Cancer 1999, 35: 1274–80.

    Article  PubMed  CAS  Google Scholar 

  121. Poste G, et al. In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res. 1980, 40: 1636–44.

    PubMed  CAS  Google Scholar 

  122. Hart IR, Fidler IF. An in vitro quantitative assay for tumor cell invasion. Cancer Res. 1978, 38: 3218–24.

    PubMed  CAS  Google Scholar 

  123. Scher C, Haudenschild C, Klagsbrun M. The chick chorioallantoic membrane as a model system for the study of tissue invasion by viral transformed cells. Cell 1976, 8:373–82.

    Article  PubMed  CAS  Google Scholar 

  124. Sekiya S, et al. Invasion potential of human choriocarcinoma cell lines and the role of lytic enzymes. Gynecol. Oncol. 1985, 22: 324–33.

    Article  PubMed  CAS  Google Scholar 

  125. Livant DL, et al. Invasion of selectively permeable sea urchin embryo basement membranes by metastatic tumor cells, but not by their normal counterparts. Cancer Res. 1995, 55: 5085–93.

    PubMed  CAS  Google Scholar 

  126. Dyer ES, et al. Phenylbutyrate inhibits the invasive properties of prostate and breast cancer cell lines in the sea urchin embryo basement membrane invasion assay. Int. J. Cancer 2002, 101: 496–9.

    Article  PubMed  CAS  Google Scholar 

  127. Livant DL, et al. Anti-invasive, antitumorigenic, and antimetastatic activities of the PHSCN sequence in prostate carcinoma. Cancer Res. 2000, 60: 309–20.

    PubMed  CAS  Google Scholar 

  128. Thorgeirsson UP, et al. Protein synthesis but not DNA synthesis is required for tumor cell invasion in vitro. Invasion Metastasis 1984, 4: 73–83.

    PubMed  CAS  Google Scholar 

  129. Smith HS, et al. Invasiveness and ploidy of human mammary carcinomas in short-term culture. Proc. Natl. Acad. Sci. USA 1985, 82: 1805–9.

    Article  PubMed  CAS  Google Scholar 

  130. Russo RG, Foltz CM, Liotta LA. New invasion assay using endothelial cells grown on native human basement membrane. Clin. Exp. Metastasis 1983, 1: 115–27.

    Article  PubMed  CAS  Google Scholar 

  131. Siegal GP, et al. Interferon enhancement of the invasive capacity of Ewing sarcoma cells in vitro. Proc. Natl. Acad. Sci. USA 1982, 79: 4064–8.

    Article  PubMed  CAS  Google Scholar 

  132. Bechetoille N, et al. Penetration of human metastatic melanoma cells through an authentic dermal-epidermal junction is associated with dissolution of native collagen types IV and VII. Melanoma Res. 2000, 10: 427–34.

    Article  PubMed  CAS  Google Scholar 

  133. Sikes RA, et al. Cellular interactions in the tropism of prostate cancer to bone. Int. J. Cancer 2004, 110: 497–503.

    Article  PubMed  CAS  Google Scholar 

  134. Engers R, et al. Protein kinase C in human renal cell carcinomas: role in invasion and differential isoenzyme expression. Br. J. Cancer 2000, 82: 1063–9.

    Article  PubMed  CAS  Google Scholar 

  135. Schroyens W, et al. Comparison of invasiveness and non-invasiveness of two epithelial cell lines in vitro. Invasion Metastasis 1984, 4: 160–70.

    PubMed  CAS  Google Scholar 

  136. Pauli BU, Memoli VA, Kuettner KE. In vitro determination of tumor invasiveness using extracted hyaline cartilage. Cancer Res. 1981, 41: 2084–91.

    PubMed  CAS  Google Scholar 

  137. Storme GA, et al. Antiinvasive effect of racemic 1-O-octadecyl-2-O-methylglycero-3-phosphocholine on MO4 mouse fibrosarcoma cells in vitro. Cancer Res. 1985, 45: 351–7.

    PubMed  CAS  Google Scholar 

  138. Jones JL, et al. Primary breast myoepithelial cells exert an invasion-suppressor effect on breast cancer cells via paracrine down-regulation of MMP expression in fibroblasts and tumour cells. J. Pathol. 2003, 201: 562–72.

    Article  PubMed  CAS  Google Scholar 

  139. Sedlak J, et al. Cell surface phenotype and increased penetration of human multidrug-resistant ovarian carcinoma cells into in vitro collagen-fibroblasts matrix. Neoplasma 1996, 43: 389–95.

    PubMed  CAS  Google Scholar 

  140. Tong D, et al. Association of in vitro invasiveness and gene expression of estrogen receptor, progesterone receptor, pS2 and plasminogen activator inhibitor-1 in human breast cancer cell lines. Breast Cancer Res. Treat. 1999, 56: 91–7.

    Article  PubMed  CAS  Google Scholar 

  141. Nakayama Y, et al. An in vitro invasion model for human renal cell carcinoma cell lines mimicking their metastatic abilities. Clin. Exp. Metastasis 1996, 14: 466–74.

    Article  PubMed  CAS  Google Scholar 

  142. Wandel E, et al. Fibroblasts enhance the invasive capacity of melanoma cells in vitro. Arch. Dermatol. Res. 2002, 293: 601–8.

    Article  PubMed  CAS  Google Scholar 

  143. Yamada S, et al. Effects of stromal fibroblasts and fat cells and an environmental factor air exposure on invasion of laryngeal carcinoma (HEp-2) cells in a collagen gel invasion assay system. Arch. Otolaryngol Head Neck Surg. 1999, 125: 424–31.

    PubMed  CAS  Google Scholar 

  144. Le Marer N, Bruyneel E. Comparison of in vitro invasiveness of human breast carcinoma in early or late stage with their malignancy in vivo. Anticancer Res. 1996, 16: 2767–72.

    PubMed  Google Scholar 

  145. Gohla A, Eckert K, Maurer HR. A rapid and sensitive fluorometric screening assay using YO-PRO-1 to quantify tumour cell invasion through Matrigel. Clin. Exp. Metastasis 1996, 14: 451–8.

    Article  PubMed  CAS  Google Scholar 

  146. Gildea JJ, et al. Transmembrane motility assay of transiently transfected cells by fluorescent cell counting and luciferase measurement. Biotechniques 2000, 29: 81–6.

    PubMed  CAS  Google Scholar 

  147. Yin Z, et al. Cooperative activity of alpha4beta1 and alpha4beta7 integrins in mediating human B-cell lymphoma adhesion and chemotaxis on fibronectin through recognition of multiple synergizing binding sites within the central cell-binding domain. Blood 1999, 93: 1221–30.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Yuan, K., Singh, R.K., Rezonzew, G., Siegal, G.P. (2006). In Vitro Matrices for Studying Tumor Cell Invasion. In: Wells, A. (eds) Cell Motility in Cancer Invasion and Metastasis. Cancer Metastasis - Biology and Treatment, vol 8. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4009-1_2

Download citation

Publish with us

Policies and ethics