Skip to main content

WIRELESS INDUCTIVE TRANSFER OF POWER AND DATA

  • Chapter
Analog Circuit Design

Abstract

This text discusses the possibilities when designing a wireless inductive link that works both as an energy link, to power up a remote device, as well as a communication link to retrieve data and to write data to the same remote device, using the same set of inductive coils. Datatransmission from the measurement system to a base unit is achieved by applying absorption modulation, datatransmission to the measurement system by applying amplitude modulation. Some basic formulae and design considerations are given, and a full example applicable to an implantable device is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Liu, K. Vichienchom, M. Clements, S.C. DeMarco, C. Hughes, E. McGucken, M.S. Humayun, E. de Juan, J.D. Weiland, R. Greenberg, “A neuro-stimulus chip with telemetry unit for retinal prosthetic device”, IEEE J. Solid-State Circuits 35 (10) (2000) 1487–1497.

    Article  Google Scholar 

  2. G.J. Suaning, N.H. Lovell, “CMOS neurostimulation ASIC with 100 channels, scaleable output, and bi-directional radio-frequency telemetry”, IEEE Trans. Biomed. Eng. 48 (2) (2001) 248–260.

    Article  Google Scholar 

  3. M. Schwarz, R. Hauschild, B.J. Hosticka, J. Huppertz, T. Kneip, S. Kolnsberg, H.K. Trieu, “Single-chip CMOS image sensors for a retina implant system”, IEEE Trans. Circuits Syst. II 46 (7) (1999) 870–877.

    Article  Google Scholar 

  4. K. Stangel, S. Kolnsberg, D. Hammerschmidt, B.J. Hosticka, H.K. Trieu, W. Mokwa, “A programmable intraocular CMOS pressure sensor system implant”, IEEE J. Solid-State Circuits 36 (7) (2001) 1094–1100.

    Article  Google Scholar 

  5. J.A. Von Arx, K. Najafi, “A wireless single-chip telemetry-powered neural stimulation system”, Proc. IEEE Int. Solid-State Circuits Conf. (1999) 214–215.

    Google Scholar 

  6. B. Ziaie, M.D. Nardin, A.R. Coghlan, K. Najafi, “A single-channel implantable microstimulator for functional neuomuscular stimulation”, IEEE Trans. Biomed. Eng. 44 (10) (1997) 909–920.

    Article  Google Scholar 

  7. T. Akin, K. Najafi, R.M. Bradley, “A wireless implantable multi-channel digital neural recording system for a micromachined sieve electrode”, IEEE J. Solid-State Circuits 33 (1) (1998) 109–118.

    Article  Google Scholar 

  8. B. Smith, Z. Tang, M.W. Johnson, S. Pourmehdi, M.M. Gazdik, J.R. Buckett, P.H. Peckham, “An externally powered, multichannel,implantable stimulator-telemeter for control of paralyzed muscle”, IEEE Trans. Biomed. Eng. 45 (4) (1998) 463–475.

    Article  Google Scholar 

  9. T. Cameron, G.E. Loeb, R.A. Peck, J.H. Schulman, P. Strojnik, P.R. Troyk, “Micromodular implants to provide electrical stimulation of paralyzed muscles and limbs”, IEEE Trans. Biomed. Eng. 44 (9) (1997) 781–790

    Article  Google Scholar 

  10. F. Graichen, G. Bergmann, A. Rohlmann, “Hip endoprosthesis for in vivo measurement of joint force and temperature”, J. Biomechanics 32 (1999) 1113–1117.

    Google Scholar 

  11. F. Burny, M. Donkerwolcke, F. Moulart, R. Bourgois, R. Puers, K. Van Schuylenbergh, M. Barbosa, O. Paiva, F. Rodes, J.B. Bégueret, P. Lawes, “Concept, design and fabrication of smart orthopaedic implants”, Med. Eng. Phys. 22 (2000) 469–479.

    Article  Google Scholar 

  12. R.J.Gutmann, “Application of RF circuit design principles to distributed power con-verters,”, IEEE Trans. Ind. Electron. Contr. Instrum., vol. IECI-27, pp. 156–164, 1980.

    Google Scholar 

  13. Miller J.A., G. Bélanger and T. Mussivand, “Development of an autotuned transcuta-neous energy transfer system,”, ASAIO Journal, vol. 39, pp. M706–M710, 1993.

    Google Scholar 

  14. Schuder J.C., H.E. Stephenson and J.F.Townsend, “High-level electromagnetic energy transfer through a closed chest wall,”, Inst. Radio Engrs. Int. Conv. Record, vol. 9, pp. 119–126, 1961.

    Google Scholar 

  15. K. Van Schuylenbergh, R. Puers, “A computer assisted methodology for inductive link design for implant applications”, in: P. Mancini, S. Fioretti, C. Cristalli, R. Bedini (Eds.), Biotelemetry XII, Edititrice Universitaria Litografia Felici, Pisa, 1993, pp. 392–400.

    Google Scholar 

  16. M. Soma, D.C. Galbraith, R.L. White, “Radio-frequency coils in implantable devices: misalignment analysis and design procedure”, IEEE Trans. Biomed. Eng. 34 (4) (1987) 276–282.

    Google Scholar 

  17. E.S. Hochmair, “System optimization for improved accuracy in transcutaneous signal and power transmission”, IEEE Trans. Biomed. Eng. 31 (2) (1984) 177–187.

    Google Scholar 

  18. C.M. Zierhofer, E.S. Hochmair, “Geometric approach for coupling enhancement of magnetically coupled coils”, IEEE Trans. Biomed. Eng. 43 (7) (1996) 708–714.

    Article  Google Scholar 

  19. S. Babic, C. Akyel, “Improvement in calculation of the self-and mutual inductance of thin-wall solenoids and disk coils”, IEEE Trans. Magn. 36 (4) (2000) 1970–1975.

    Article  Google Scholar 

  20. P. Ravazzani, J. Ruohonen, G. Tognola, F. Anfosso, M. Ollikainen, R.J. Ilmoniemi, F. Grandori, “Frequency-related effects in the optimization of coils for the magnetic stimulation of the nervous system”, IEEE Trans. Biomed. Eng. 49 (5) (2002) 463–471.

    Article  Google Scholar 

  21. B.L. Ooi, D.X. Xu, P.S. Kooi, F.J. Lin, “An improved prediction of series resistance in spiral inductor modeling with Eddy-current effect”, IEEE Trans. Microwave Theory Techn. 50 (9) (2002) 2202–2206.

    Google Scholar 

  22. A. Massarini, M.K. Kazimierczuk, “Self-capacitance of inductors”, IEEE Trans. Power Electron. 12 (4) (1997) 671–676.

    Article  Google Scholar 

  23. S.F. Cleary, Cellular effects of electromagnetic radiation, IEEE Eng. Med. Biol. 6 (1) (1987) 26–30.

    Google Scholar 

  24. R.J. Smialowicz, “Immunologic effects of nonionizing electromagnetic radiation”, IEEE Eng. Med. Biol. 6 (1) (1987) 47–51.

    Google Scholar 

  25. E.R. Adair, “Thermophysiological effects of electromagnetic radiation”, IEEE Eng. Med. Biol. 6 (1) (1987) 37–41.

    Google Scholar 

  26. M.H. Repacholi, “Radiofrequency electromagnetic field exposure standards”, IEEE Eng. Med. Biol. 6 (1) (1987) 18–21.

    Google Scholar 

  27. M. Kamon, M.J. Tsuk, J. White, FASTHENRY: “A multipole-accelerated 3-D inductance extraction program”, IEEE Trans. Microwave Theory Techn. 42 (9) (1994) 1750–1758.

    Article  Google Scholar 

  28. M.K. Kazimierczuk, D. Czarkowski, “Resonant Power Converters”,, John Wiley & Sons, New York, 1995, pp. 347–365.

    Google Scholar 

  29. P.A. Neukomm, H. Kündig, “Passive wireless actuator control and sensor signal transmission”,, Sens. Actuators A 21–23 (1990) 258–262.

    Google Scholar 

  30. M.K. Kazimierczuk, W.A. Tabisz, “Classes C-E high-efficiency tuned power amplifier”,, IEEE Trans. Circuits Syst. 36 (3) (1989) 421–428.

    Article  MathSciNet  Google Scholar 

  31. M. Kazimierczuk, “Collector amplitude modulation of the Class E tuned power amplifier”,, IEEE Trans. Circuits Syst. 31 (6) (1984) 543–549.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Puers, R., Schuylenbergh, K.V., Catrysse, M., Hermans, B. (2006). WIRELESS INDUCTIVE TRANSFER OF POWER AND DATA. In: Steyaert, M., Huijsing, J., van Roermund, A. (eds) Analog Circuit Design. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3885-2_18

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3885-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3884-6

  • Online ISBN: 978-1-4020-3885-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics